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Abstract 
 
Coronal Mass Ejections (CMEs) are transient events in which large 

amounts of plasma are ejected from the solar corona. Coronal mass ejections 
release huge quantities of electromagnetic radiations into space above the 
Sun’s surface, either near the corona or farther into the planet system. The 
ejected material is plasma consisting primarily of electrons and protons but 
may contain small quantities of heavier element such as helium, oxygen and 
even iron. It is associated with enormous changes and disturbances in the 
coronal magnetic field. The usual method of observations of Coronal Mass 
Ejections (CMEs) is in visible light using coronagraphs. Since CMEs are 
composed primarily of plasma, they therefore contain large amount of free 
electrons and the light observed are scattered and bounce off these electrons 
through the Thomson Scattering Process (TSP). In this paper, the dynamics 
of Coronal Mass Ejections (CMEs) are surveyed through the Thomson 
Scattering theory by presenting the mathematical equations governing the 
observation of this phenomenon. 
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1.0     Introduction 
Coronal Mass Ejections (CMEs) are instantaneous burst of energetic materials that can be observed from the Sun’s corona. 
They occur on a time scale of a few minutes to several hours and involve the appearance and outward motion of a new, 
discrete, and bright, white-light feature in the coronagraph field of view [1-3]. Typical velocities of CMEs range between 
20km/s to 3200km/s with an average of 489km/s. CMEs are massive bursts of solar wind and magnetic fields, which are 
released into space. CMEs are usually associated with other forms of solar activity, particularly solar flares. However, a 
causal relationship is yet to be established between them. Most CMEs originate from the active region on the sun surface 
such as groups of Sunspots. Near solar maxima, the Sun produces about three CMEs every day, while at solar minima, 
CMEs occur only once in about five days. The first coronal mass ejections were observed in 1971 [4]. It was recorded by the 
OSO-7 orbiting coronagraph. There was only a record of small number of events [5]. The second observation was the skylab 
observation, which studied CME properties [6]. Many thousands of observations later, in which events were recorded from 
space-borne coronagraphs [7-9] and many significant properties of CMEs have been established. 
 
2.0 Definition of Terms 
Solar Wind is a stream of plasma (charged particles) released from the upper atmosphere of the sun. It mainly consists of 
electrons and protons with energies mostly (1.5 and 10) keV. The stream of particles varies in density, temperature and speed 
over time and over solar longitude. These particles can escape the Sun’s gravity due to their high kinetic energy and the high 
temperature of the corona. 
Solar Flare Solar flares are sudden release of magnetic energy stored in the corona, where the intense magnetic field 
penetrate the photosphere to link the corona to the solar interior 
Suns pot Are temporary phenomena on the photosphere of the sun that appear visibly as dark spots compared to surrounding 
regions. They usually appear as pair, with each sunspot having the opposite magnetic pole to the other. 
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3.0  The Thomson Scattering Process and Equations  
The equations help to identify how the appearance of the CME images change due to the Physics of the surroundings. The 
knowledge of how light reaches the instruments help in identifying the physical characteristics of the CMEs. This therefore 
underscores the importance of the equations. 
Thomson Scattering is a special case of the theory of scattering of electromagnetic radiation by charged particles [10]. When 
electromagnetic radiation is incident on a free particle that carries a charge (e) and has a mass m, the particle will be 
accelerated. As the particle accelerates, it emits radiation. In Thomson Scattering, the momentum transfer from photon to the 
electron is ignored, so the frequency of the scattered radiation is the same as the incident radiation. It is this Thomson 
radiation scattered in all direction.  
The Thomson scattering process follows as outlined: If a particle with charge e and mass memoves with speeds that are small 
compared with the speed of light c, then the acceleration or radiation field Eais 

�� = �
����	 


��	×��������� �(1) 

where �� is the permittivity of free space (we are assuming the charge is moving in a vacuum or near vacuum), R is the 
distance traveled by the particle in a given time,��is a unit vector in the direction of R and a is the acceleration vector at the 
same time. The energy flux at this time is the Poynting vector defined by �� = �	 × � = 	 ��� 	�	 ×          (2) 

Since the speed of light is ! = 	 �
"��#�     , Eand B are related such that 
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Therefore equation(2) can be written as 
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Incident energy flux =	 �% ��!��%       (10) 

So equation (8) becomes; '`') = 	 +%a�%!% �
+4-��!�
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Using the geometry in equation 2, we can write; :� =	 (!bcd!bce, !bcdcf&e,−cf&d)      (12) :% =	 (−cf&e, !bce, 0)        (13) |:∗	. :�|B% =	 |(:�% +	:%%)	. (:�B% )| =	 |((!bcd!bce)% +	(−cf&e)%, (!bcdcf&e)% +	(!bce)%, (−cf&d)%). (1.0,0)| =	!bc%d	!bc%e +	cf&%e        (14) 
And for the y component we have; |:∗	. :�|k% =	 |(:�% +	:%%)	. (0,1,0)| =	!bc%d	cf&%e +	!bc%e        (15) 

|:∗	. :�|% =	12 @|:∗	. :�|B% +	|:∗	. :�|k%E 
=	12 (!bc%d	!bc%e +	cf&%e + !bc%d	cf&%e +	!bc%e) 
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=	12	((cf&%e + !bc%e) + !bc%d(!bc%e + cf&%e)) =	 �% (1 + !bc%d)         (16) 

So the scattering cross-section (11) becomes; 
7K
79 =	 �% � �J

��#�GH	J�
% (1 + !bc%d)        (17) 

Now, by integrating over all solid angles we can then derive the total cross-section `m as  

`m =	 n�o � �J
��#�GH	J�

% =	 n�o p�% = 6.65 × 10C%ra%     (18) 

Where p� is the classical electron radius. A useful alternative value is the differential cross-section for perpendicular scattering 
( �̀) 
�̀ =	 �s

(��#�)JGHJ	s =	p�% = 7.95	 × 	10Co�a%cpC�     (19) 

 
4.0  Application to the Solar Corona 
Equations (1)-(19) are applicable for an assumption of scattering of radiation from the solar corona as a point source by a 
single electron in the plasma stream. However, the solar corona is not a point source. This necessitates integration of the 
scattering over radiation from the visible disk of the Sun [10-12].   
Howard [10]surmises that the difficult aspect of the integration over the visible photosphere is the expression of the 
polarization components from an element of the photosphere in terms of a common coordinate system. Billings [13], 
simplified the integration by resolving the radius joining the center of the Sun into parallel and perpendicular components, 
while dealing with each component separately. The process is to select a point on the photosphere and angles ) and v such 
that the radiation emitted from the element of photosphere is un-polarized. Then we obtain vector components as in equations  
(20)-(22). wk = w�cf&%⍵         (20) wy =	w�!bc%)       wyB =	wy!bc%v = 	w�!bc%)	!bc%v wyz =	wycf&%v = 	w�!bc%)	cf&%v		      (21)     
And;w{B =	w{cf&%v w{z =	w{!bc%v			         (22)     
Using the geometry of Equations(20)-(22) we may resolve the y and x components wkand wyinto their r and p components: wk| =	wkcf&%d = 	w�cf&%)	cf&%d  wk8 =	wk!bc%d = 	w�cf&%)	!bc%d wyB| =	wyB!bc%d = 	w�!bc%)	!bc%v	!bc%d wyB8 =	wyBcf&%d = 	w�!bc%)	!bc%v	cf&%d			     (24) w{B| =	w{B!bc%d = 	w{cf&%v	!bc%d w{B8 =	w{Bcf&%d = 	w{cf&%v	cf&%d		      (25) wm =	wyz +	w{z = w(!bc%v +	!bc%)	cf&%v)			     (26) w� =	wk| +	wyB| + w{B| = w(cf&%)	cf&%d +	!bc%)	cf&%v	!bc%d +		!bc%v	!bc%d )  (27) 
 
5.0  Incident and Scattered Intensity 
With the incident and emergent radiation terms resolved into components in the xyz-plane, the received and scattered 
radiations are then considered. The intensity received at an observation point of radiation emergent from an element of 
photosphere is given by w = }	cf&v'v') = 	−}'v'(cos))  (28) 
Where, I is the emitted intensity from the photosphere in units of power per unit area per unit solid angle. The 
tangential}mand radial }� intensities are given by equations (29) and (30) }m =	 KH%�J � � 1(!bc%v + !bc%%���	��Ω )	cf&%v)'v'(!bc	))  (29) 

 
And 
 }� =	 KH%�J � � 1(cf&%) + cf&%%���	��Ω d + !bc%)	cf&%v!bc%d + !bc%v!bc%d)'v'(!bc	))  (30) 

The total scattered intensity is then given by equation (31) 
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 }m = �KH%�J � }(1 +	!bc%�	��Ω ))'(!bc))   (31) 

 
This total intensity is the equation necessary to determine the scattered light from the solar corona. The total scattered 
intensity is governed by the scattering efficiency that is minimized on the Thomson surface and the incident intensity that is 
also maximized on the Thomson surface. 
 
6.0  Conclusion 
The equations governing the dynamics of coronal mass ejections have been surveyed through the Thomson scattering 
process. It is shown that the total intensity equation is necessary to determine the scattered radiation from the solar corona. It 
is also noted that the total scattering intensity is governed by the scattering efficiency and the incident intensity, which are 
both maximized on the Thomson surface. Finally, it is shown that the Thomson scattering equations form the theoretical basis 
for how CMEs are detected in white light by coronagraphs. 
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