Statistical Analysis of Natural Radionuclides Obtained From Sediments in Ogun River, Nigeria.

I.C Okeyode¹, N.N Jibiri², A.O Mustapha³, V. Makinde⁴ and F.G Akinboro⁵

^{1,3,4,5}Department of Physics, Federal University of Agriculture, Abeokuta, Ogun state, Nigeria ²Radiation and Health Physics Research Laboratory, Department of Physics, University of Ibadan, Ibadan, Nigeria.

Abstract

Basic statistics were used to describe statistical characteristics of radionuclides in Ogun river sediments. Conventional and multivariate statistical procedures for data treatment were performed using SPSS (version 16.0) for Windows. Descriptive statistics was used to analysis the characteristics of these radionuclides in the sediments. Variational tests and lcation effects size measures were conducted on the concentrations of the radionuclides. Also Pearson correlation and hierarchical cluster analysis have been applied in order to clarify the relationship among the variables. It was observed that the radionuclides did not have any correlation with one another in the upper region but in the middle and lower regions, although 40 K did not correlate with the other radionuclides but 226 Ra correlated fairly well with 232 Th. The upper region of the river indicated no location effect, but in the middle and lower regions, significant locationeffects were observed and these were attributable to industrial activities in the locations.

Keywords: Radionuclides, Ogun River, Stasitical Analysis

1.0 Introduction

Outdoors External exposure arises from terrestrial radionuclides that are present in trace proportions in all soil/sediments. Radiation emitted by these radionuclides within 15-30cm of the topsoil gets to the earth surface [1]. Human exposure to ionizing radiation from natural sources is an unending and unpreventable phenomenon on earth [2]. Human beings are exposed to ionizing radiation whether he is aware or not and at high doses or prolonged low doses there could be some radiation effects. The knowledge of the concentrations of these radionuclides in sediments/soil and estimations of their radiological implications as well as the statistical characteristics of these radionuclides are very important, therefore, the aim of this study is to use basic statistics to describe characteristics of radionuclides in Ogun river sediments using Conventional and multivariate statistical procedures.

2.0 Materials and Methods

Ogun river flows southwards covering a distance of about 400 km. For the ease of sampling to cover the long stretch course of the river and for ease analysis, the river course was divided into three: Upper, Middle and Lower regions. Sediment samples were collected at each sampling point in the dry season around January through late April, 2007. The surface sediment was collected [3,4] packed in a nylon made of non-radioactive material sealed and labeled to avoid contaminations. A total of 320 sediment samples were collected. It was composed of 10 sediment samples from each of the 32 sampling locations along the entire course of the river. The distance between each location was about 300–500m depending on accessibility and local terrain. Figure 1 shows the locations where the sediment samples were collected along the course of the river. The location of a Global Positioning System.

A76x76mm²NaI(TI)scintillationdetectorBicron(Modelno.3142)wasusedforthemeasurements of ²²⁶Ra, ²³²Th and ⁴⁰K in the sediments. The detector was coupledtoaCanberraseries100 multichannel analyzer(MCA) through a photo multiplier tube/ preamplifier/amplifier base. The detector was placed in a 5cm thick lead shield toreducetheeffectsofnaturalbackground

Corresponding author: I.C Okeyode, E-mail: Kamiyolejoy2000@yahoo.com, Tel.: +234803-073-1404

Journal of the Nigerian Association of Mathematical Physics Volume 31, (July, 2015), 379 – 390

radiation. Sampleswereplacedsymmetricallyontopofthedetector and measuredforacountingperiodof10h.Thenetareaunder the correspondingpeaksintheenergyspectrumwascomputed. Measurement ofeachsamplewasrepeatedthreetimesandthe mean netareawas determined.Fromthenet area, theactivityconcentrationsoftheradionuclidesinthe samples wereobtainedfrom Equation (1)[5].

$$C(Bq/kg) = KC_n \text{ {where } } K = \frac{1}{\varepsilon P_{\gamma}M_s} \text{ }$$
(1)

Where C is the activity concentration of the radionuclide in the sample in (Bq/kg). ε is the detector efficiency at the specific gamma energy, P_{γ} is the absolute transition probability of the specific gamma-ray and Ms is the mass of the sample (kg). C_n is the corresponding peak. Following all standard procedures and equations, the activity concentrations obtained have been published in the literature [6].

Fig 1: The study area [6]

3.0 Results and Discussions

The results of the statistical analysis are displayed and discussed below.

3.1 Descriptive Statistics

The descriptive statistical results are as shown in Table 1. i.e. the range, minimum, maximum, standard deviation and the mean values of the radionuclides concentrations. The skewness and Kurtosis of the distributions were also shown. The skewness obtained for the distribution of the concentrations of ⁴⁰K was negative while for ²²⁶Ra and ²³²Th were positive i,e the distribution for ⁴⁰Kwas negatively skewed, this is the skewness in which the mean are less than the mode showing negative asymmetric nature. While for ²²⁶Ra and ²³²Th, the skewness is such that the mode are less than the mean showing positive asymmetric nature.

Kurtosis is a measure of the peakedness of the probability distribution of a real-valued random variable. It characterizes the relative peakedness or flatness of a distribution compared with the normal distribution [7]. The concentrations of the three radionuclides have negative values and negative kurtosis values indicate relatively flat topped distribution [7], showing a platykurtic distribution.

10010 11 2 000	Tuble IT Deseriptive Studisticul Results										
	Ν	Range	Minimum	Maximum	Mean	Std.	Variance	Skewness	5	Kurtosis	
						Deviation					
Radionuclides	Statistic	Statistic	Statistic	Statistic	Statistic	Statistic	Statistic	Statistic	Std.	Statistic	Std.
									Error		Error
POT 40	32	237.05	370.97	608.02	4.99E+02	59.16741	3.50E+03	-0.017	0.414	-0.413	0.809
RAD 226	32	14.83	5.57	20.4	12.6486	3.47609	12.083	0.176	0.414	-0.54	0.809
TH 232	32	18.06	5.04	23.1	11.7743	5.12577	26.274	0.956	0.414	-0.292	0.809

Table 1: Descriptive Statistical Results

3.2 Frequency Distribution

Histogram plot of the frequency distribution of the concentrations of ⁴⁰K, ²²⁶Ra and ²³²Th in the sediments of Ogun river was also analysed, Figures 2.The three radionuclides showed some deviations from normal distributions and they all displayed some degrees of multi modal features. The multi modal features suggested complexity of minerals in sediment samples [7].

Figure 2: Histogram plots of the frequency distributions of ⁴⁰K, ²²⁶Ra and ²³²Th of sediments from Ogun river respectively

3.3 Variational Tests on the Concentrations of Radionuclides in the Upper, Middle and Lower Regions of the River

The analysis of variance (ANOVA) technique was carried out using SPSS for Windows 16.0 software. In this analysis, the three radionuclides in each of the ten sites together across the thirty – two locations were considered. This was done to see if there would be a significant difference in the means of the measured parameters in each location between the groups and within the groups. If the P-Value is less than (α) = 0.05, there is significant difference in their means, but if the P-value is greater than 0.05, 5 percent level of significance, then there is no significant difference in their means. It was observed that

Okeyode, Jibiri, Mustapha, Makinde and Akinboro J of NAMP

in the upper region of the river, Table 2, the P-values for the three radionuclides were greater than 0.05. Specifically, P = 0.062 for 40 K, P = 0.097 for 226 Ra and P = 0.824 for 232 Th. Therefore in the upper region of the river, there were no significant differences in the means of the three radionuclides. From Tables 3 and 4 it was observed that the P-values of the three radionuclides were less than 0.05.

 Table 2: Analysis of Variance for the Upper Region

		Sum of Squares	df	Mean Square	F	(P)Sig.
K_40	Between Groups	117243.876	5	23448.775	2.258	0.062
	Within Groups	560653.494	54	10382.472		
	Total	677897.370	59			
Ra_226	Between Groups	138.360	5	27.672	1.973	0.097
	Within Groups	757.407	54	14.026		
	Total	895.767	59			
Th_232	Between Groups	17.988	5	3.598	.433	0.824
	Within Groups	448.977	54	8.314		
	Total	466.965	59			l.

*df= degree of freedom, F= F- ratio of the F- distribution (F= MS_B/MS_W , where MS_B is mean square between groups and MS_W is mean square within groups) and (p) sig. = exact significant level of the analysis.

Table 3:	Analysis of	Variance for	the Middle	Region
----------	-------------	--------------	------------	--------

-	-	Sum of Squares	df	Mean Square	F	(P) Sig.
Pottasium-40	Between Groups	378843.869	8	47355.484	4.979	0.000
	Within Groups	770349.834	81	9510.492		
	Total	1149193.703	89			
Radium-226	Between Groups	1600.591	8	200.074	7.393	0.000
	Within Groups	2192.161	81	27.064		
	Total	3792.752	89			
Thorium-232	Between Groups	2034.167	8	254.271	12.895	0.000
	Within Groups	1597.202	81	19.719		
	Total	3631.369	89			

Table4:Analysis of Variance for the Lower Region

-	-	Sum of Squares	df	Mean Square	F	(P) Sig.
Pottasium-40	Between Groups	541937.452	541937.452 16		8.576	0.000
	Within Groups	604277.831	153	3949.528		
	Total	1146215.283	169			
Radium-226	Between Groups	1883.258	16	117.704	2.516	0.002
	Within Groups	7158.229	153	46.786		
	Total	9041.487	169			
Thorium-232	Between Groups	5045.895	16	315.368	12.299	0.000
	Within Groups	3923.236	153	25.642		
	Total	8969.130	169			

Hence in the middle and lower regions there were significant differences in the means of the concentrations of radionuclides estimated. This could be attributed to the fact that there are more human activities going on in the middle and lower regions compared to the upper region.

3.4 The Location Effects Size Measuresfor the Three Regions

As the statistical significance of the mean differences of the radionuclides' concentrations had been established, it was necessary to look at the location effect size on the radionuclides' concentrations, so that the strength of location effects on the radionuclides' concentrations in each region could be compared. The analysis was done using same package.

Multivariate general linear model was used to compute the location effects index. The location effect size index is the Eta Squared.

Eta squared varies between 0 and 1 and it is interpreted in the usual way i.e 0 - 0.1 is a weak effect, 0.1 - 0.3 is a modest effect, 0.3 - 0.5 is a moderate effect and > 0.5 is a strong effect.

The location effects size measure for the three regions is presented in Table 5.

For the upper region, it was observed that the three radionuclides were statistically not significant at 0.05 level in this region. The effect of locations on the concentrations of ⁴⁰K was modest (partial eta squared was 0.173), that of ²²⁶Ra in the upper region was also modest (partial eta squared was 0.154) and that of ²³²Th in that region was a weak effect (partial eta squared was 0.039). Hence there was no significant location effects on the measurements of the concentrations of radionuclides taken at the lower region.

Source	Dependent Variable	Sig.	Partial Eta Squared
Intercept	Pottasium-40	0	0.967
-	Radium-226	0	0.919
	Thorium-232	0	0.918
Upper Locations	Pottasium-40	0.062	0.173 Modest
	Radium-226	0.097	0.154 Modest
	Thorium-232	0.824	0.039 Weak
Intercept	Pottasium-40	0	0.965
	Radium-226	0	0.855
	Thorium-232	0	0.859
Middle Locations	Pottasium-40	0	0.330 Modest
	Radium-226	0	0.422 Moderate
	Thorium-232	0	0.560 Str. Effect
Intercept	Pottasium-40	0	0.986
	Radium-226	0	0.806
	Thorium-232	0	0.887
Lower Locations	Pottasium-40	0	0.473 Str. Eff.
	Radium-226	0.002	0.208 Modest
	Thorium-232	0	0.563 Str. Eff.

 Table 5: The Location Effects Size measures on the Concentrations of the Radionuclides in the upper, middle and lower regions

*sig. = exact significant level of the analysis.

In the middle region, Table 5, it was observed that the three radionuclides were statistically significant at 0.05 level of significant, since their P- values were less than 0.05. The effect of locations on the concentrations of 40 K, was modest, for 226 Ra, it was moderate and it was strong for 232 Th. Hence there was significant location effects on the measurements of the concentrations of radionuclides taken at the middle region.

Considering the lower region, Table 5, it was seen that the three radionuclides were statistically significant at the 0.05 level, since their P- values were less than 0.05.

The effect of locations on the concentrations of 40 K was a strong effect, for 226 Ra it was modest and for 232 Th, it was a strong effect. Hence there was significant location effects on the measurements of the concentrations of radionuclides taken at the lower region too.

It could be seen that it was majorly ²³²Th that had significant location effect in the middle and lower regions, ⁴⁰K also added some effects to the lower region. Therefore it may imply that some activities that enhance ²³²Th and ⁴⁰K are done in these locations. This may be an indication that the radionuclides might have been accumulated in ionic and particulate form from agricultural drains and also as drifted pariculates from long shore currents and accredition processes.

3.5 Pearson Correlation Analysis between Concentrations of Radionuclides and Hazard Indices of the Sediments.

Pearson Correlation analysis was carried out using same software package. The analysis was done to determine the inter – relation and strength of association between the concentrations of radionuclides and the hazard indices. Table 6: Pearson Correlation Matrix of Measured Parameters in Upper Ogun River

⁴⁰ K	1									
^{Ra} 226	-0.24	1								
²³² Th	0.04	0.64	1							
Ra Equiv.	0.81	0.35	0.53	1						
Gamma	0.86*	0.28	0.47	1.00**	1					
In. Effect.	0.86*	0.28	0.47	1.00**	1.00**	1				
Gamma	0.87^{*}	0.24	0.45	0.99**	1.00**	1.00**	1			
ELCR	-0.14	0.64	0.34	0.17	0.14	0.14	0.12	1		
Hazard	0.81	0.35	0.53	1.00**	1.00**	1.00**	0.99**	0.19	1	
Hazard	-0.52	0.60	0.57	-0.09	-0.16	-0.16	-0.18	0.27	-0.09	1

*. Correlation is significant at the 0.05 level (2-tailed).

**. Correlation is significant at the 0.01 level (2-tailed).

Table 7:	Pearson	Correlation	matrix (of Measured	Parameters	in middle	Ogun I	River
							_	

⁴⁰ K	1									
²²⁶ Ra	- 0.55	1								
²³² Th	- 0.05	0.71*	1							
Ra Equiv.	0.23	0.62	0.94**	1						
Indoor Gamma	0.28	0.58	0.92**	0.99**	1					
In. Effect.	0.33	0.55	0.90**	1.00**	0.99**	1				
Repr.	0.35	0.52	0.90**	0 00**	0 00**	1 00**	1			
EI CR	0.33	0.52	0.90**	1.00**	0.99**	1.00^{*}	1 00**	1		
Ext.	0.33	0.00	0.90	1.00**	0.00**	1.00**	0.00**	1 00**	1	
Hazard Int.	0.23	0.62	0.94***	1.00***	0.99***	1.00***	0.99**	1.00***	1	
Hazard	0.05	0.80*	0.95**	0.97**	0.95**	0.94**	0.93**	0.94**	0.97**	1

*. Correlation is significant at the 0.05 level (2-tailed).

**. Correlation is significant at the 0.01 level (2-tailed).

Table 8: Pearson Correlation Matrix of Measured Parametersin lower Ogun River

40-K	1									
Ra-226	0.08	1								
Th-232	0.05	0.66^{**}	1							
Ra Equiv. Indoor	0.44	0.77**	0.89**	1						
Gamma	0.52*	0.76**	0.85**	1.00**	1					
In. Effect. Repr	0.52*	0.76**	0.85**	1.00**	1.00**	1				
Gamma	0.51^{*}	0.74**	0.86^{**}	1.00**	1.00**	1.00**	1			
ELCR Ext.	0.45	0.74^{**}	0.85**	0.96**	0.96**	0.96**	0.96**	1		
Hazard	0.44	0.77**	0.89**	1.00**	1.00**	1.00**	1.00**	0.96**	1	
Hazard	0.15	0.78**	0.80**	0.83**	0.81**	0.81**	0.80**	0.79**	0.83**	1

*. Correlation is significant at the 0.05 level (2-tailed).

**. Correlation is significant at the 0.01 level (2-tailed).

In the upper region of the river (Table 6), none of the radionuclides had any significant correlation with each other, at the level of significance considered.

⁴⁰Ksignificantly correlated positively with indoor gamma dose rate having (0.86) correlation coefficient, indoor effective dose rate(0.86) and representative gamma index (0.87) all at 0.05 level of significant.²³²Thdid not correlate significantly with any of the parameters considered at the levels of significance.²²⁶Radid not correlate significantly with any of the parameters considered at the levels of significance. Although, Majorities of the hazard indices parameters correlated well with one another.

In the middle region, Table7 shows that only ⁴⁰K did not correlate with any of the measured parameters considered at the levels of significance. ²²⁶Ra correlated positively (0.71) at 0.05 level of confidence with²³²Th.²²⁶Ra also showed positive significant correlation (0.80) at 0.05 with indoor hazard index.²³²Th showed positive significant correlations with all the parameters considered except ⁴⁰K. Most of the hazard indices parameters correlated very well with one another better than the relationships in the upper regions.

For the inter relationship in the lower region of the river, it was observed from Table 8that ⁴⁰K positively correlated although weakly (0.52) with indoor gamma dose rate, weakly (0.52) with indoor effective dose rates and also weakly(0.51) with representative gamma index at 0.05 level of significance.²²⁶Ra showed fair positve significant correlations with all the parameters considered, except with ⁴⁰K, all at 0.01 level of significance. Their correlation coefficience ranged between $0.66(^{232}$ Th) and 0.78 (internal hazard).

 232 Th showed positve significant correlations with all the parameters considered, except with 40 K, all at 0.01 level of significance. Their correlation coefficience ranged between 0.66(226 Ra) and 0.89(Radium equivalent and external hazard index).

Buttressing the location effect result, looking specifically at the inter-relationship of the natural radionuclides' concentration with one another, using Pearson correlation analysis, it could be seen that, in the middle and lower regions ²³²Th mostly correlated well with ²²⁶Ra since radium and thorium decay series occurtogether in nature [8], but ⁴⁰K did not correlate with any of the two because its origin is in a different decay series [8]. ²³²Th had most significant effect followed by²²⁶Ra which is having weak effect in the regions. The presence of one may enhance the other in an area and also enhances

any parameter that depends on either of them. Lastly, the lower region has almost the same relationship as the middleregion.

3.6 Cluster Analysis of the Radionuclides Distribution

Cluster analysis is one of the multivariate techniques used to identify and classify groups with similar radiometric character in a new group of observations [9,10]. Each observation in a cluster is mostly like others in the same cluster. Cluster analysis, (single linkage, using the method of Euclidean distances- nearest neighbour was applied to the sample activity concentrations (⁴⁰K, ²²⁶Ra and ²³²Th), usingsame softwarepackage in the light of identifying locations with similar characters. Figures3a-c, showsdendrogram of classifying sample locations as groups according to the radionuclides concentrations in the sediments from ogun river.

40 -K Dendrogram using Single Linkage

Rescaled Distance Cluster Combine

Fig.3a: Dendrogram for classifying sample locations as groups according to the concentrations of ⁴⁰K in the sediments from Ogun River.

Th-232

C A S E Label N	0 5 Num +	10 15	20	25	-++			
MILE (8) OB. IGAUN IBARAGUN ADIGBE OWERE OJUBO SANG LASUPO APA OSA ODO OGUN OLOPADE MAIDAN	$\begin{array}{cccc} A & 15 & - \\ 26 & - \\ 23 & - \\ 14 & - \\ 17 & - \\ GO & 3 & - \\ GO & 3 & - \\ 32 & - \\ (OYO W & \\ 7 & - \\ 25 & - \\ \end{array}$		1					
EKERIN	9 +	<u>. </u> .						
ORUDU	24 —							
LERIN					1			
IGBOHO	20 -							
SEPETERI	2							
AGO ODO	12 -				1			
IDI ATA	6 –							
OLOKEMEII	8-	'			'			
KARA	28				1			
MILE 12-	29 _							
OPEJI	10				'			
TOWOLO	30 -	- <u>T</u>	-		'			
AGBARIWU	31	<u></u>	1		I			
ILATE	21	'		1		I		
AKUTE	27 L	ŀ						
SOKORI	13 —					'		
OBA OSEN	22 -		\vdash					
ABATA	16 —	T	•	'				
OGUNPA W	18				•			
IRO	19 ——			•		1		

Figure 3b: Dendrogram for classifying sample locations as groups according to the concentrations of ²³²Th in the sediments from Ogun river.

Rescaled Distance Cluster Combine

Ra -226 Dendrogram using Single Linkage

Figure 3c: Dendrogram for classifying sample locations as groups according to the concentrations of ²²⁶Ra in the sediments from Ogun river

The Cluster analysis was carried out on the concentrations of the radionuclides to identify and classify groups with similar characters in a new group of observations.

The dendrogram was used to give a pictorial representation of the groups having similar characters just like what a contour map will do, connecting parameters of similar values.

Igaun, Iro and Ekerin were observed to exist as unique locations considering the concentrations of 40 K, 232 Th and 226 Ra respectively. From Figure 3a, Olopade was classified as a unique location, this can be deduced from the relatively high distance at which its cluster was joined perhaps it was due to the fact that Olopade had the least value of 40 K in the whole region (370.97 ± 19.26). Igaun too was classified as a unique location on its own, the location was also the second least location with 40 K concentration value (393.19± 19.83), although its group was relatively at the forth highest distance, its cluster was not joined to any group.

The closest locations in their characters were Opeji, Towolo, Idi – Ata, Kara, Sokori and Agbariwu in one group.From figure 3b, for²³²Th, the closest locations in their characters were Mile (8) Oba, Igaun and Ibaragun. Pair of combinations had been identified in the groups,Kara, Mile -12 Maidan, Towolo, Agbariwu, Ilate and Akute.Adigbe, Owere and Sokori, Oba Oseni, also formed Pair of combinations but in a higher order.

Iro exists as a unique location on its own, perhaps because it was the only location having 232 Th concentration value of 15.0 ± 3.9 Bq/kg.From figure 3c for 226 Ra, the closest locations in their characters were Igboho, Lerin, Ojubo Sango, Ago Odo, Ibaragun, Maidan, Idi – Ata, Orudu and Owere.

Ogunpa Wasimi and Sokori were classified as unique locations, this can be deduced from the relatively high distances at which these clusters were joined. Ekerin was observed to exist as a unique location on its own, perhaps because it had the least value of ²²⁶Ra. Olokemeji , Agbariwu, Mile (8) Oba, Kara, Opeji, Apa Osa, Abata, Igaun, all had Pair of combinations and were connected in a higher group. The cluster analysis had been able to show ways of seeing pictorially, relationship within the radionuclides concentrations along the course of Ogun river.

4.0 Conclusion

The Analysis of Variance showed that there was no significant differences in the means of the radionuclides concentrations in the upper region, but in the middle and lower regions, there were significant differences in the means of the concentrations of the radionuclides estimated.

The location effects size measures showed that there was no significant location effect on the measurements of the concentrations of radionuclides taken at those locations in the upper region, but there were significant location effects on the measurements of the concentrations of radionuclides taken at the middle and lower regions of the river. This may be attributed to the fact that more human activities are going on in the middle and lower regions compared to the upper region.

Pearson correlation analysis was carried out on the concentrations of the radionuclides to determine the inter – relation and strength of association between the concentrations of radionuclides and parameters of hazard indices. It was observed that the radionuclides did not have any correlation with one another in the upper region. In the middle and lower regions, although 40 K did not correlate with the other radionuclides but 226 Ra correlated fairly well with 232 Th and most of the hazard indices parameters correlated well in the middle and lower regions of the river.

Cluster analysis was carried out on the concentrations of the radionuclides to identify and classify groups with similar characters in a new group of observations. Igaun, Iro and Ekerin were observed to exist as unique locations considering the concentrations of ⁴⁰K, ²³²Th and ²²⁶Ra respectively. They are disjointed.

References

- [1] Farai I.P and Vincent U.E (2006), Outdoor radiation level measurement in Abeakuta Nigeria, byThermo luminescent Dosimetry. *Nig. Journ. Phys.* 18(1): 121-123.
- [2] Sadiq A.A, Agba E.H. (2011), Background Radiation In Akwanga, Naigeria. FACTA UNIVERSITATISSeries: Working and Living Environmental ProtectionVol. 8, No 1, 2011, pp. 7 - 11.
- [3] Golterman, H.L., Sly, P.G., Thomas, R.L., (1983), Study of the relationship between water quality and sediment transport. *Techn. Papers in Hydrology*, 231pp.
- [4] Keith, L. H. (1991), Environmental Sampling and Analysis: APractical Guide. UNESCO, *Lewis Publ.*, *CRC Press.* P. 143.
- [5] Jibiri and Emelue, (2009), Soil radionuclide concentration and radiological assessment in and aroun a refining and petrochemical company in Warri, Niger Delta, Nigeria, Journal of Radiological Protection, Vol 28, 2009, pp. 361-368.
- [6] Jibiri N.N and Okeyode I.C. (2011), Activity Concentrations of Natural Radionuclides In the Sediments of Ogun River, Southwestern Nigeria. *Radiation Protection Dosimetry*. Vol. 147, No. 4, pp. 555–564. Published By Oxford University Press, UK. ISSN: 0144-8420. doi:10.1093/rpd/ncq579. Available at http://www.ncbi.nlm.nihgov/pubmed/21224263.

- [7] Sivakumar S, Chandrasekaran A, Ravisankar R, Ravikumar S.M, Prince Prakash Jebakumar J, Vijayagopal P, Vijayalakshmi I and Jode M.T. (2014), Measurement of natural radioactivity and evaluation of radiation hazards in coastal sediments of east coast of Tamilnadu using statistical approach, *Journal of Taibah*, *University of Science*, Vol 8 issue 4.
- [8] Tanaskovi I., Golobokanin D., Milijevic N, (2012), Multivariate statistical analysis of hydrochemical and radiological data of Serbian Spa waters. *J. Geochem Expl*.112 (2012), PP 226-234.
- [9] Nasr S, El-Gamal A, Hendawi I, Naim M. (2006), Statistical Evaluations of Natural Radioactivity in Sediments along the Egyptian Mediterranean Coast. Proceedingsofthe2nd *Environmental Physics Conference*, 18-22Feb.2006, Alexandria, Egypt.
- [10] International Atomic Energy Agency. (2003), Guidelines for radioelement mapping using gamma ray spectrometry data IAEA, VIENNA, 2003 IAEA-TECDOC-1363 ISBN 92–0–108303–3 ISSN 1011–4289 © IAEA, 2003 Printed by the IAEA in Austria.