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Abstract 
 
In this paper, we propose two numerical methods for computing the 

Caputo fractional derivatives of functions by a weighted sum of function 
values at specified points. The first algorithm uses modified Trapezoidal rule 
in conjunction with a forward difference formula while the second algorithm 
uses the modified Trapezoidal rule in combination with a backward 
difference formula. Both the forward and backward difference formulas are 
of the second order. The error analysis for the approximation rules are 
presented. The approximation rules are implemented in MATLAB through 
some illustrative examples. Absolute errors are estimated and the orders of 
accuracy for the approximation rules are computed. The numerical 
experiments confirmed that all the approximation rules are accurate, 
efficient and readily implementable. 
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1.0     Introduction 
Fractional derivatives have wide applications in many areas especially in science and engineering. According to Atangana 
and Seer [1], “the standard mathematical models of integer-order derivatives, including non-linear models, do not work 
adequately in many cases. To this end, in recent years, fractional calculus has played a very important role in various fields 
such as mechanics, electricity, chemistry, biology, economics, notably control theory, signal and image processing”. 
Moreover, many real dynamic systems are better characterized using a non-integer order dynamic model based on fractional 
calculus or, differentiation or integration of non-integer order. Traditional Calculus is based on integer order differentiation 
and integration. Diethelm et al. [2] point out that “in recent years, it has turned out that many phenomena in engineering, 
physics, chemistry, and many other sciences can be described very successfully by models using mathematical tools from 
fractional calculus i.e., the theory of derivatives and integrals of fractional (non-integer) order”. Some of the most prominent 
applications of fractional calculus are given in a book by Oldham and Spanier[3], in Caputo and Mainardi[4], the classical 
paper of Bagley and Torvik[5] as well as in the publications of Marks and Hall [6] and Olmstead and Handelsman[7]. More 
important results include the description of mechanical systems subject to damping [8], relaxation and reaction kinematics of 
polymers [9], so-called ultraslow processes [10], relaxation in filled polymer networks [11] as well as control theory [12].  
Different models using fractional derivatives have been proposed and there has been significant interest in developing 
numerical schemes to find their approximated solution [13-19]. 
In this paper, we propose two approximation rules for computing the Caputo fractional derivatives of functions using forward 
and backward difference formulas which are a modification of the work of Odibat[20] which was based on centred difference 
approximations. The new algorithms are based on the use of the modified trapezoidal rule in conjunction with the difference 
approximations. 
 
2.0 Methods 
2.1  Fractional Derivatives 
There are several definitions of fractional derivatives but we shall focus on the Caputo fractional derivative and Riemann-
Liouville fractional derivative. 
 
Corresponding author: Terhemen Aboiyar, E-mail: t_aboiyar@yahoo.co.uk, Tel.: +2347069121825 & 8068954264(S.S.I) 

 
Journal of the Nigerian Association of Mathematical Physics Volume 31, (July, 2015), 347 – 362 



348 

 

Comparative Analysis of Approximation…           Aboiyar and Isah     J of NAMP 
 
Definition 2.1:  Caputo Fractional Derivative 
Let �	be the smallest integer that exceeds α, then Caputo fractional derivative of order � > 0 is defined as: �∗�	
�� = ���� �	
��
���																																																																																																						
2.1� 

=
���
�� 1
Γ
� − �� �� 	
��
��
� − �������  �!

" # ,			� − 1 < � < �
 � �� 	
��																																									, � = �								 																																				
2.2�& 

where		� − 1 < � ≤ �	() 	� ∈ +. 
The Caputo fractional derivative in (2.1) first computes an ordinary derivative of 	
�� followed by a fractional integral of the 
result to achieve the desired order of fractional derivative. 
Definition 2.2:  Riemann-Liouville Fractional Derivative 
Let �		be the smallest integer that exceeds α, then Riemann-Liouville fractional derivative of order � > 0 is defined as: 
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where	� − 1 < � ≤ �	() 	� ∈ +. 
The Riemann-Liouville fractional derivative in (2.3) first computes a fractional integral of  	
�� followed by an ordinary 
derivative of the result.  
 
2.2  Numerical Differentiation 
In this work, we shall employ only the central finite difference formulas for first and second derivatives, forward finite 
difference formulas for first and second derivatives as well as backward finite difference formulas for first and second 
derivatives respectively.  
 
2.2.1 Central Difference Formulas 
The central difference formulas for  	 ′
�5� and 	 ′′
�5� respectively are given by: 

	 ′/�60 = 	/�6 + ℎ0 − 	
�6 − ℎ�2ℎ + 9
ℎ:�																																																																							
2.5� 
 

	 ′′/�60 = 	/�6 + ℎ0 − 2	/�60 + 	
�6 − ℎ�ℎ: + 9
ℎ:�																																																				
2.6� 
More generally, the nth-order central finite difference formula for any integer n is given by:  

	:=
�5� = 1ℎ:=>
−1�5 
2)�!@! 
2) − @�! 	
�5 + 
) − @�ℎ� + 9
ℎ:�,:=
5A" 																																													
2.7� 

	:=��
�5� 	= 1ℎ:=�� >
−1�5 
2) + 1�!@! 
2) + 1 − @�! 12 
	
�5 + 
) − @�ℎ� + 	
�5 + 
) + 1 − @�ℎ�� + 9
ℎ:�:=��
5A" C21, 22D.									
2.8� 

    
2.2.2 Forward Difference Formulas 
The forward difference formulas for  	 ′
�5� and 	 ′′
�5� respectively are given by: 
 	 ′
�5� = −3	
�5� + 4	
�5 + ℎ� − 	
�5 + 2ℎ�2ℎ + 9
ℎ:�																																																					
2.9� 

	 ′′
�5� = 2	
�5� − 5	
�5 + ℎ� + 4	
�5 + 2ℎ� − 	
�5 + 3ℎ�ℎ: +9
ℎ:�																									
2.10� 
In general, the nth-order forward finite difference formula for any integer n is given by Hildebrand [23]:  
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∆H=C	D
�� = 1
2ℎ�=>
−1�5 
)�!@! 
) − @�! 	
� + 
) − @�ℎ� + 9
ℎ:�=
5A" .																																		
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2.2.3 Backward Difference Formulas 
The backward difference formulas for  	 ′
�5� and 	 ′′
�5� respectively are given by: 		 ′
�5� = 	
�5 − 2ℎ� − 4	
�5 − ℎ� + 3	
�5�2ℎ + 9
ℎ:�																																																					
2.12� 
 	 ′′
�5� = −	
�5 − 3ℎ� + 4	
�5 − 2ℎ� − 5	
�5 − ℎ� + 2	
�5�ℎ: + 9
ℎ:�																				
2.13� 
In a more general way, the nth-order backward finite difference formula for any integer n is given by:  

∇H=C	D
�� = 1
2ℎ�=>
−1�5 
)�!@! 
) − @�! 	
� − @ℎ� + 9
ℎ:�=
5A" 		 C23D																																														
2.14�	

    
2.3 Numerical Integration 
In this work, we shall consider the modified trapezoidal rule for numerical integration. 
Theorem 2.1[24-25] 
Suppose that 	 ∈ J:C0, KD, 	LM is the piecewise interpolation for f with nodes chosen at the �5 = @ℎ with ℎ = NM , @ = 0,1,2,⋯ , P, 
then, 


@��
�M − �����	LM
�� � =>(5,M ∙ 	
�5�,																																					
2.15�M
5A"

RS
"

 

 where,  

	(5,M = ℎ��
� + 1� T
P − 1���� − 
P − 1 − ��P� ,																																																																		@ = 0,
P − @ + 1���� + 
P − @ − 1���� − 2
P − @����,														1 ≤ @ ≤ P − 1,1,																																																																																																																					@ = P,			
2.16�& 
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5A"
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"

U ≤ J�V	 ′′V
∞
�M�ℎ:,													
2.17� 

 for some constant J� depending only on �.  
 
2.4 Modified Trapezoidal Rule  
We shall present a review of the modified trapezoidal rule that was introduced by Odibat[20]. The modified trapezoidal rule 
is used to approximate the fractional integral 	��	
�� by a weighted sum of function values at specified points.  
Here, we give a generalisation of trapezoidal rule to approximate the fractional integral ��	
�� of order � > 0.The following 
theorem states the modified trapezoidal rule. 
Theorem 2.2[20] 
Suppose that the interval C0, (D is sub-divided into k sub-intervals W�6 , �6��X of equal width ℎ = YM by using the nodes �6 = Zℎ,	[\	Z = 0,1,⋯ , P.The modified trapezoidal rule: K
	, ℎ, �� = C
P − 1���� − 
P − � − 1�P�D ℎ�	
0�

Γ
� + 2� + ℎ�	
(�
Γ
� + 2� 

		+>C
P − Z + 1���� − 2
P − Z���� + 
P − Z − 1����DM��
6A�

ℎ�	/�60
Γ
� + 2�																											
2.18� 

is an approximation to fractional integral: C��	
��D
(� = K
	, ℎ, �� − ]N
	, ℎ, ��, ( > 0, � > 0																																																																		
2.19� 
 
Furthermore, if 	
�� ∈ J:C0, (D,	there is a constant J�′  depending only on � so that the error term  ]N
	, ℎ, �� has the form: |]N
	, ℎ, ��| ≤ J�′ V	 ′′V

∞
(�ℎ: = 9
ℎ:� 
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2.5 Approximation of Caputo Fractional Derivative 
We shall present a review of the Caputo fractional derivative rule that was introduced by Odibat[20]. The Caputo fractional 
derivative rule is used to approximate the fractional derivative �∗�	
�� by a weighted sum of function ordinary derivatives 
values at specified points. 
In this section, an algorithm to approximate Caputo fractional derivative of arbitrary order � > 0 for a given function by a 
weighted sum of function and its ordinary derivatives values at specified points is derived. The algorithm is based on the 
approximation 

� 	
�� � ≈`
Y K
	, ℎ� = ℎ2 C	
(� + 	
a�D + ℎ > 	
�M�.b��

MA�  

The algorithm is stated in the next theorem. 
Theorem 2.3[20] 
Suppose that the interval C0, (D is sub-divided into P sub-intervals C�6 , �6��D of equal width, ℎ = YM using the nodes �6 = Zℎ, 

for Z = 0,1,2, … , P, then the Caputo fractional derivative approximation rule for (2.1) – (2.2): 

J
	, ℎ, �� = ℎ���Γ
� − � + 2����
�� C
P − 1������ − 
P −� + � − 1�P���D	
��
0� + 	
��
(�

+>C
P − Z + 1������ − 2
P − Z������ + 
P − Z − 1������D	
��
�6�M��
6A�																																																																																																																																								
2.20�

& 
is an approximation to the Caputo fractional derivative and /�∗�	
��0
(� = J
	, ℎ, �� − ]e
	, ℎ, ��, ( > 0,																																																							
2.21� 
for 	� − 1 < � ≤ �. 
 
Furthermore, if 	
�� ∈ J��:C0, (D, then there is some constant J���f  depending only on α so that the error term ]e
	, ℎ, �� 
has the form  |]e
	, ℎ, ��| ≤ J���f ‖	��:‖h(���ℎ: = 9
ℎ:�
2.22� 
 
2.6 Approximation Rules 
In this section, we present the step-by-step or the procedures that lead to the approximation rules that we have proposed for 
computing the Caputo fractional derivatives of functions. The approximation rules are based on the modified trapezoidal rule 
(2.18), approximation of Caputo fractional derivative(2.20)and the finite difference formulas[21-23]that are used to 
approximate the ordinary derivative 	
��
�5�.  
Next, we propose the approximation rules for the numerical computations of the Caputo fractional derivatives of functions. 
Our approach is based on the finite difference formulas (2.5)-(2.14) and the Caputo fractional derivative approximation rule 
(2.20). 
 
2.6.1 The Approximation Rule of Odibat[20] (AR1) 
In this section, we present the approximation rule which was postulated by Odibat[20] for computing the fractional derivative 
of a function by a weighted sum of function values at specified points. 
To approximate the fractional derivative C�∗�	
��D
(�,� − 1 < � ≤ �, assume that the interval C0, (D is sub-divided into k 
sub-intervals C�6,�6��D of equal width, ℎ = YM  by using the nodes �6 = Zℎ,	for Z = 0,1,2, … , P − 1. We first approximate the 

integral in C�∗�	
��D
(� with the modified trapezoidal rule leading to (2.20). For small ℎ, using the central finite difference 
formulas in (2.5), (2.6), (2.7) and (2.8), we can approximate the ordinary derivative 	�
�6�. 
Now, if we replace the term			
��/�60,� − 1 < � ≤ �, on the right hand side of equation (2.20) with the appropriate 
formula from equations (2.5) - (2.8) then by cancelling the term		ℎ�, we obtain the following approximation rule:  C�∗�	
��D
(� = ℎ��2Γ
3 − �� iC
P − 1�:�� − 
P + � − 2�P���Dj�
0�+j�
(�&

+>C
P − Z + 1�:�� − 2
P − Z�:�� + 
P − Z − 1�:��Dj�
�6�M��
6A� } + ]
	, ℎ, ��,		 

					0 < � ≤ 1																																																																																																																													
2.23� 
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 C�∗�	
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4 − �� iC
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P + � − 3�P:��Dj:
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P − Z�l�� + 
P − Z − 1�l��Dj:
�6�M��
6A� } + ]
	, ℎ, ��,				 

			1 < � ≤ 2,																																																																																																																											
2.24� 
 
and in general, we have: C�∗�	
��D
(� = ℎ��Γ
� + 2 − �� iC
P − 1������ − 
P − � + � − 1�P���Dj�
0� + j�
(�& 	

+>C
P − Z + 1������ − 2
P − Z������ + 
P − Z − 1������Dj�
�6�M��
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	, ℎ, ��,

� − 1 < � ≤ �,																																																																																																																																						
2.25� 
where j�
�� = 	
� + ℎ� − 	
� − ℎ�,																																																																							 j:
�� = 	
� + ℎ� − 2	
�� + 	
� − ℎ�,																																																											 
j:=
�� = >
−1�6 
2)�!Z! 
2) − Z�!

:=
6A" 	
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) − Z�ℎ�,																													 

j:=��
�� = > 
−1�6 
2) + 1�!Z! 
2) + 1 − Z�!
:=��
6A"

12 
	
� + 
) − Z�ℎ� + 	
� + ) + 1 − Z�ℎ��.				 
 
Furthermore, if 	
�� ∈ J��:C0, (D,	there is a constant J�f  depending only on � so that the error term  ]
	, ℎ, �� has the form: |]
	, ℎ, ��| ≤ J�f V	
��:�Vh(���ℎ: = 9
ℎ:�. 
The above computational algorithms depend on trapezoidal rule for numerical integration of definite integrals as well as 
central difference formulas (2.5)-(2.8)for numerical differentiation of functions. 
 
2.6.2 Approximation Rules based on Forward Difference and Backward Difference Formulas 
In this sub-section, we propose two new computational algorithms for fractional derivatives of functions in Caputo sense as 
an extension of the work of Odibat[20]. 
I. Approximation Rule Two (AR2) 
We now propose the first new approximation rule for the numerical computations of the fractional derivatives. Our approach 
is based on the finite difference formulas (2.9)-(2.11) and the Caputo fractional derivative approximation rule (2.20). 
To approximate the fractional derivativeC�∗�m
��D
(�,�� − 1 < � ≤ ��, assume that the interval	C0, (D is sub-divided into   
sub-intervals C�5 , �5��D of equal width, ℎ = Y- by using the nodes �5 = @ℎ, for @ = 0, 1, 2, … ,  . It is known that, for small h, 

using the forward difference formulas (2.9)-(2.11), we can approximate the ordinary derivatives m
��
�5�.  
Now, if we replace the term		m
��
�5�,�� − 1 < � ≤ ��, on the right hand side of equation (2.20) with the appropriate 
formula from equations (2.9) - (2.11) then by cancelling the term		ℎ�, we obtain the following approximation rule:  C�∗�m
��D
(� = ℎ��2Γ
3 − �� iC
 − 1�:�� − 
 + � − 2� ���Dm�
0�+m�
(�&

+>C
 − @ + 1�:�� − 2
 − @�:�� + 
 − @ − 1�:��Dm�
�5�-��
5A� } + ]�
m, ℎ, ��,			 

				0 < � ≤ 1																																																																																																																																						
2.26� 
 C�∗�m
��D
(� = ℎ��Γ
4 − �� iC
 − 1�l�� − 
 + � − 3� :��Dm:
0� + m:
(�&

+>C
 − @ + 1�l�� − 2
 − @�l�� + 
 − @ − 1�l��Dm:
�5�-��
5A� } + ]�
m, ℎ, ��,				 

			1 < � ≤ 2,																																																																																																																																					
2.27� 
and in general, we have: 
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 C�∗�m
��D
(� = ℎ��Γ
�� + 2 − �� nC
 − 1��o���� − 
 − �� + � − 1� �o��Dm�o
0� + m�o
(�& 	

+>C
 − @ + 1��o���� − 2
 − @��o���� + 
 − @ − 1��o����Dm�o
�5�-��
5A� } + ]�
m, ℎ, ��,

�� − 1 < � ≤ ��,																																																																																																											
2.28� 
where m�
�� = −3m
�� + 4m
� + ℎ� − m
� + 2ℎ�,																																									 m:
�� = 2m
�� − 5m
� + ℎ� + 4m
� + 2ℎ� − m
� + 3ℎ�,																											 
m=
�� =>
−1�5 
)�!@! 
) − @�! m
� + 
) − @�ℎ�=

5A" .																																								 
The above approximation rule solely depends on trapezoidal rule (2.20) for numerical integration of definite integrals as well 
as forward difference formulas (2.9)-(2.11) for numerical differentiation of functions.  
II.   Approximation Rule Three (AR3)  
In this sub-section, like before, we equally propose the second new approximation rule for the numerical computations of the 
fractional derivative. Our approach here is based on the backward finite difference formulas (2.12)-(2.14) and the Caputo 
fractional derivative approximation rule (2.20). 
To approximate the fractional derivative C�∗�p
��D
(�,�: − 1 < � ≤ �:, assume that the interval	C0, (D is sub-divided into \ sub-intervals C�5 , �5��D of equal width, ℎ = Yq by using the nodes �5 = @ℎ, for @ = 0, 1, 2, … , \. It is known that, for small h, 

using the backward difference formulas (2.12)-(2.14), we can approximate the ordinary derivatives p
��
�5�.  
Now, if we replace the term		p
��
�5�,�: − 1 < � ≤ �:, on the right hand side of equation (2.20) with the appropriate 
formula from equations (2.12)-(2.14) then by cancelling the term		ℎ�, we obtain the following approximation rules:  C�∗�p
��D
(� = ℎ��2Γ
3 − �� iC
\ − 1�:�� − 
\ + � − 2�\���Dp�
0�+p�
(�&

+>C
\ − @ + 1�:�� − 2
\ − @�:�� + 
\ − @ − 1�:��Dp�
�5�q��
5A� } + ]:
p, ℎ, ��,					 

		0 < � ≤ 1																																																																																																																																
2.29� 
 C�∗�p
��D
(� = ℎ��Γ
4 − �� iC
\ − 1�l�� − 
\ + � − 3�\:��Dp:
0� + p:
(�&

+>C
\ − @ + 1�l�� − 2
\ − @�l�� + 
\ − @ − 1�l��Dp:
�5�q��
5A� } + ]:
p, ℎ, ��,					 

		1 < � ≤ 2,																																																																																																																															
2.30� 
and in general, we have: C�∗�p
��D
(� = ℎ��Γ
�: + 2 − �� nC
\ − 1��r���� − 
\ − �: + � − 1�\�r��Dp�r
0� + p�r
(�& 	

+>C
\ − @ + 1��r���� − 2
\ − @��r���� + 
\ − @ − 1��r����Dp�
�5�q��
5A� } + ]:
p, ℎ, ��,

�: − 1 < � ≤ �:,																																																																																																										
2.31� 
where p�
�� = p
� − 2ℎ� − 4p
� − ℎ� + 3p
��,																																									 p:
�� = −p
� − 3ℎ� + 4p
� − 2ℎ� − 5p
� − ℎ� + 2p
��,																											 

p=
�� = >
−1�5 
)�!@! 
) − @�! 	
� − @ℎ�=
5A" .																																										 

The above approximation rule three depends on trapezoidal rule (2.20) for numerical integration of definite integrals as well 
as backward difference formulas (2.12)-(2.14) for numerical differentiation of functions.  
The remaining part of this Chapter will be devoted to the error analysis for the three numerical schemes (the existing method 
and the two newly proposed methods). 
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3.0 Results and Discussion 
3.1 Error Analysis for the Numerical Schemes 
This section will be devoted to the error analysis for the three approximation rules (the existing method and the two newly 
proposed methods). 
 
3.1.1. Error Analysis for the First Numerical Scheme 
The error estimate for the first approximation is given in Odibat[20]. 
 
3.1.2. Error Analysis for the Second Numerical Scheme 
In the same vein, the error estimate for the second approximation is given in the theorem below. The result follows from the 
work of Odibat[20]: 
Theorem 3.1 
Supposing that			
�� ∈ ∁�o�tC−u, ( + uD, where	u >  ℎ	if	2
 − 1� < � ≤ 2 ,	  = 1, 2, …, then the truncation error ]�
m, ℎ, �� has the form |]�
m, ℎ, ��| = 9
ℎ:�,																																																																																																																					
3.1� where	�� − 1 < � ≤ ��. 
Proof 
Starting with the second-degree Taylor expansions about �, for mff
�5 +  ℎ�: 

mff
�5 +  ℎ� =>
 ℎ�5@!
h
5A" m
5�:�
�5�,																																																																										
3.2� 

From the expansions (3.2), since m
�� ∈ ∁�o�tC−u, ( + uD, we can obtain the following formulas: −3mff
�5� + 4mff
�5 + ℎ� − mff
�5 + 2ℎ� = 2ℎm
l�
�5� + 9
ℎl�,																																																				
3.3� 2mff
�5� − 5mff
�5 + ℎ� + 4mff
�5 + 2ℎ� − mff
�5 + 3ℎ� = ℎ:mt
�5� + 9
ℎt�,																										
3.4� 
>
−1�5 
)�!@! 
) − @�! mff
�5 + 
) − @�ℎ� = ℎ=m
=�:�
�5� + 9
ℎ=�:�=
5A" 																																														
3.5� 

Comparing (2.28) with (2.20), we can observe that C�∗�mD
(� = J
}, ℎ, �� + ]�
m, ℎ, ��, where	}
�o� = ℎ��om�o .																																													
3.6� 
Therefore, using (2.22), we obtain |]�
m, ℎ, ��| ≤ J�f V}
�o�:�Vh(�o��ℎ:,																																																														 

  																																		= J�f Vm�off Vh(�o��ℎ:��o ,																																																																									
3.7� 
and using (3.3)-(3.5), we get |]�
m, ℎ, ��| ≤ J�f Vm
�o�:� +9
ℎ:�Vh(�o��ℎ:,																																							 

   																					= 9
ℎ:�.																																																																																																						
3.8� 
 
3.3.3. Error Analysis for the Third Numerical Scheme 
Here, the error estimate for the third approximation is given in the theorem below: 
Theorem 3.2 
Supposing that 	
�� ∈ ∁�r�tC−u, ( + uD, where	u > \ℎ	if	2
\ − 1� < � ≤ 2\,	 \ = 1, 2, …, then the truncation error ]:
p, ℎ, �� has the form |]:
p, ℎ, ��| = 9
ℎ:�,																																																																																																																							
3.9� where	�: − 1 < � ≤ �:. 
Proof 
Starting with the second-degree Taylor expansions about �, for pff
�5 − \ℎ�: 

pff
�5 − \ℎ� =>
−1� 
\ℎ�5@!
h
5A" p
5�:�
�5�,																																																																														
3.10� 

From the expansions (3.10), since p
�� ∈ ∁�r�tC−u, ( + uD, we can obtain the following formulas: pff
�5 − 2ℎ� − 4pff
�5 − ℎ� + 3pff
�5� = 2ℎp
l�
�5� + 9
ℎl�,																																																							
3.11� −pff
�5 − 3ℎ� + 4mff
�5 − 2ℎ� − 5pff
�5 − ℎ� + 2pff
�5� = ℎ:pt
�5� + 9
ℎt�,																								
3.12� 
>
−1�5 
)�!@! 
) − @�! pff
�5 − @ℎ� = ℎ=p
=�:�
�5� + 9
ℎ=�:�,=
5A" 																																																											
3.13� 
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Comparing (2.31) with (2.20), we can observe that C�∗�pD
(� = J
~, ℎ, �� + ]:
p, ℎ, ��, where	~
�r� = ℎ��rp�r .																																														
3.14� 
Therefore, using (2.22), we obtain |]:
m, ℎ, ��| ≤ J�f V~
�r�:�Vh(�r��ℎ:,																																																			
   			= J�f Vp�off Vh(�r��ℎ:��r ,																																																																					
3.15� 
and using (3.11)-(3.13), we get |]:
p, ℎ, ��| ≤ J�f Vp
�r�:� + 9
ℎ:�Vh(�r��ℎ:,																																							 
   																						= 9
ℎ:�.																																																																																																							
3.16� 
 
3.2 Numerical Experiments 
In this section, we consider some numerical examples to illustrate the three approximation rules as numerical tools. These 
examples are somewhat artificial in the sense that the exact values of fractional derivatives are known in advance. 
Nevertheless, such an approach is needed to examine the accuracy and the efficiency of the approximation rules for the 
purpose of applying them for problems where the exact value of the derivative is not known. 
Besides, for the purpose of this work, we use the small Greek letter kappa (κ) for order of accuracy (κ). The Order of 
Accuracy (κ) is mathematically defined as: 

Order	of	Accuracy	
κ� = log ��
H����r��log
2�  

where ] = absolute	error	for	the	approximation	rule	one; ℎ = step	size. 
 
3.2.1 Example1 
Consider the function		
�� = sin	
��. We approximate the fractional derivative C�∗� sin
��D  for � = 0.1, � = 0.5, � =1	and		� = 1.5	  and C0,1D.We use 	ℎ = YM = Y- = Yq ; 	where	P =  = \ = 10, 20, 40, 80, 160, and	320; 		�6 = Zℎ	and	�5 =@ℎ. 
Using the definition of Caputo fractional derivative (3.1) and the formulas (3.8) and (3.9), the true value of the Caputo 
fractional derivative �∗� sin
�� is given by 

	
@�							�∗� sin
�� = ����> 
−1�M
��:MΓ
2P − � + 2�
h
MA" ,										[\	0 < � ≤ 1																												
3.17� 

and 


@@�				�∗� sin
�� = �:��> 
−1�M
��:M��Γ
2P − � + 4�
h
MA" ,															[\	1 < � ≤ 2																										
3.18� 

Note that the true value of  �∗� sin
�� is calculated when � = 1. 
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Tables 3.1 to 3.4 show the exact values and approximate values of the fractional derivative C�∗�sin	
��D
1�, the errors for � = 0.1, � = 0.5, � = 1	and		� = 1.5	 and the order of accuracy for the three approximation rules (i.e., the approximation 
rule based on central difference formulas, the approximation rule based on forward difference formulas and the 
approximation rule based on backward difference formulas). From the numerical results, we observed the following salient 
points: 
• As the step size gets smaller, all the methods converge. However, for � = 0.1, AR1 is best, for � = 0.5,AR2 is best, � = 1, AR1 is best, for � = 1.5, AR1is best. 
• We observed from the Tables 3.1-3.4 that the computed order of accuracy (κ) is approximately two, which is in 

agreement with the error analysis that is of order two (9
ℎ:�) that is, when the step size ℎ is reduced by a factor of �:, the successive absolute errors are diminished by 
�t. 

 
3.2.2 Example 2 
Consider the function		
�� = cos	
��. We approximate the fractional derivative C�∗� cos
��D  for � = 0.1, � = 0.5, � =1	and		� = 1.5	  and C0,1D.We use 	ℎ = YM = Y- = Yq ; 	where	P =  = \ = 10, 20, 40, 80, 160, and	320; 		�6 = Zℎ	and	�5 =@ℎ. 
 
Using the definition of Caputo fractional derivative (1.7) and the formula (3.8) and (3.9), the true value of the fractional 
derivative �∗� cos
�� is given by 

	
@�							�∗� cos
�� = ����> 
−1�M
��:M��Γ
2P − � + 3�
h
MA" ,										[\	0 < � ≤ 1																																									
3.19� 


@@�				�∗� cos
�� = �:��> 
−1�M
��:MΓ
2P − � + 3�
h
MA" ,												[\	1 < � ≤ 2																																									
3.20� 

Note that the true value of  �∗� cos
�� is calculated when � = 1. 
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Tables 3.5 to 3.8 present the true values and approximate values of the fractional derivative C�∗�cos	
��D
1�, the errors for � = 0.1, � = 0.5, � = 1	and		� = 1.5	 and the order of accuracy for the three approximation rules (i.e., the approximation 
rule based on central difference formulas, the approximation rule based on forward difference formulas and the 
approximation rule based on backward difference formulas). From the numerical results, we observed the following 
conspicuous points: 
• Similar to example 1, as the step size gets smaller, all the methods converge. However, for � = 0.1, AR3 is best, for � = 0.5, AR3 is best, � = 1, AR1 is best, for � = 1.5, AR1is best. 
• We observed from the Tables 3.5-3.8 that the computed order of accuracy (κ) is approximately two, which is in 

agreement with the error analysis that is of order two (9
ℎ:�) that is, when the step size ℎ is reduced by a factor of �:, the successive absolute errors are diminished by 
�t. 

 
3.2 Computing Time for the Three Approximation Rules 
The Table below presents the computing time in seconds for the three approximation rules (i.e., the approximation rule based 
on central difference formulas, the approximation rule based on forward difference formulas and the approximation rule 
based on backward difference formulas).  
Table 3.9:  Computing Time at P = 10	and	ℎ = 0.1 for Approximation Rule One (AR1), Approximation Rule Two 

(AR2) and Approximation Rule Three (AR3). ³ computing  time (seconds) 
 AR1 AR2 AR3 
0.1 0.019388 0.013725 0.027231 
0.3 0.007875 0.007729 0.013079 
0.5 0.007778 0.017480 0.017551 
1.0 0.007761 0.008219 0.009027 
1.3 0.008005 0.021919 0.018808 
1.5 0.007832 0.008105 0.014307 
1.7 0.007571 0.007815 0.015232 
2.0 0.008072 0.007791 0.016779 

From Table3.9, we observed that the computational time for the three algorithmsis about the same. 
 
4.0 Conclusion 
In this paper, we implemented the computational algorithm for computing the fractional derivatives of functions which was 
based on the trapezoidal rule in conjunction with the central difference formula for derivatives of functions that was proposed 
by Odibat [20]. We further developed and implemented two other computational algorithms for computing the fractional 
derivatives of functions which were based on trapezoidal rule in conjunction with: 
i. the forward difference formulas for derivatives of functions; and 
ii.  the backward difference formulas for derivatives of functions respectively. 
With the help of the two functions chosen as examples, we demonstrated the functionality and the efficiency of the three 
approximation rules. Tables 3.1 – 3.8 present to us the nature and the behavior of each of the three approximation rules. The 
results for the two algorithms we have proposed compare favourably with the existing results and in some instances provide 
more accurate results (see Table 3.4). Hence, we recommend that any of the three approximation rules presented in this paper 
can be employed for the computation of fractional derivatives of functions.  
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