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Abstract 
 
In mathematics, the Korteweg–de Vries equation (KdV equation for 

short) is a mathematical model of waves on shallow water surfaces. It is 
particularly notable as the prototypical example of an exactly solvable model, 
that is, a non-linear partial differential equation whose solutions can be 
exactly and precisely specified. In this paper, we proposed the method of 
differential transform with a modified approach using the wave variable to 
obtain analytic solution of the KdV equation. This method helps to reduce 
minimally the enormous amount of mathematical computation in solving 
such kind of problem, and thus shows the efficiency of the method. 
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1.0     Introduction 
The Korteweg-de Vries equation (KdV in short), is fifth order nonlinear partial differential equation of the form: 
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subject to the initial condition;  
 )(=,0)( xfxu  (2) 

Where DCBA ,,,  are constants. This equation plays an important role in describing motion of long waves on shallow 

water under gravity; one dimensional nonlinear lattice, fluid mechanics, quantum mechanics, plasma physics, nonlinear 
optics and other areas of application, to mention but few. The KdV equation has several connections to physical problems. In 
addition to being the governing equation of the string in the Fermi–Pasta–Ulam problem in the continuum limit, it 
approximately describes the evolution of long, one-dimensional waves in many physical settings, including:   

    1.  shallow-water waves with weakly non-linear restoring forces;  
    2.  long internal waves in a density-stratified ocean;  
    3.  ion acoustic waves in a plasma;  
    4.  acoustic waves on a crystal lattice.  

Complex as it may appear to be, solutions to some nonlinear partial differential equations sometimes possess exact solution 
and in most cases not at all, hence we seek numerical solutions. Even though many methods to nonlinear differential 
equations have been proposed and some found very proficient and efficient, among which are the Secant Method, Sine-
Cosine Method more methods that are powerful are still under research [1,2]. 
Of late, are Fan Sub equation Method which is a unified algebraic method used to obtain many types of traveling wave 
solutions based on an auxiliary nonlinear ordinary differential equation with constant coefficients [3,4]; In recent times, the 
adomian decomposition method (ADM) was applied to the KdV equation [5]. Also a new modification of Laplace ADM 
[5,6,7] was implemented in the KdV equation [8]. 
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Wazwaz [9,10], also derived a variety of traveling wave solutions of distinct physical structure [11]; Furihata [12] applied the 
finite different method to obtain a numerical solution of certain nonlinear PDE called the Cahn-Hilliard equation [13]. 
Research on solution of KdV-equation is becoming on the increase as new method and approaches are being developed in 
succession. Here, we propose a method first introduced by Zhou [14] with a modified approach. For other authors who have 
used the Differential Transform Method (DTM in short) interested readers should see [15-20], to mention but few. 
The modified approach proposed in this paper uses the transformation of the nonlinear PDE into an ODE using a wave 
variable, hence applying the DTM to the transformed PDE to obtain an analytical series solution of the K-K equation. 

 
2.0 Differential Transform Method [14,15,16]. 
Definition 2.1 The differential transform of the Kth  derivative of a function )(xf  is defined as:  
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 and the inverse differential transform of )(KF  is defined as:  
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 In real application, the function )(xf  is expressed as approximation to a finite series and (4) can be written as  
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Combining equations (3) and (5) we obtain the Taylor’s series expansion of a function )(xf  as  
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As a result of the equations (3) and (5), some important theorems can be deduced and these theorems are used to obtain some 
basic result and computation required in illustrating this method. 
 
3.0 Basic Theorems 
Let the differential transformation of the Kth  derivative of the functions )(xf , )(xg , and )(xh  are respectively, 

)(KF , )(KG , and )(KH .  

Theorem 3.1 If )()(=)( xhxgxf ± , then )()(=)( kHkGkF ± .  

Theorem 3.2 If )(=)( xcgxf , then )(=)( kcGkF , where c  is a constant.  
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4.0 Analysis of The Method 
Given the general form of nonlinear partial differential equation 

 0=,...),,,,,,,( xtttxxxxxxtxxxt uuuuuuuuf  (7) 

where ),( txu  is the unknown function. To find the solution ),( txu  of (7), we introduce a traveling wave vtx −=γ , with 

the transformation 
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 )(=),( γutxu  (8) 

where v  is the wave speed given as ghv = ; 29.8= −msg  (gravitation constant) and h  is the depth of the water. Then 

(7) can be transformed to the ordinary differential equation 
 0=,...),,,,,,( uvuuvuuuvuf ′′′′′′′′′′′′  (9) 

and finally, we apply the differential transform method to (9), so that 
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 where )(KF  is the differential transform of )(γu  

Hence the solution  
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As mentioned earlier, in real application, we thus obtain an approximation of the form 
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5.0 Main Result 
In what follows we apply this approach to obtain a solution of KdV equation [1,2,6] as proposed. Consider the equation; 
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subject to the initial condition;  
 )(=,0)( xfxu  (14) 

Applying the transformation (8), to (13) we obtain the ordinary differential equation 

 uCuuuBuAuDuuv v ′′′−′′′−′−−′ 2)(=  (15) 
Thus applying the DTM, we obtain 
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and )(kU  is the differential transform of )(γu . Thus the recursive relation 
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 and the initial condition; 
 (0)=(0) FU  (17) 

 
6.0 Numerical Results 
6.1   Ito Equation [7,10] 

Consider the equation (13), where 2=A , 6=B , 3=C , 1=d  and 
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Hence equation (16) become 
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and the initial condition; 
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Here, from equation (21), we have; 
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and taking mh 6.38= . Hence we obtain from the recursive relation (16) the values of )(kU , L0,1,2,=k To avoid 

complexity, we take 10=n  as in equation (12), and truncate the series at ),( 99 txO , hence factoring, we obtain the series; 

 
8642

* 135.766371010*4.42708710*3.1250.00018750.1=),( xExxxtxu −−+−+− −−  

)151.15327136.64062103.1258*9.375( 753 xExExExEt −+−−−+−−+  

)212.00835181.00911164.15039131.1718811(1.17188 86422 xExExExEEt −+−−−+−−−+  

)241.3389225.04557191.3834617(1.95313 7533 xExExExEt −−−+−−−+  

)301.65334285.85768251.57674232.59399211.2207( 86424 xExExExEEt −−−+−−−+−−+  

)346.61335311.7573293.15348272.59399( 7535 xExExExEt −+−−−+−−+  

)407.32892371.92889353.66105333.9418531(1.08083 86426 xExExExEEt −+−−−+−−−+  

)432.09398414.13335395.2300737(2.81561 7537 xxExExEt −−−+−−−+  

)492.2542447*4.58057456.45835434.90319428.79878( 86428 xExExExEEt −−−+−−−+−−+
 

This approximate solution obtained can be compared with the exact solution exactu  as illustrated with the surface plot in Fig 
1, where the exact solution is given as;  
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                      Fig (a)                                                 Fig (b) 
Figure 1: Surface plot of the approximate solution Fig (a) and the exact solution Fig (b) respectively. 
Table 1: Values of the approximate and exact solutions at some selected points. Here, error = |����. −��	
�| 
 � = −0.5 � = 1.0 � = 2.5 
�

× 10� 

�∗ ������  ����� �∗ ������  ����� �∗ ������  ����� 

0 0.0499531 0.0499531 0 0.0498127 0.0498128 1E-07 0.0488401 0.0488402 E-07 
1.0 0.0483371 0.0483375 4E-07 0.0495792 0.0495797 5E-07 0.049 0.050 0.001 
2.0 0.0446019 0.0446023 4E-07 0.0470780 0.0470782 2E-07 0.0488401 0.0488402 1E-07 
3.0 0.0391722 0.0391729 7E-07 0.0426040 0.0426043 3E-07 0.0455001 0.0455011 1E-06 
4.0 0.0326080 0.0326082 2E-07 0.0366501 0.0366501 0 0.0403684 0.0403685 1E-07 
5.0 0.0254891 0.0254895 4E-07 0.0297961 0.0297962 1E-07 0.0339833 0.0339836 1E-07 
 
The graphs in Figure 1 and the values in Table 1 illustrate the exact and approximate solutions. Clearly it can be seen that the 
derived apptoximate solution with this method has very small and insignificant diffeence from the exaction solution. 
 
6.2   Caudrey-Dodd-Gibbon Equation (CDG Equation) [7,10]. 

Consider the equation (13), where 180=A , 30=B , 30=C , 1=d  and 














−−
20

sec31
1200

1
=)( 2 x

hxf  so that 

we have 
 xxxxxxxxxxxxt uuuuuuuu +++ 3030180= 2  (23) 

subject to 

 














−−
20

sec31
1200

1
=,0)( 2 x

hxu  (24) 

Hence equation (16) becomes 
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and the initial condition; 
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From equation (26), we have; 
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Hence we obtain from the recursive relation (16) the values of )(kU , L0,1,2,=k . To avoid complexity, we take 

10=n  as in equation (12), and truncate the series at ),( 99 txO , hence factoring, we obtain the series;  
8642

* 141.88192111.4648481.0416766.250.00166667=),( xExExExEtxu −+−−−+−−  

)294.45876261.68186244.6115522(6.51042 7533 xExExExEt −−−+−−−+  

)526.97931491.37778471.7433646(9.38537 7537 xExExExEt −−−+−−−+  

)402.20389385.85768351.05116348.64665( 7535 xExExExEt −+−−−+−−+  

)183.8239152.21354121.04167103.125( 753 xExExExEt −+−−−+−−+  

)256.66278223.36202191.38346173.90625153.90625( 86422 xExExExEEt −−−+−−−+−−+
 

)472.44185456.42949421.22035401.31395393.60277( 86426 xExExExEEt −−−+−−−+−−+
 

)597.51275561.52685542.15278521.634451(2.93293 86428 xExExExEEt −+−−−+−−−+  

)365.50385331.95238315.25581298.6466527(4.06901 86424 xExExExEEt −+−−−+−−−+  

 

This approximate solution obtained can be compared with the exact solution exactu  as illustrated with the surface plot in Fig 
2, where the exact solution is given as;  
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 for 55 ≤≤− x , 50 ≤≤ t  

 
                     Fig (a)                                                 Fig (b) 
Figure 2: Surface plot of the approximate solution Fig (a) and the exact solution Fig (b) respectively. 
Table 2: Values of the approximate and exact solutions at some selected points. Here, error = |����. −��	
�| 
 � = −0.5 � = 1.0 � = 2.5 
�

× 10� 

�∗ ������  ����� �∗ ������  ����� �∗ ������  ����� 

0 0.0016650 0.0016651 1E-07 0.00166041 0.00166043 2E-08 0.0016280 0.00162801 1E-08 
1.0 0.00166625 0.00166628 3E-08 0.00165691 0.00165693 2E-08 0.00161997 0.00161999 2E-08 
2.0 0.00166662 0.00166667 5E-08 0.00165259 0.00165266 7E-08 0.00161122 0.00161125 3E-08 
3.0 0.00166623 0.00166628 5E-08 0.00164761 0.00164762 1E-08 0.0016017 0.0016018 1E-07 
4.0 0.0016650 0.0016651 1E-07 0.00164182 0.00164183 1E-08 0.00159161 0.00159164 3E-08 
5.0 0.00166312 0.00166315 3E-08 0.00163527 0.00163529 2E-08 0.0015804 0.0015808 4E-07 
 
Similarly, the graphs in Figure 2 and the values in Table 2 illustrate the exact and approximate solutions. Clearly it can be 
seen that the derived apptoximate solution with this method has very small and insignificant diffeence from the exaction 
solution. 
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7.0 Conclusion 
In this paper, the transformation of PDE into ODE using the wave variable has shown the effectiveness of the concept of 
differential transform method and its suitability for solving both linear and nonlinear differential equation. This method as 
applied has shown its proficiency, effectiveness and very high accuracy and is a very good tool for solving even higher order 
differential equations. It can be concluded that the use of wave variable as illustrated in this paper and the application of 
Differential Transform Method (DTM) is very powerful, efficient and less time consuming in finding the analytic series 
solutions for a wide class of (higher order) differential equations. The method gives more realistic series solutions that 
converge very rapidly in physical problems. 
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