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Abstract 

 
In this article, a one-body problem is solved analytically using the 

parametric Nikiforov-Uvarov method. By using the certain approximation 
schemes, we solved (in the non-relativistic case) the Schrödinger equation for 
improved Tietz potential model. We also obtained the solutions of the 
Schrödinger equation for improved Rosen-Morse and improved Manning-
Rosen potential models from the results of the improved Tietz potential by 
using a certain transformation. Numerical results are obtained by 

considering some diatomic molecules such as +NO , +
2O , 2Cl , and +

2N . 

Also the bound state solutions of the positive energy subspace and negative 
energy subspace of Dirac equation are obtained exactly in the relativistic 
case for s-wave only. 

 
 

1.0     Introduction 
The exact and approximate analytical solutions of Schrödinger, Klein-Gordon, Duffin-Kemmer-Petiau, and Dirac equations 
for different potential models have been studied extensively in recent years due to the importance of these wave equations in 
non-relativistic and relativistic quantum mechanics, and quantum chemistry. Some of the potential models that have been 
considered are Harmonic oscillator potential, Coulomb potential, Woods-Saxon potential, Morse potential, Eckart potential, 
ring-shaped nonspherical harmonic oscillator, Pöschl-Teller potential,Yukawa potential, Mie-type potential, Deng-Fan 
potential, Tietz potential among others [1-7]. Different methods have also been employed to obtain the solutions of these 
wave equations. Some of the methods are supersymmetry quantum mechanics [8, 9], Nikiforov-Uvarov method [1, 5, 10], 
asymptotic iteration method [11-14], factorization method [15], Laplace integral transform [16], proper quantization rule and 
exact quantization rule [17, 18] among others. 
The Tietz potential has a potential energy function for diatomic molecules which was proposed in 1963, by Tietz as [19]:  
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 where eD  is the dissociation energy. The parameters a ,b , h , and α  can be determined so as to fit calculated values of 

spectroscopic parameters to observed ones. In 2012, Jia et al. [20] proposed a more convenient form of the original Tietz 
potential energy function called the improved Tietz potential given as [20, 21]  

 ,1=)(

2















+
+−

qe

qe
DrV

r

er

eIT α

α

   (2) 

where er  is the equilibrium bond length. The original Tietz potential function is conventionally defined in terms of five 

parameters. However, it only has four independent parameters as shown in equation (2) [19, 20]. It should be noted that a 
molecular Tietz potential of the form [14, 22] . 
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has also been proposed and has been solved for the Klein-Gordon equation and the Schrödinger equation. This molecular 
potential is quite different from the improved Tietz potential model and the applications are given in Refs. [14, 22].  
In 1932, Rosen and Morse proposed a potential function for polyatomic molecules [23]  

 ),/(sec)/(tanh=)( 2 drhCdrBrVRM −   (4) 

where B , C , and d  are three adjustable parameters. The Rosen-Morse potential has been used to investigate polyatomic 
vibrational states [23]. Many authors have studied the Rosen- Morse potential model both in the non-relativistic and 
relativistic quantum mechanics. See Ref. [23] for details and applications of the Rosen-Morse potential. The improved 
Rosen-Morse potential model proposed is written as [20, 23]  
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where d2/=α , eD  is the dissociation energy, and er  is the equilibrium bond length. In equation (5), the term 

( )11/2 +er

e eD
α

 is added to the Rosen-Morse potential in equation (4). The improved expression of some potential functions 

are more convenient for their applications. It should also be noted that when 1=q  in the improved Tietz potential of 

equation (2), we obtain the improved Rosen-Morse potential given in equation (5). 
In 1933, Manning and Rosen proposed a potential function for diatomic molecules,  
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 in which β  and A  are two dimensionless parameters, parameter b  is related to the range of the potential and has 

dimension of length. In 2012, Wang et al. proposed an improved Manning-Rosen potential energy model. The improved 
Manning-Rosen potential is written as,  
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where eD  is the dissociation energy, er  is the equilibrium bond length. By employing the conventional Greene-Aldrich 

approximation scheme to deal with the centrifugal term, the bound state solution and scattering state solution of the 
Schrödinger equation with original Manning-Rosen potential has been obtained [24]. In Ref [25], the solutions of the 
improved Tietz and improved Rosen-Morse potential models were obtained by solving Klein-Gordon equation which is used 
to describe relativistic spinless particles. Also, in Ref. [21], the energy eigenvalues of the improved Tietz potential model was 
obtained using wave function ansazt. In this paper, we shall obtain the solutions of the improved Tietz, improved Rosen-
Morse, and improved Manning-Rosen potential energy models by solving Schrödinger equation (used to describe non-
relativistic particles) and Dirac equation (used to describe relativistic spin-half particles). We will compare our results with 
that of Ref. [21] to check the validity of our results (the energy eigenvalues) for the non-relativistic case of the improved 
Tietz potential model. In Ref. [21], only the energy eigenvalues were obtained. We will obtain both the energy eigenvalues 
and wave functions for the three potential models. To the best of our knowledge, this is the first attempt to obtain the energies 
and wave functions of Dirac equation for the three potential models.  
One of the applications of the solutions of non-relativistic and relativistic wave equations is in information theory. 
Information theory arises as a branch of applied Mathematics, Physics and electrical engineering involving the quantification 
of information. See Refs [26-28] for details of the importance and applications of the information-theoretic measures. 
The paper is organised as follows. In Sec 2, the parametric Nikiforov-Uvarov (NU) method is briefly described. The bound 
state solutions of Schrödinger equation for the potential models will be obtained in Sec 3. Sec 4 contains the bound state 
solutions of Dirac equation for the potential models while the conclusion is given in Sec 5. 
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2.0  The Parametric Nikiforov-Uvarov (NU) Method 
By using the parametric NU method, the solutions of a second order differential equation of the form [29].  
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 where )(),( xPn
βα  is the Jacobi polynomials and  
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 In the special case 0=3α , we have  
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 and the wave function in equation (10) turns to  
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where )(xLn
α  is the Laguerre polynomials. Detailed derivation of the formulae given in this Section can be found in [29] 

 
3.0   Solution of the Schrödinger Equation for the Potential Models 
In this section we shall obtain the bound state solutions of the Schrödinger equation for the improved Tietz, improved Rosen-
Morse, and improved Manning-Rosen potential energy models. 
 
3.1   Solution of Schrödinger equation for the Improved Tietz potential model 
 The Schrödinger equation in spherical polar coordinate can be written as [14]  
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 Defining ),(=),,( φθφθ µµ lll
YUr nnΨ , we obtain the radial part of the Schrödinger equation as  
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 If we define 
r

rR
rU n

n

)(
=)( l

l
, the radial equation appears as  

 0.=)(
2

1)(
)(

2)(
2

2

22

2

rR
r

rVE
dr

rRd
nn

n
ll

l
llh

h







 +−−+
µ

µ
 (17) 

 Substitution of the molecular Tietz potential in equation (5) into equation (17), we have 
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 Equation (18) cannot be solved exactly (except for 0=l  case called s-wave) because of the centrifugal term, we thus resort 
to the approximation used in Ref [21, 25] given as (see Ref. [21] for details of the approximation scheme)  
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 The centrifugal potential is then replaced by  

 ( ) ,
11

=)( 2210 













+
+

+
+

qe
d

qe
ddrV

rrCT ααγ   (20) 

 where  

 ,
2

1)(
=

2

2

erµ
γ hll +

 (21) 

 ,
23633

1=
22

2222

e

er

e
er

e
erer

e
o r

erqerqeqqer
d

α
ααα αααα −−−− +−++−+  (22) 

 
( )

,
3923392

=
22

23232

1
e

er

e
ererer

e
er

e

r

erqeqeqererqq
d

α
ααα ααααα −−−− −−−+−+−

 (23) 

( )
,

2312231218
=

22

2423243222

2
e

er

e
er

e
ererer

e
er

e
erer

r

erqerqeqeqererqeqeq
d

α
αααα αααααααα −−−− ++++−−++

 

 (24) 

where we have also made use of the coordinate transformation ee rrrx )/(= − . In order to solve equation (18) (after 

substituting the approximation to the centrifugal term given in equation (20)) using the parametric NU method, we make use 

of the transformation 
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 Comparing equation (25) with equation (8), we have  

 ).(=),2(=,=1,=2,=1,= 321321 BABAB ++−+−− εξξξααα  (29) 

 Making use of equation (11), we obtain  

 )(=,2=,=0,=0,= 87654 BABAB ++−+− εααααα  

 ( ))(22=,)(21=,= 11109 BABA ++−+−+++−+− εεαεαεα  

 ( ).)(=,)(= 1312 BABA ++−+−−++− εεαεα   (30) 
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 Substituting equations (29) and (30) into equation (9), we obtain the energy equation as [30]  

 ( )( ) ( ) 0,=)(2)2(21)(122 BABABA +++++−++−+++−+−++ εεεεε nnBAnn  (31) 

from which the energy eigenvalues can be obtained. The wave function is obtained by substituting equations (29) and (30) 
into equation (10) as 

 ( ) ( )( ),211=)( 2,)(2)( sPssNsR nn −− −++−−++− εεεε BABA
 (32) 

where nN  is the normalization constant. We give the numerical results obtained for the energy eigenvalues with the 

improved Tietz potential model in Table 2. In all our numerical results, both in Tables and Figures (except stated otherwise), 

we have used 0.01=α , 1=2µ , 0.5=h . The values of eD , er , and q for some diatomic molecules are given in Table 

1. The values are obtained from Refs [28, 31]. It can be observed from Table 2 and the Figures 1− 4 that the energy 

eigenvalues for the Tietz potential increase linearly with n for the various values of l  considered. 
 
Table  1: Spectroscopic constants of the diatomic molecules used in this study 
Diatomic molecule  )(eVDe  )Å(er  q  

2Cl  2.513903386  1.987  7.73121  

+
2O  6.780447246  1.116  0.47836  

+
2N  8.848131541  1.116  0.28175  

+NO  10.99665353  1.063  0.53878  

 

 
Figure  1: The graph of Energy eigenvalues 

lnE  (in eV) of the non-relativistic improved Tietz potential for +
2O  molecule, 

with various values of l  

Table  2: The Energy eigenvalues 
lnE  (in eV) of the non-relativistic molecular Tietz potential for some diatomic molecules 

with 0=l  
n +

2O  2Cl  +NO  +
2N  

0  0.0077043 0.000919119 0.0116278 0.0108118  
1 0.0231029 0.00273260 0.0348673 0.0324262  
2 0.0384841 0.00451116 0.0580824 0.0540246  
3 0.0538479 0.00625455 0.0812729  0.0756071  
4 0.0691944  0.00796249 0.1044390  0.0971735  
5 0.0845236  0.00963474 0.1275800  0.1187240 
6 0.0998354  0.01127100 0.1506980  0.1402580  
7 0.1151300  0.01287110 0.1737900  0.1617770 
8 0.1304070  0.01596150 0.1968580 0.1832790  
9 0.1456660  0.01443470 0.2199010  0.2047650 
10 0.1609080 0.01745120 0.2429200  0.2262360  
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Figure  2: The graph of Energy eigenvalues 

lnE  (in eV) of the non-relativistic improved Tietz potential for 2Cl  molecule, 

with various values of l  

 
Figure  3: The graph of Energy eigenvalues 

lnE  (in eV) of the non-relativistic improved Tietz potential for +NO  molecule, 

with various values of l  

 
Figure  4: The graph of Energy eigenvalues 

lnE  (in eV) of the non-relativistic improved Tietz potential for +
2N  molecule, 

with various values of l  
In order to check the validity of the results we obtained, we will compare the energy eigenvalues obtained with that obtained 
in Ref. [21]. This is shown in Table 3. It can be observed from the Table that our results are in perfect agreement. This shows 
also the strength of the method we have used here.  
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Table  3: Comparison of the energy eigenvalues obtained here with that obtained in Ref. [21] using the data for +NO  with 

0.01=α , 0.5=µ , and 1=h  for s− wave ( 0=l ). 

n  
nE (our result)  nE  (Ref. [21])  

0  0.0216167   0.0216167  
1  0.0648136   0.0648136  
2  0.1079460   0.1079460  
3  0.1510150   0.1510150  
4  0.1940200   0.1940200  
5  0.2369600   0.2369600  
6  0.2798370   0.2798370  
7  0.3226490   0.3226490  
8  0.3653960   0.3653960  
9  0.4080790   0.4080790  
10  0.4506980   0.4506980  
 
3.2   Solution of Schrödinger Equation for the Improved Rosen-Morse Potential Model 
The improved Rosen-Morse potential model is given in equation (5). If we compare equations (2) and (5), we observe that 
equation (5) can be obtained from equation (2) if we let 1=q . Therefore, the energy eigenvalues and wave functions for the 

improved Rosen-Morse potential model can be obtained from the energy eigenvalues and wave functions for the improved 
Tietz potential energy model by setting 1=q  in the results obtained from the improved Tietz potential model. 

Hence the energy equation for the improved Rosen-Morse potential model is obtained as 
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and  
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We give the numerical results of the energy eigenvalues for the improved Rosen-Morse potential model in Table 4. It can be 

observed that the energy eigenvalues increase with increasing l  and n . It can also be observed from Figures 5− 8 that the 

energy eigenvalues for the improved Rosen-Morse potential increase with increasing n  and l . 
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Table  4: The Energy eigenvalues 
lnE  (in eV) of the non-relativistic molecular Rosen-Morse potential for some diatomic 

molecules with 0=l  
  n +

2O  2Cl  +NO  +
2N  

0 0.0057056  0.0009191 0.0040001  0.0074748  
1 0.0171106  0.0027326  0.0119941  0.0224182  
2 0.0285031  0.0045111  0.0199756  0.0373491  
3 0.0398831  0.0062545  0.0279446  0.0522675  
4 0.0512506  0.0079624  0.0359010  0.0671734  
5 0.0626056  0.0079624  0.0438450  0.0820668 
6 0.0739481  0.0112710  0.0517765  0.0969477  
7 0.0852781  0.0128711  0.0596954  0.1118160  
8 0.0965955  0.0144347  0.0676019  0.1266720  
9 0.1079010  0.0159615  0.0754958  0.1415150  
10 0.1191930  0.0174512  0.0833773  0.1563460  
 

 
Figure  5: The graph of Energy eigenvalues 

lnE  (in eV) of the non-relativistic improved Rosen-Morse potential for +
2O  

molecule, with various values of l  

 
Figure  6: The graph of Energy eigenvalues 

lnE  (in eV) of the non-relativistic improved Rosen-Morse potential for 2Cl  

molecule, with various values of l  
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Figure  7: The graph of Energy eigenvalues 

lnE  (in eV) of the non-relativistic improved Rosen-Morse potential for +NO  

molecule, with various values of l  
 
 

 
Figure  8: The graph of Energy eigenvalues 

lnE  (in eV) of the non-relativistic improved Rosen-Morse potential for +
2N  

molecule, with various values of l  
 
3.3  Solution of the Schrödinger Equation for the Improved Manning-Rosen Potential Model 
The radial part of the D-dimension Schrödinger equation with a central force potential )(rV  is given as  
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where D  is a positive integer and 2≥D , µ  is the reduced mass of a diatomic molecule, h  denotes the reduced Planck’s 

constant, D
jEυ  the rotational vibrational energy of the diatomic molecule system, υ  and j  are the vibrational and rotational 

quantum numbers respectively. Defining j
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, we obtain the radial part of the Schrödinger equation as 
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where 3)(= 2
1 −+ DJK . Substitution of the molecular improved Manning-Rosen potential in equation (7) into equation 

(39), we have  
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 By using the improved Greene-Aldrich approximation scheme  
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 to deal with the centrifugal term, we obtain  

 0.=
12

2
1)(

1

1)(

1)(

1)(1)()(

2

2

2

2

22

2

22




































+

+−+
−

−−
−

++−+− µα
µ α

α

α

αα
h

h
KK

ED
e

eD

e

eKKeD

dr

rUd
e

er

er

e
r

rer

e  (42) 

 It should be noted that for 3D case, JK = . In order to solve equation (42) using the parametric NU method, we make use 

of the transformation 
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 Comparing equation (43) with the equation (8) we have 

 ).(=),(=,=1,=2,=1,= 321321 χσξχξξααα −−Λ+Λ  (47) 

 Making use of equation (11), we obtain  

 σχασασχαχαααα −+−−+Λ−Λ 21=,==),(=,=0,=0,= 10987654  

 ( ) ( ).=,=22= 131211 σχσασχασχσα −+−−−−+−+  (48) 

 Substituting equation (47) and (48) into equation (9), we obtain the energy equation as  

 ( )( ) ( ) 0=))((221122 σσχσχσχσ −−+−Λ−+−+−+−++ nnnn  (49) 

 from which the energy eigenvalues can be obtained. The wave function is obtained by substituting equations (47) and (48) 
into equations (10) as  

 ( ) ( )( ),211=)( 2,2 zPzzNzU nn −− −−−− σσχσσχ
 (50) 

where nN  is the normalization constant. It can be observed from Table (5)  that the energy eigenvalues for the Manning-

Rosen potential increases with the increasing values of n  considered for the case 0=K  . Note that the results are obtained 
in 3D only. The results obtained in this subsection could also have been obtained from the results obtained for the improved 
Tietz potential by setting 1= −q  in the 3D case only. 
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Table  5: The Energy eigenvalues 
lnE  (in eV) of the non-relativistic molecular Manning-Rosen potential for some diatomic 

molecules with 0=K  i.e. in 3D ( 3=D ). 
  n  +

2O  2Cl  +NO  +
2N  

0 5.13880  2.41268  2.27882  10.7616  
1 5.14057  2.41426  2.28124  10.7640  
2 5.14227  2.41583  2.28364  10.7664  
3 5.14395  2.41738  2.28603  10.7688  
4 5.14562  2.41892  2.28841  10.7712  
5 5.14728  2.42046  2.29077  10.7735  
6 5.14892  2.42197  2.29313  10.7759  
7 5.15056  2.42348  2.29547  10.7782  
8 5.15218  2.42497  2.29780  10.7805  
9 5.15378  2.42645  2.30011  10.7829  
10 5.15538  2.42792  2.30241  10.7852  
 
4.0 Solutions of Dirac equation for the potential models 
The Dirac equation with both the scalar potential )(rS  and vector potential )(rV  can be written as 1)==( ch  [5, 32]  

 { } ),(=)()]([)( rErrSMrV ΨΨ+++⋅ βα p  (51) 

where M  is the mass of the particle and E  denotes the particle energy. The α  and β  are the usual 44×  matrices given 

by  

 



















−
−









1000

0100

0010

0001

=,
0

0
= β

σ
σ

α
 (52) 

where σ  is the Pauli’s 22×  matrices. In Ref [5], a second-order differential equation was derived for the upper component 

spinor )(rF  of Dirac equation for equally mixed scalar and vector potentials with the same sign. The following equation 

was derived for s− wave case (where 0=l )  

 ),(
~

=)()()2(
2

2

xFExFxVME
dx

d








++−  (53) 

 The lower component spinor )(xG , is given by [5] 

 ,
)(1

=)(
dx

xdF

EM
xG

+
 (54) 

where 22=
~

MEE − , 0≠+ ME , for the positive energy solution. 
Similarly, for an equally mixed scalar and vector potentials with the opposite sign, we have the lower and upper component 
spinor, respectively as,  

 ),(
~

=)()()2(
2

2

xGExGxVME
dx

d








−+−

 (55) 

 and  

 ,
)(1

=)(
dx

xdG

EM
xF

−
 (56) 

where 22=
~

MEE − , 0≠− ME , for the negative energy solution. In this Section, we shall obtain the bound state 
solutions of the improved Tietz, improved Rosen-Morse, and improved Manning-Rosen potentials using the method 
described in Sec 2. 
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4.1   Solutions of s-wave Dirac Equation for Improved Tietz Potential Model 
 The solutions of Dirac equation for the three potential models we are considering will be obtained analytically without any 
approximations. This means that we will solve only for the s-wave Dirac equation.  
 
4.1.1   Solutions of the Positive Energy Subspace for Tietz Potential Model 
 Substitution of the potential function )(rVIT  given in equation (2) into equation (53), and taking into consideration the 

Alhaidari’s suggestion [33], equation (53) gives 

 0,=)(12
~

2

2

2

rF
qe

qe
ADE

dr

d
r

er

e











































+
+−−+ α

α

 (57) 

 where  

 ( ) .= AEM +  (58) 

 In order to solve equation (57) using the parametric NU method, we make use of the transformation 
qe

e
z

r

r

+α

α

= . Hence, 

equation (57) transforms to  

 [ ] 0,=)()2(
)(1

11

1

21 2
222

2

zFzz
zzdz

d

zz

z

dz

d









Ω−Ω−−Ω−+
−

+








−
−+ φφρ  (59) 

 where  

 ,
2

~
=

2α
ρ eADE −

  (60) 

 ,
)(4

= 2α
φ

α
qeAD er

e +
 (61) 

 and  

 .
)(2

= 2

2

α

α
qeAD er

e +Ω  (62) 

 Comparing equation (59) with equation (8), we obtain the following  

 )(=),2(=,=1,=2,=1,= 321321 ρφξφξξααα −−ΩΩ−−Ω  (63) 

 Substituting equation (63) into equation (11), we obtain  

 ),(=),2(=,=0,=0,= 87654 ρφαφαααα −−ΩΩ−Ω  

 ),2(2=,21== 11109 ρφφαρφαφα −−Ω+−−−−Ω+−  

 ).(=,= 1312 ρφφαρφα −−Ω+−−−−Ω  (64) 

 Substituting equation (64) into equation (9), we obtain the energy equation as [33]  

 0=))((22)1)((22 φρφφρφ −−−Ω+−−−++ nnn  (65) 

from which the energy eigenvalues can be obtained. The upper spinor wave function is obtained as  

 ).2(1)(1=)( 2,22 zPzzzF nn −− −+−−Ω−−−Ω φρφφρφ  (66) 

If we substitute equation (66) into (54) we obtain the lower spinor component as  

 ( ){ )2(123)(1
1

= ),(1
1 zPanzz

EM
G ba

n
n

n −+−++−−
+

+
−

−−Ω− φρφφ  (67) 

 [ ] )2(1)(1 22,21 zPzz n −−−− −+−−Ω−−Ω−+− φρφρφφ φ  

 },)2(1)(1 )22,(2)1( zPzz n −−−Ω−+ −+−−Ω−−Ω+−− φρφρφφ ρφ  

where ρφ −−Ω2=a  and φ−+ 23=b . 
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4.1.2   Solutions of the Negative Energy Subspace for Tietz Potential Model 
The solutions of the negative energy subspace of the Dirac equation for the improved Tietz potential is obtained, after using 
the Nikiforov-Uvarov method. the energy equation is obtained as  

 [ ] 0,=))((22)1)((22 φρφφρφ −−−Ω+−′−′−++− nnn  (68) 

from which the energy eigenvalues can be obtained. The lower and upper component spinors are, respectively,  

 ,)2(1)(1=)( 2,22 zPzzCrG nnn −− −+−−Ω−−−Ω φρφφρφ  (69) 

and  

 ( ){ )2(123)(1
1

= ),(1
1 zPanzz

EM
CF ba

n
n

nn −+−++−−
−

+
−

−−Ω− φρφφ  (70) 

 [ ] )2(1)(1 22,21 zPzz n −−−− −+−−Ω−−Ω−+− φρφρφφ φ  

 },)2(1)(1 )22,(2)1( zPzz n −−−Ω−+ −+−−Ω−−Ω+−− φρφρφφ ρφ  

where nC  is the normalization constant, ρφ −−Ω+ 21=a  and φ−+ 23=b . The symbols used are the same as 

those used for the positive energy subspace of the Dirac equation but the energy is now negative of the energy obtained in 
that case. 
 
4.2  Solutions of Dirac Equation for Improved Rosen-Morse Potential 
 
 We follow the method described in the previous subsection to obtain the solutions of the Dirac equation for the improved 
Rosen-Morse potential model.  
 
4.2.1   Solutions of the positive energy subspace for Rosen-Morse potential 
 The energy equation is obtained as  

 0,=))((22)1)((22 Π−−Π−Γ+−Π−Π−+++ µµnnn  (71) 

where  

 ,
2

~
=

2α
µ eADE −

 (72) 

 ,
1)(4

= 2α

α +Π
er

e eAD
 (73) 

and  

 .
1)(2

= 2

2

α

α +Γ
er

e eAD
 (74) 

The upper spinor wave function is obtained as  

 ),2(1)(1=)( 2,22 zPzzCzF nnn −− Π−+−Π−ΓΠ−−Π−Γ µµ  (75) 

while the lower spinor wave function is also obtained as  

( ) [ ]{ )2(123)(1
1

=)( ,1
1 zPnzz

EM
CzG nnn −Ξ+−++−−

+
Ξ+

−
−Π−ΓΠ− ςµ φ  (76) 

 [ ] )2(1)(1 2,22)()1( zPzz n −Π−−− Π−+−Π−Γ−Π−ΓΠ−+− µµ  

 [ ] },)2(1)(1 22,2)(1 zPzz n −−Π−Γ−+ Π−+−Π−Γ−Π−Γ−Π− µµ µ  

where µ−Π−ΓΞ 2=  and Π−+ 23=ς . 

 
4.2.2   Solutions of the negative energy subspace for Rosen-Morse Potential 
The solutions of the negative energy subspace of the Dirac equation for the improved Rosen-Morse potential model is 
obtained as  
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 [ ] 0,=))((22)1)((22 Π−−Π−Γ+−Π−Π−+++− µµnnn  (77) 

from where the energy eigenvalues can be obtained. The lower and upper component spinors are obtained as  

 ),2(1)(1=)( 2,22 zPzzCzG nnn −− Π−+−Π−ΓΠ−−Π−Γ µµ  (78) 

and  

 ( ) [ ]{ )2(123)(1
1

=)( ,1
1 zPnzz

EM
CzF nnn −Ξ+−++−−

−
Ξ+

−
−Π−ΓΠ− ςµ φ  (79) 

 [ ] )2(1)(1 2,22)()1( zPzz n −Π−−− Π−+−Π−Γ−Π−ΓΠ−+− µµ  

 [ ] }.)2(1)(1 22,2)(1 zPzz n −−Π−Γ−+ Π−+−Π−Γ−Π−Γ−Π− µµ µ  

The symbols used are the same as those used for the positive energy subspace of the Dirac equation (for the improved Rosen-
Morse potential model) but the energy is now negative of the energy obtained in that case. 
 
4.3   Solutions of s-wave Dirac equation for improved Manning-Rosen Potential 
In this subsection, we will obtain the solutions of the Dirac equation for the improved Manning-Rosen potential model.  
 
4.3.1   Solutions of the positive energy subspace for Manning-Rosen potential 
Following similar technique used earlier in this section, the energy equation for the positive energy subspace of the Dirac 
equation with the manning-Rosen potential model is obtained as  

 0,=))((22)1)((22 σστυστσ −−−+−−−+++ nnn  (80) 

where  

 ,
2

~
=

2α
σ eADE −

  (81) 

 ,
1)(4

= 2α
τ

α −er

e eAD
 (82) 

and  

 .
1)(2

= 2

2

α
υ

α −er

e eAD
 (83) 

The upper spinor wave function is obtained as  

 )2(1)(1=)( 22,2 zPzzCzF nnn −− −+−−−−− σστυσστυ
,
 (84) 

and the lower spinor wave function as  

 [ ]{ )2(1)2(3)(1
1

=)( 2,31
1)( zPnzz

EM
CzG nnn −+−++−−

+
−++

−
−−− σϖστυσ ϖσ  (85) 

 [ ] )2(1)(1 22,2)1( zPzz n −−−− −+−−−−−+− σστυστυσ σ  

 [ ] },)2(1)(1 22,2)1( zPzz n −−−−+ −+−−−−+−− σστυστυσ στυ  

where στυϖ −−2= . 
 
4.3.2   Solutions of the negative energy subspace for Manning-Rosen potential 
 The solutions of the negative energy subspace of the Dirac equation for the improved Manning-Rosen potential models are 
given in this subsection. The energy equation (from which the energy eigenvalues can be obtained) is obtained as  

 0.=]))((22)1)((2[ 2 σστυστσ −−−+−−−+++− nnn  (86) 

The upper spinor wave function is obtained as  

 )2(1)(1=)( 22,2 zPzzCzG nnn −− −+−−−−− σστυσστυ  (87) 

and the lower spinor wave function as ; 
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 [ ]{ )2(1)2(3)(1
1

=)( 2,31
1)( zPnzz

EM
CzF nnn −+−++−−

−
−++

−
−−− σϖστυσ ϖσ  (88) 

 [ ] )2(1)(1 22,2)1( zPzz n −−−− −+−−−−−+− σστυστυσ σ  

 [ ] },)2(1)(1 22,2)1( zPzz n −−−−+ −+−−−−+−− σστυστυσ στυ  

where στυϖ −−2= . 
It should be noted that the solutions of Dirac equation have been obtained for s-wave bound states only, but the method we 

have used here can also be used to obtain the solutions for arbitrary −l states as well as scattering state solutions. To the 
best of our knowledge, this is the first attempt to obtain the solutions of Dirac equation for the three potential models studied 
here. 
 
5.0   Conclusion 
We have studied the Schrödinger equation and Dirac equation with the interaction potentials improved Tietz, improved 
Rosen-Morse and improved Manning-Rosen. We employed the parametric Nikiforov-Uvarov and some approximation 
schemes to solve the one-body problems of Schrödinger equation and obtained exact solutions (without any approximations) 
for Dirac equation with the potential models for s-wave state only. In order to check the validity of the results we obtained in 
the non-relativistic case, we compared the energy eigenvalues obtained for improved Tietz potential with that obtained in 
Ref. [21]. Our results are in perfect agreement. In the relativistic case (using the Dirac equation), we obtained the energy 
equations and spinors for the positive energy subspace and negative energy subspace cases (bound states only). From our 
numerical results (shown in Tables and Figures), it can be observed that the energy eigenvalues for the potential models 

considered increase linearly with n  and l  in the non-relativistic case. We have again demonstrated the power of the 
parametric Nikiforov-Uvarov method in solving one-body problem analytically by solving a bound state problem. The 
method is simple enough to follow and the work can be extended to scattering states solutions. We strongly believe that 
many-body problems should also have simplified methods to tackle them. In this respect, we shall, in future, carry out a 
research to formulate simple methods to deal with many-body problems (of course employing some approximations initially). 
The results we have obtained can be applied to scattering problems and to obtain information-theoretic measures in quantum 
information theory. Scattering state solutions of some wave equations are currently under investigation. Other methods can 
be used to solve Dirac equation for the three potential models to test the accuracy/validity of our results (and the method 
used). 
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