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1.0     Introduction 
Enumerative combinatorics provides one of the basic fundamentals for discrete probability theory [1-9]. If � is subset of a 
finite set �	(� ⊂ �) such that one chooses an element of�at random, the probability that the element chosen actually belong 
to E is given by �(�) ⁄ �(�)	. Thus, the determination of the cardinalities of these sets underlies this probability model (the 
so-called uniform model). However, beyond this uniform model, enumerative combinatorics have proved to be efficient 
whereby permeating various forms of discrete probability theory andparametric evaluation which we intend to demonstrate. 
Let� = {�: � = 1,2, . . . , �}	���� ⊂ �, then the usual probability (��	) of successfully selecting (picking) an element of  � is 
given by  ��	 = �(�) ⁄ �(�), and then define ��	 = 1 − ��	 for the failure. If this selection is repeated for �-number of times, 
then the probability that an element of �will be selected exactly �times in �-number of trials is given by the binomial 

function defined by ��������� �  for two possible outcomes and �-nomial function as ��!,�",…,�$� ���!���" …�%�$  for �-possible 

outcomes. The purpose of this research, is to consider the sets �(&)and '((, �(&))that is more general than the set �such that 
the index (running) variable (ī&)=(��, ��, … , �&) is not necessarily a point, but rather a vector, where �*+,�*-, �*+ℕ, /+,�-. Let �(&) = {	ī0 ∶ �*+,�*-, �*+ℕ, /+,�-	} 
and then define '((, �(&)) = {	ī02ī0 : 3ī0+3(&)	}	
 
to be the Multiset induced by�(&) due to the function (:	�(&) → ℕsuch that (5ī06 = 3ī0. Where3(&) is a multi-index. We 
then give a classical proof of the associated closed-form formula for the maximum likelihood estimator. 
1.1  Multiset and Multinomial 
Definition1.1.1 [10-11]: A finite multiset '((, �)	(	7/') on a set � is a function (:	� → ℕsuch that 8(	() < ∞	
If (() = �∀ ∈ � , then '  is called an � -multiset, hence we write �(') = �.  Suppose � = {�: � = 1,2, . . . , �}		 and (:	� → ℕsuch that (	(�) = 3�, we shall have ' = {�2=:	� = 1,2, . . . , �}, where 3� is called the multiplicity of �(��') and (3�, 3�, …	, 3%) is called the (associated) multi-index (or weak composition), which is also a row matrix (vector). For 
simplicity wewrite3 = (3�� , 3�� , …	, 3%).We quickly remark that the function (:	�(&) → ℕ is the so-called "random variable" 
as often used by statisticians. To see this, given any finite Multiset ', then there exist (:	�(&) → ℕ such that ((�) = 3�(	� =1,2, . . . , �) and ∑(	(�) = � since ' is finite. If we let(	(�) = ��, then�� is a random variable that count the occurences of 
outcome � in� (i.e. �� = 3�; 	� = 1,2, . . . , �). 
 
Corresponding author: O.C. Okoli, E-mail: odicomatics@yahoo.com, Tel.: +234-8036941434 

 
Journal of the Nigerian Association of Mathematical Physics Volume 31, (July, 2015), 391 – 398 



 

392 

 

Application of Multi-Set to…           Okoli, Nsiegbe and Ezenekwe     J of NAMP 
 
1.2  One Dimensional Multinomial Distribution 
If for each �  independent trials, there are � possible outcomes �, �, …	, % , with the corresponding probabilities ��, ��, …	, �% 	(∑�� = 1), and if�� (random variable) records the number of occurrances of � in these � trials, hence for every 
one-dimensional multi-index (3��, 3�� , …	 , 3%)of�, then �(�� = 3�; 	� = 1,2, . . . , �) = �2!,2",			…,2$� ��2!��2" …�%2$ 								(1.1)	
is the underlying probability mass function (or simply �@A) which is well known. In the sequel we shall represent the above 
description on� that defines the�@Aby '(�, 3, �)	(	7/'(�, (, �))and then give a formal proof for the �@A for completeness 
purpose. We now proceed to define certain concept and notations which will serve as a building block in this paper. 
Definition1.2.1 [12-14] By Multi-index, we mean a �-tuple vector (a row matrix or a column matrix)3� , where each (3�:	,�- = {1,2, . . . , �})	is a non-negative interger. We define 
The associated integer |3�|by 

|3| = 	83�%
�C� (1.2)	

The associated monomial 2 by 

2 =	D�2=%
�C� (1.3)	

The associated factorial 3! by 

3! 	= 	D3�%
�C� ! (1.4)	

Let � = {�, �, …	, %} be a distinct finite set of points. If we associate to each element� ∈ � with the number3� in 3then 
certainly there exist a non-empty set '(3, �) induced by a non-negative integer (:	� → ℕsuch that �  has multiplicity 3� in'(3, �)7/	('((, �)), which is define by '((, �) = 	 {�2! , �2" , … , %2$}(1.5)	
Is the multiset associated with �  with respect to the non-negative integer function on � . Now consider the expansion 
of(� + � +⋯+ %)�, observe that if � = 2,3 then we have the binomial, trinomial expansion respectively. For arbitrary 
but fixed positive integer � the expansion of (∑ �%�C� )�is a multinomial expansion of � in one running (index) variable �, 
which can be referred to as one category or class of data. Observe that each �has certain number of repeatition or 
multiplicity in the expansion of (∑ �%�C� )�. There is no loss of generality if we assume that the multiplicity of � in the 
expansion of (∑ �%�C� )�is3�; 	� = 1,2, . . . , �provided ∑3� = �. Thus, this will certainly induce a multiset representation due to 
the multinomial expansion, as such we have {�2! , �2" , … , %2$}as in (1.5). Furthermore, observe that each term (string) in this 
multinomial (�-nomial) expansion can be given in the general form. �(3�, 3� ,			… , 3%)�2!�2" …%2$ 																																					(1.6)	
Where �(3�, 3� ,			… , 3%)is the associated �-nomial coefficient for each term. The following lemma gives the actual formular 
for �(3�, 3� ,			… , 3%)  and corresponding probability mass function. 
Now, we extend our description above to two-dimensional multiset and its associated two-dimensional multi-index3(�) 	=(3��), by considering the expansion 5∑ .%�C� ∑ �L�C� 6� where the multiplicity 3�� 	(� ∈ ,�-, � ∈ ,@-, �,@ ∈ ℕ) for each term �� ∈ �(�)(� ∈ ,�-, � ∈ ,@-, �,@ ∈ ℕ)  induces a � × @  array (vector) where each 3�� 	(� ∈ ,�-, � ∈ ,@-, �,@ ∈ ℕ)  is a 
non-negative integer. Hence for the vector 

3(�) = N3�� ⋯ 3�L⋮ ⋱ ⋮3%� ⋯ 3%LQ , 7/3(�) 	= 53��6:	� ∈ ,�-, � ∈ ,@- 
We define 
The associated integer |3(�)	| by 

3(�) =8.%
�C� 83��L

�C� 	 ; RℎT/TU3�(�)U =83��L
�C� 	 ; 	� ∈ ,�-					(1.7)	

The associated monomial 2 by 

2(") =	D.%
�C� D��2=WL

�C� ; where	�2(") =	D��2=WL
�C� 					(1.8)	

The associated factorial 3! by 
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3(�)! 	= 	D.%
�C� D3��L

�C� !; 	where		3�(�)! = 	D��2=WL
�C� ! 					(1.9)	

 
Lemma1.2.1 
Let '(�)(�, 3(�), �(�))denote a description on a finite multiset with multiplicity 3��and probability ���for each   3�� ∈ �(�), 
then the probability that 3�� ∈ �(�)is selected exactly 3��times (� ∈ ,�-, � ∈ ,@-, �,@ ∈ ℕ) in �-trials is; 

Ρ5��� = 3�� ∶ 	� ∈ ,�-, � ∈ ,@-6 = n!∏ .%�C� ∏ 3��L�C� D.%
�C� D���2=WL

�C� 	
Proof 
Some how, our choice of selection is a little beat coupled, since for each fixed � ∈ ,�- we have to make selection from the 
set{�� ∶ � ∈ ,@-}. Let |3�| be the number of times ��could be repeatedly be selected for every fixed � ∈ ,�- and let 3�� be the 
number of times ��could be repeatedly be selected given that the �aℎ row has been selected for each� ∈ ,@-. Thus, for 
each� ∈ ,�-, the number of ways of selecting the 1bc , 2�&, … ,@cd element in �(�)constituting (3��, 3�� ,			… , 3�L) is given by 

NU3(�)U − ∑ |3*(�)|� �*C�U3�(�)U Q NU3�(�)U3�� QNU3�
(�)U − 3��3�� Q⋯NU3�(�)U − ∑ 3��L ��C�3�L Q∀� ∈ ,�- 

= NU3(�)U − ∑ |3*(�)|� �*C�U3�(�)U QDNU3�(�)U − ∑ 3�*� �*C�3�L QL
�C� ∀� ∈ ,�- 

Thus, as � ranges over the set,�-, we have altogether 

DNU3(�)U − ∑ |3*(�)|� �*C�U3�(�)U Q%
�C� DNU3�(�)U − ∑ 3�*� �*C�3�L QL

�C�  

= 5∑ .%�C� ∑ 3��L�C� 6!∏ .%�C� ∏ 3��L�C� ! = n!∏ .%�C� ∏ 3��!L�C�  

Thus, consequently, we have 

Ρ5��� = 3�� ∶ 	� ∈ ,�-, � ∈ ,@-6 = n!∏ .%�C� ∏ 3��L�C� D.%
�C� D���2=WL

�C�  

It is important to remark that in lemma 1.2.1, given the set�(�) = {�� ∶ � ∈ ,�-, � ∈ ,@-}and (:	�(�) → ℕ, then that there exist 

a two-dimensional finite multiset '(�)53(�), �(�)6 = {��2=W: � ∈ ,�-, � ∈ ,@-	} on �(�) with it corresponding multi-index 3(�) = 53��6� ∈ ,�-, � ∈ ,@-. By lemma 1.2.1, we wish to generalise the result for an arbitrary �-dimensional finite multiset '(&)53(&), �(&)6  with the corresponding � -dimensional multi-index 3(&) = 3�!,�",…,�0 , by considering the expansion e∑ .%!�!C� . . ∑ �!,�",…,�0%0�0C� f� where the multiplicity 3�!,�",…,�0 	(�*	+	,�*	-, �*	+	ℕ, /	+	,	�	-)  for each term �!,�",…,�0 ∈		�(&)(�* 	+	,�*	-, �*	+	ℕ, /	+	,	�	-) induces a�� × �� ×⋯× �&vector (array) where each3�!,�",…,�0 	(�*	+	,�*	-, �*	+	ℕ, /	+	,	�	-) is 

a non-negative integer. Similarly for the vector		3(&), we define 
The associated integer |3(�)	| by 

		3(&) = 8 …%!
�!C�

8 3�!,�",…,�0
%0
�0C�

					(1.10)	
RℎT/T		U3�!,�",…,�h(&) U = 8 …%hi!

�hi!C�
8 3�!,�",…,�h�hi!,…,�0
%0
�0C�

	 ; 1 ≤ k < � 

The associated monomial 2 by 

2(0) =	D…%!
�!C�

D�!,�",…,�02=!,=",…,=0%0
�0C�

					(1.11)	
where	�!,�",…,�h2(") =	 D …%hi!

�hi!C�
D�!,�",…,�h�hi!,…,�02=!,=",…,=h=hi!,…,=0%0
�0C�

; 1 ≤ k < � 
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The associated factorial 		3(&)! by 

		3(&)! 	= 	D…%!
�!C�

D3�!,�",…,�0
%0
�0C�

! = U3ī0U! 					(1.12) 
Where 

3�!,�",…,�h(&) ! = 		 D …%hi!
�hi!C�

D3�!,�",…,�h�hi!,…,�0
%0
�0C�

! ���	U3īhU! = U3�hl!�U! U3�hl!�U!⋯ U3�hl!%hU! 
 
Lemma 1.2.2  
For arbitrary but fixed � ∈ ℕ let /	+	,	�	-	���		�*	+	ℕ,	, let 		�* 	+	,�*	-, then the following holds; 

D.&
*C� mDnU3īol!U − ∑ |3īol!�o|� ��oC�U3īol!�oU p%o

�oC�
q = �!		3(&)! 

Where U3īol!U − ∑ |3īol!�o|� ��oC� = 0	∀	/	+	,	�	- 
Lemma 1.2.3 
Let '(&)5�	, 3(&), 	�(&)6 denote a description on � -dimensional finite multiset '(&)5		3(&), 		�(&)6 with corresponding 
multiplicity 3�!,�",…,�0and probability ��!,�",…,�0  for each �!,�",…,�0			+		�(&)then the probability that �!,�",…,�0			+		�(&) is selected 
exactly3�!,�",…,�0times (�*	+	,�*	-, �*	+	ℕ, /	+	,	�	-)in�-trials is;   Ρ5��!,�",…,�0 = 3�!,�",…,�0 ∶ �* 	+	,�*	-, �*	+	ℕ, /	+	,	�	-6 = n!∏ …%!�!C� ∏ 3�!,�",…,�0%0�0C�

D…%!
�!C�

D��!,�",…,�02=!,=",…,=0%0
�0C�

	
For the next lemmas, we give the preliminary introduction as follows, for arbitrary but fixed �	 ∈ ℕ, rTa	,�- = {1,2, . . . , �} 
denote the set of � categorical variables. Let 		3(&) be a �-dimensional array; that is �� × �� × ⋯× �& contingency table with 
cell counts (frequencies) 3�!,�",…,�0. For any / ∈ ℕ such that 1 < / < �, then the subset variable ,/- ⊂ ,�- generate 		3(&)/-
dimensional sub array with cell counts (frequencies) 3�!,�",…,�o = 3īo	 	(/ ≤ �). Let s,*-(īo) denote the interaction among the 
variables in the index subset ,/- of the /-dimensional sub table of 		3(&)  that correspond to ī*  cell. we shall assume that ,/- = ∅	�A	/ = 0, so that we define s,∅-5ī∅6 = s.	 
Definition 1.2.2([15]) 
 A loglinear model is said to be hierarchical if for every /	 ∈ ℕ such that 1 < / < � (,/- ⊂ ,�-) for which s,*-(īo) = 0, then 
we have s,b-(īu) = 0 for all v	 ≥ /(,/- ⊂ ,v-) 
Furthermore, letx&,*y be the set of strings of /-combinations (in increasing order) of elements of ,�- and z(,�-) = 2,&-denote 
the power set of ,�-. Thus, for any /	 ∈ ℕ such that 1 < / < � (,/- ⊂ ,�-) we define z(,�-: 0 ≤ �({	ȷ	|}) ≤ /): = }{ȷ	|} ∈ z(,�-): 0 ≤ �({ȷ	|}) ≤ /~														(1.13) 
Where ȷ	| ∈ x&,*y for / = 0,1,2, . . . , �	(� ≤ 	/)with {ȷ	|} = ∅ if / = 0 and �({ȷ	|}) denote the lenght of the string ȷ	| ∈ x&,*y  or the 
cardinality of the set {ȷ	|} ∈ z(,�-). Observe that z(,�-: 0 ≤ �({	ȷ	|}) ≤ /) is simply a subclass of z(,�-), however, z(,�-: 0 ≤�({	ȷ	|}) ≤ /) is equal to the power set z(,�-) if � = /. Observed that by this, is easy to see that  

z(,�-: 0 ≤ �({ȷ	|}) ≤ �): =�z(,�-:	�({ȷ	|}) = /)&
*C� =�{ȷ	|}*&

*C� 											(1.14) 
From (1.3), notice that z(,�-:	�({ȷ	|}) = /) is structurally equal to the (set) collections of elements of x&,*y . As a consequence 
of above concept and definitions, we shall rather replace the notation s,b-(īu) by s{�	|}5��	�6 such that �({ȷ	|}) = /. However, these 

notations could be used interchangeable if need be in the course of this work, also if�({ȷ	|}) = /, then {ȷ	|} ∈ {ȷ	|}*. The follwing 
lemma shall be useful in the sequel. 
Lemma 1.2.4 
For arbitrary but fixed 	� ∈ ℕ and let s{�	|}5��	�6  be as define above such that ȷ	| ∈ x&,*y ({ȷ	|} ∈ z(,�-: �({ȷ	|}) = �) then{ȷ	|} ∈P(,�-: 0 ≤ �({ȷ	|}) ≤ �) 

8.&
�C� 8 s{�	|}5��	�6���!��"�⋯��h�&

=	 8 s{�	|}5��	�6{�	|}∈�(,&-:���({�	|})�&)  
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Lemma 1.2.5 
Let 		3(&)  be a � -dimensional �� × �� ×⋯× �&  contingency table with cell counts 
(frequencies)3�!,�",…,�0(�* 	+	,�*	-, �*	+	ℕ, /	+	,	�	-), then the saturated loglinear model for the �-way table of variables indexed 
in ,�- is given by ��	|0 = 8 s{�	|}5��	�6{�	|}∈�(,&-:���({�	|})�&)  

 Where log� s�	|0 = ��	|0 	
 
1.3  Maximum Likelihood Function 
Now, Observe that the probability mass function (�@A) associated with'(&)5�	, 3(&), 	�(&)6 in lemma 1.2.2 is a product-
multinomial distribution function. Hence, we wish to determine in a close form, the maximum likelihood estimator for the 
log-likehood function, which is a function of the parameter s{�	|}5��	�6. 
 Definition1.3.1 [16] 
For a given set of points {	�	: � = 1,2, . . . , �},	the function ℒ defined by  

ℒ(�| ∙) = �(��, … , �%|�, … , %) =DA(��, … , �%|�)�
�C� 							(1.15) 

Is called the likelihood function for the distribution function A(��, … , �%|�) ,where �, … , %  are the independent 
observations that are identically distributed. The maximum likelihood estimators ���are the values of the parameters ��, … , �% 
that optimizes ℒ(�)|||or equivalently, log ℒ(�)|||. 
 
 Let  

�(/) = 	nU3īol!U − ∑ |3�	|o|� ��oC�U3īoU p											(1.16) 
For /	 ∈ 	 ,�- define  

A5∙ U�o6 ≔ 	D�(/)%o
�oC�

��o�=o 
 Then A5∙ U�o6 is a multinomial distribution for the independent observation �o , … , �0  which are identically distributed. The 
function ℒ defined by  

ℒ5∙ U�!,�",…,�o6 = 	DA5∙ U�o6&
�C�  

is a likelihood function for the multinomial distributionA5∙ U�o6. 
For every /	 ∈ 	 ,�- , if we let(5�o6 = 	��o , then ��o  is a random variable that count the occurences of event �o ∈ � 
(i.e.�o ; � = 1, . . . , �), then 
 

ℒ5∙ U�!,�",…,�o6 = 	DA5∙ U�o6&
�C�  

D.&
*C� mDnU3īol!U − ∑ |3�	|o|� ��oC�U3īoU p ��o�=o

%o
�oC�

q = 

DN|3| − ∑ |3�!|�! ��!C�U3�!U Q%!
�!C�

DmU3�!U − ∑ |3�!�"|�" ��"C��3�!="� q%"
�"C�

 

⋯ 

DNU3īhl!U − ∑ |3īhl!�h|�h ��hC�U3īhl!�hU Q%h
�hC�

D NU3īhU − ∑ |3īh�hi!|�hi! ��hi!C�U3īh�hi!U Q%hi!
�hi!C�

 

⋯ 
 
 

Journal of the Nigerian Association of Mathematical Physics Volume 31, (July, 2015), 391 – 398 



 

396 

 

Application of Multi-Set to…           Okoli, Nsiegbe and Ezenekwe     J of NAMP 
 

D NU3ī0l"U − ∑ |3ī0l"�0l!|�0l! ��0l!C�U3ī0l"�0l!U Q%0l!
�0l!C�

DNU3ī0l!U − ∑ |3ī0l!�0|�0 ��0C�U3ī0l!�0U Q%0
�0C�

mD…%!
�!C�

D�ī02ī0
%0
�0C�

q 

= Ρ5��!,�",…,�0 = 3�!,�",…,�0 ∶ �*	+	,�*	-, �*	+	ℕ, /	+	,	�	-6 
We shall state the result that follows in the next theorem and then give a formal prove of it.  
 
2.0  Main Results 
Theorem 2.1 
 Let ℒ5∙ U�!,�",…,�o6  be the product-multinomial probability distribution function associated with the� -dimensional 
contingency table,		3(&) in'(&)5�	, 3(&), 	�(&)6, then the maximum likeihood estimators is given by 

ŝ{�	|}5��	�6 =	
��
��
��
� log� n∑ 3ī0ī0�ī0 p ; �A	/ = 0.
log� N3(��	�o ,�)���	�0\��	�oQ–8.* �

�C� 8 ŝ}�	|¡~e��	�¡f	;}�	|¡~∈�5{�	|o}:�5}�	|¡~6C�6.{ȷ	|*} ∈ 5z(,�-:	�({ȷ	|*}) = /)6	if	1 ≤ r ≤ d
¥ 

 
Where 3(��	�o ,�) =	∑ 3ī0��	�0\��	�o  

Proof 
By definition 1.3.1, observe that; 

ℒ5∙ U�!,�",…,�o6 = 	n �(3ī0)pD�ī02ī0ī0
 

For arbitrary but fixed � ∈ ℕ, let sī0 be the expected cell count with the corresponding(expected) probability ¦ī0  , then we 
have sī0 = �¦ī0 ,  
where �	 = ∑ 3ī0ī0 . 
Then we seek to solve the problem of 

@��@�§T		ℒ5∙ U�!,�",…,�o6 = 	n �53ī06pD�ī02ī0ī0
 

vk¨�T©a	a7 ∶ 	 sī0 = �¦ī0 
Equivalently, we consider; 

@��@�§T	 ln ℒ5∙ U�!,�",…,�o6 = ln n �53ī06pD�ī02ī0ī0
 

vk¨�T©a	a7 ∶ 	 sī0 = �¦ī0 
Now, observe that; 

ln ℒ5∙ U�!,�",…,�o6 = ln n �53ī06p + lnmD�ī02ī0ī0
q = 	 ln n �53ī06p +83ī0ī0

ln ¦ī0 

= lnn �53ī06p +83ī0ī0
ln esī0� f 	= ln n �53ī06p +83ī0ī0

(ln sī0 − ln�) 	= ln n �53ī06p +83ī0ī0
ln sī0 − ln�83ī0ī0= lnn �53ī06p +83ī0ī0

ln sī0 − � ln � 

Using Lemma 1.2.4 and Lemma 1.2.5 we have; 

ln ℒ5∙ U�!,�",…,�o6 = ln n �53ī06p +83ī0ī0
m 8 s{�	|}5��	�6{�	|}∈�(,&-:���({�	|})�&) q– 	� ln � 

= lnn �53ī06p +83ī0ī0
m8.&
�C� 8 s{�	|}5��	�6�	|∈ª0,o«

q − 	� ln �				(2.1) 
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The constrain condition implies that ∑ 3ī0ī0 = �. Now we construct appropriate Largragian function ¬for the maximization 
problem as such; 

¬ es{�	|}5��	�6; 	(f = ln es{�	|}5��	�6|3�!,�",…,�0f + ( m� −8sī0ī0
q 

= lnn �53ī06p +83ī0ī0
m 8 s{�	|}5��	�6{�	|}∈�(,&-:���({�	|})�&) q– 	� ln � + (m� −8sī0ī0

q 

= lnn �53ī06p +83ī0ī0
m 8 s{�	|}5��	�6{�	|}∈�(,&-:���({�	|})�&) q– 	� ln � + ( m� −8��m 8 s{�	|}5��	�6{�	|}∈�(,&-:���({�	|})�&) qī0

q 

 By optimality condition, we have that for 1 ≤ r ≤ d andȷ	| ∈ x&,*y  ¬s{�	|}5��	�6 = 8 3ī0ī0\īo
− (8 ��m 8 s{�	|}5��	�6{�	|}∈�(,&-:���({�	|})�&) qī0\īo

= 0		(2.2) 
and  ¬( = � −8��m 8 s{�	|}5��	�6{�	|}∈�(,&-:���({�	|})�&) qī0

= 0		(2.3) 
Solving equation (2.2) and (2.3) we have that( = 1, so that  

8��m 8 ŝ{�	|}5��	�6{�	|}∈�(,&-:���({�	|})�&) qī0\īo
= 8 3ī0ī0\īo

 

⇒ 8 ��m 8 ŝ{�	|}5��	�6{�	|}∈�(,&-:���({�	|})�* �) qī0\īo
�� m 8 ŝ{�	|}5��	�6{�	|}∈�(,&-:�({�	|})C*) q 

× �� m 8 ŝ{�	|}5��	�6{�	|}∈�(,&-:*����({�	|})�&) q = 8 3ī0ī0\īo
 

 

⇒ ��m 8 ŝ{�	|}5��	�6{�	|}∈�(,&-:�({�	|})C*) q = 

∑ 3ī0ī0\īo∑ �� e∑ ŝ{�	|}5��	�6{�	|}∈�(,&-:*����({�	|})�&) f�� e∑ ŝ{�	|}5��	�6{�	|}∈�(,&-:���({�	|})�* �) fī0\īo
 

= ∑ 3ī0ī0\īo∑ �� e∑ ŝ{�	|}5��	�6{�	|}¡:*�����& f �� e∑ ŝ{�	|}5��	�6{�	|}¡:����* � fī0\īo
 

= ∑ 3ī0ī0\īo∑ �� e∑ ŝ{�	|}5��	�6{�	|}¡:����&\{�	|}¡:����* f �� e∑ ŝ{�	|}5��	�6{�	|}¡:����* � fī0\īo
 

Hence we have ŝ{�	|}5��	�6|5{�	|}∈�(,&-:�({�	|})C*)6 
log� m ∑ 3ī0ī0\īo∑ �� e∑ ŝ{�	|}5��	�6{�	|}¡:����&\{�	|}¡:����* fī0\īo

q − m 8 ŝ{�	|}5��	�6{�	|}¡:����* �
q 

Since, �({ȷ	|}) = /, we write; 
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ŝ{�	|}5��	�6 =	
��
��
��
� log� n∑ 3ī0ī0�ī0 p ; �A	/ = 0.
log� N3(��	�o ,�)���	�0\��	�oQ–8.* �

�C� 8 ŝ}�	|¡~e��	�¡f	;}�	|¡~∈�5{�	|o}:�5}�	|¡~6C�6.{ȷ	|*} ∈ 5z(,�-:	�({ȷ	|*}) = /)6	if	1 ≤ r ≤ d
¥ 

 
3.0 Conclusion 
The results obtained in this paper solve certain maximum likelihood parameter estimation problem in the generalised sense. 
Researchers in multivariate analysis will find the result obtained in this paper useful when solving for value(s) that maximize 
certain arbitrary�-dimensional multinomial function (likelihood function). We are not aware of the existence of the results 
obtained in this paper in literature. 
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