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Abstract

The analysis of one-dimensional abrasive wear rate hot-forging
process was computed using the Bubnov-Galerkin EniElement Method in
the present study. The weak form of the governiniffetential equation was
obtained and nodal contact pressures for lineatérpolation functions for
different elements are calculated for Neumann bowargl conditions. Time
approximation was done with the aid of the Crank<gliolson Finite

difference scheme and time ste(ﬁ\t = 0.5) was used to obtain equation for

the solution. Using a numerical example the resulshowed a maximum
error of 0.5 percent for a number of linear element It is concluded that as
the mesh is refined further progressively, the fimi element solution
approaches the exact solution which is an indicatiohat the solutions are
accurate and the method is robust

Keywords: Finite element method, Crank-Nicholson, Finiteffalence scheme, Bubnov-Galerkin, Time
approximate.

1.0 Introduction

Wear is a damage to solid surface, generally irmghprogressive loss of material, due to relativetion between that
surface and contacting substance or surface[l].arWsegenerally described as abrasive, adhesiwarasive[2]. Among
these types, abrasive wear is the most importamttalits destructive character[3]. Abrasive wesathie detachment of the
material from surfaces in relative motion, causgdshding of hard particles between the opposingases, the hard
particles normally slide on a softer surface anhete material from the latter [4]. The direct cobtvear failures increased
work and time, loss of productivity as well as dirtosses of energy and increased environmentalelouare real problems
in every day work.

A large number of researches on wear predictiost éxiliterature with mathematical models for thrediction of abrasive
wear behavior in agricultural grade medium carbieelg5], tool wear estimation using theoreticaalgsis and numerical
stimulation technologies [6], development of a reathatical model for prediction of friction and weahen a soft surface
slides against a harder rough surface [7], presantf abrasive tool wear by optimizing the geomebfytool [8],
experimental and theoretical investigation of ploag, cutting and wedge[9], out a development ofrogontact based
modeling of abrasive [10].

Other studies are an analysis based on the estimafiinterface temperature during contact slidibgj], and a theoretical
estimation of abrasive wear resistance based orostigpic wear mechanism [12]. It can be seen franiterature that the
potential of finite element method for addressibgpaive wear problems has not been given attention.

In this paper, we present the finite element anmslys solve the differential equation which goveths abrasive wear
behaviour in hot forging process and compare theiea obtained with that of exact solution.

2.0  Governing Differential Equation
The governing differential equation for the abrasivear behavior is given by:
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2
= 2|O L Kvdp kp = —1ldp 2.1)
dv dv v dt
O<v<h
Where,
S: sliding distance
K: dimensionless wear co-efficiencies
V: wear volume
P: contact pressure

The associated boundary conditions are given by
d
p(o,t) =1 andd—p(o,t) =0
\%

And the initial condition isp(v,0) = 1

2.1 Materials and Methods

The spatial domain of abrasive wear was divided @bumber of uniform linear element with lengy .

Stiffness matrix, mass matrix and flux vector wgemerated for each element using Bubnov-Galerkitefielement method
to get the contact pressure at nodal points. Tiffeess matrix and mass matrix were assemblednigreing continuity for
the nodal degree of freedom to obtain the globsiesy equations. The lagrange linear interpoldiimictions were used to
obtain a solution.

A finite difference modeling was developed usihg & - family of approximation in which a weighted avgeaof time
derived of the dependent variable p is approximatdgo consecutive time steps by linear interpotadf the values of the
variable at two steps. We then apply the Crankabdleon finite difference scheme by takigy=0.5 and a time step

(At = 0.5) to obtain equation for the solution. A numeriaahlysis was done to compare the finite elemeniteewith the
exact solution.

2.2 Weak Formulation
The weak form of equation (2.1) is obtained by fpling the equation by a weight function W=w(t)caimtegrating it over
the domain of the element and since it is time ddpat and this becomes:

[[wit) S pthj w(t)KV dpdv+j w(tkpelv + | W)y E dp Lv=0 2.2)
That is,
j(W(t) 2wk Lo+ 'l oo + ) jdv 0 23)

2

The term

! M{ (o] e

Subsutute the weak form equation (2.4) into eaque(R.3)

J' Ihgsgwd +KVI wit) dpdv+ KJ' W(t Pdv+J-w(t 1d|odv 0 (29

Equat|on (2.5) becomes

h
Sj dp dW KVJ. W(t dpdv_kJ- V\I(t pdv J.W(t 1dpdV S[W(t)%} =0 (2.6)

d
was put in the weaker ordedig. Using integration by part principles
\

VvV dt
Equatlon (2.6) is the weak form of equation (2.1)

2.3 Finite Element Modeling
Let the solution of equation (2.6) be of the sepkr&ariable form

Journal of the Nigerian Association of Mathematic&hysics Volume 31, (July, 2015), 45 — 56
46



Analysis of One-Dimensional... Oviawe and Akpobi J of NAMP

pv.t)= p(v.t) = ,Z; p, (V) 27
In finite element form, equation (2.7) becomes:
p(v.t) = Zp,(t)w (v)= Zl( pi s (v) (2.8)
Wherey/! is lagrange mteer)oIauon function at the jth nadel ' the pressure at jth node of the element. SindeBu

Galerkin finite element is to be applied in thedstuwe assume that the weight function is equanhterpolation functions.
That is:

w(t) =, (v) (2.9)

Substituting equation (2.8) and (2.9) into equaf@®) we obtain:

ndzpe(t) o \dys hoodZpe(t)
S[, ¢V - kv [ (V)= =)

eh

A DNACA dV‘—fw s p‘ (thi(v)- {t//,d pj} =0 (2.10)
K, :sj:dzsf () ‘”1( v - KV [2(v)
—thw? v)> " ps (s (v)av

= [t "J (e (v)
Q =sy(h)Q + swi (h,)Qs

That is,

> {K,p+MPr}-Qr =0 (2.11)
j=1
In matrix form, equation (2.11) becomes:

[Kps}+mEpet-{or}
MY} (KK} = e (2.12)

Where
[M] = mass matrix

K] = stiffness matrix
{Q} = Flux vector

e

dej

Equation (2.12) is the finite element mode (FEM)tfee analysis
The one-dimensional lagrange linear interpolatiomcfions are:

V, -V
wl()vV
2y V=V,
wz()vv

The Lagrange linear interpolation can be writtempactly asl//j (V) = 5ji , Whereri is called kronecker delta and has the
property.
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1if =
5 = -If-j I
loif j#I

3.0  Numerical Example

Use the finite element analysis to predict the sikeawear rate in hot forging process. the govermiifferential equation is
given:

2 _
S p+dep+KP=_1@
av? dv v dt
Im<V2m
Boundary condition

dp

o,t)=1 and—I(0,t)=0

plo,t) =1 and-(o.t)

Initial condition p(v, O) =1

3.1 Solution

In solving the problem, we shall use linear intdgion functions for the solution. First, we wiliscretize the domain into
eight linear elements which exposes nine nodeohbadrve the behaviour of the solution. First wi méed to calculate the
element mass matrix, stiffness matrix, noting that

IMepit+[<p b = {or} (3.1)

- 902010

dv dv &2
1= %848 v i 4L o e

Where
e =V,,, = coordinate of the right end of element

0 =V, = coordinate of the left end of element.
For a choice of linear interpolation lagrange fimmts, the element mass matrix and stiffness maitithboe in the form

FERERE
rnZl rnZZ pZ k21 k22 p2 QZ
Where

B, P,, P;, P, = nodal degree of freedoQ,, Q, = flux vector.

For a uniform incremendy,,, =V, for N elements
That is,

Vi, -V, =——= 0125
Thus,

_ 1 vady,(v)  dy _
Mu=g ) T gy Vv =68

_ 1 vady,(v) dy _
M =Gl Ty gy (v =68

M,, = ij'v“l dl/’z(V) x dwl(v) =-68

2-1
8

VN dv dv
1 Vad dy,\v
)
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In matrix form
Element 1
The element mass matrix is given as:

f68 -68|[p] _[Q (3.5)
-68 68 ||p,) |

Element 2
The element mass matrix is given as:

[ 76 —76}{;‘)2}:{@2} 36)
-76 76 ||p.) |2

Element 3
The element mass matrix is given as

84 -84][p,| _|Q; 3.7)
-84 84 |(p,) |

Element 4
The element mass matrix is given as

(92 -92[p,]| _JQi (3.8)
—92 92 [|p) o

Element 5
The element mass matrix is given as:

100 -100]( ps _ Q (3.9)
| —100 100 || p; Q

Element 6
The element mass matrix is given as:

(108 -108](p, _ Qe (3.10)
|—108 108 || p, Q°

Element 7

The element mass matrix is given as:

116 -116|[p, | _ Q/ (3.11)
-116 116 || p, Q/

For the & elements, we have nodes 8 and 9. Superimposimgeek 8 on element 1, we have node 8 becomes nadd 1
node 9 becomes node ¥, = 1875 andV,,; = 20. In matrix form, element (8) mass matrix becomes:

r _ 8
124 -124|[ps| _ Qs (3.12)
| —124 124 || p, Q98
The next step is to assemble the element masscemfor all the eight elements. We obtain theesysihass matrix below:
] e [@
68 -68 0 0 O 0 0 0 0 ! 1L o2
b| |2
-68 144 -76 0 O 0 0 0 0 2
p. QG +Q;
0 -76 160 -84 0 0 0 0 0 3 s
0 0 -84 176 -92 0 0 0 0 P, Q, +Q,
0 O 0 -92 192 -100 O 0 O Psr =1QF + Q3
0O 0O 0 0 -100 208 -108 0O O ||p QP
0O 0 0 0 0 -108 224 -166 0 pe QGG Q‘;
+
0O 0 0 0 O 0 -116 240 -124 p7 Q77 Q?g
o 0 0 0 0 0 o0 -124124]|"° |&*Q
L =~ | Po Qs
g (3.13)

Similarly, we evaluated for stiffness matrix totain
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6s+kh> —6s+knh’

]=| on 6h, {Q}:{Qf}
—68+kh: GS_Skh: P, Q;

3.14
6, 6h, (3.14)
Where
K= the dimensionless wear coefficient )0
S = sliding distance
he = wear depth
Element 1
The element stiffness matrix is given as
{ 1002 - 1002} {pl} _ {Qj}
_ 1AL
1002 0999 ||p,| |Q! 315
Element 2
The element stiffness matrix is given as:
[ 2002 - 2002} { pz} _ {sz}
- T 1A2
2002 1999 || p, Q; (3.16)
Element 3
The element stiffness matrix is given as:
[ 3002 - 3002} { pg} _ {Qg}
_ R PS
3002 2999 || p, Q, (3.17)
Element 4
The element stiffness matrix is given as:
{ 4002 - 4002} { p4} _ {Qj}
- T A4
4002 3999 || p,J |Q 318)
Element 5
The element stiffness matrix is given as:
[ 5002 - 5002} { ps} _ {QS}
_ A5
5002 4999 || ps Q; (3.19)

Element 6

The element stiffness matrix is given as:
{ 6002 - 6002} { p6} _ {Qg}
_ RPN
6002 5999 || p, Qs (3.20)
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Element 7

The element stiffness matrix is given as:

7002 -7002([p,| _ 77
{— 7002 6999 H ps} o
Element 8

For element 8, we have nodes 8 andpg, Py, S = 20 andk =107.
element 1, node 8 becomes node 1 and node 9 becoue.

The element stiffness matrix obtained is:

16002 -16002](p,] _ Q¢
-16002 15999 ||p,] |

(3.21)

We then used superimposition of element 8 on

(3.22)

Using continuity for node 8, which is common toret 7 and element 8. The matrix for all the eletn{é,2,3,4,5,6,7,8

and 9) assembled to becomes

[ 1002 -1002 O 0 0 0 0 0 o 1|™
-1002 3002 -2002 0 O 0 0 0 0 P
0 -2002 5001 -3002 O 0 0 0 0 Ps
0 0 -3002 7001-4002 O 0 0 0 P,
0 0 0  -4002 9001 -5002 O 0 0 P
0 0 0 0 -5002 11001 -6002 O 0 Pe

0 0 0 0 0 -—8002 13001 -7002 O
0 0 0 0 0 0 -7002 23001 -16002| |
| o 0 0 0 0 0 0  -16002 15999 | E*‘
9

Q

Q+Q}
Q+Q;
Q;+Qs
Q+Qs
QX +Qs
QL +Q
Q +Qf
Q;

(3.23)

The global assembled equation for mass m%Mer , stiffness matrix{KeJ and flux vector{Qe} becomes:

68 -68 0 0 0 O o0 o o0 |™
-68 144 -76 0 O 0 0 o o ||P

0 -76 160 -84 0 0 0 o o ||P

0 o0 -84 176-92 0 0 0 0 ||p,

o o O -92192 -100 0 0 0 [{pl+

0 0 o 0 -1200 28 -108 0 0 | |p,

0o o 0 0 0 -108 224 -116 O ||/

0 0 o 0 o 0 -116 240 -124 p7

0 0 o 0 o0 0 0 -124 124 | °
- =~ | Pg
[ 1002 - 1002 0 0 0 0 0 0 0
-1002 3002 -2002 O O 0 0 0 0

0 - 2002 5001 -3002 O 0 0 0 0

0 0 - 3002 7001 - 4002 0 0 0 0

0 0 0  -4002 9001 -5002 O 0 0

0 0 0 0 -5002 11001 -6002 O 0

0 0 0 0 0 -6002 13001 -7002 O

0 0 0 0 0 0 - 7002 23001 - 16002
|0 0 0 ) 0 0 -16002 15999 |

Py
P,
Ps
Py
Ps
Ps
p7
Pg
Py

1
O O O O o o o

(3.24)

Due to balance of internal fluxes, it follows tH@€ + QS = Q2 + Q2 = QY +Q/ =0and Q7 =Q; =Q¢ =Qf =0

Equation (3.24) becomes:
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68 -68 0 0 0 o0 o0 o o [P
-68 144 -76 O 0 0 0 0 0 PZ
0 -76 160 -84 O 0 0 0 0 P3
0 o -84 176-92 0 0 0 0 ||pa
o o 0 =-92192 -100 O 0 0 |{p,.++
0 0 o 0 -100 208 -108 0 0 | |p,
0 0 0 0 0 -108 224 -116 O b
0 0 0 0 0 0 -116 240 -124 D7
0 0 o0 o0 O 0 0 -124 124 |.°
- = [P
[ 1002 -1002 O 0 0 0 0 0 o 11|™ Q
-1002 3002 -2002 O 0 0 0 0 0 P.| |0
0 -2002 5001 -3002 O 0 0 0 0 P |0
0 0o  -3002 7001-4002 O 0 0 0 p.| |0
0 0 0  -4002 9001 -5002 O 0 0 P +=10
0 0 0 0 -5002 11001 - 6002 O 0 pe| |0
0 0 0 0 0 -—6002 13001 -7002 O ol o
0 0 0 0 0 0 - 7002 23001 - 16002 p7 0
| O 0 0 0 0 0 0 -16002 15999 | | ° Q
P Qs (3.25)

We consider the boundary conditi(p(o,t): 0 which implies that? (lt):o initial condition p(v, o): 1.0= p, which
\Y;

implies thatQ, =0

68 -68 0 0 0 o o o o1]|°
-68 144 -76 0 O 0 0 0 0 PZ
0 -76 160 -84 O 0 0 0 0 Ps
o 0 -84 176-92 O 0 0 0 ||ps
o o0 O =-92192 -100 O 0 0 |{pt+
0 0 o 0 -1200 208 -108 0 0 | |[ps
0 0 0 0o 0 -108 224 -116 O b
0 0 0 0o 0 0 -116 240 -124 p7
0O 0 o 0 0 0 0 -124124]]|.°
- = P
1002 -1002 0O 0o 0 0 0 0 o 112 [°
-1002 3002 -2002 O O 0 0 0 0 Po| |0
0 -2002 5001 -3002 O 0 0 0 0 Ps| |0
0 0  -3002 7001 -4002 O 0 0 0 p.| [0
0 0 0  -4002 9001 -5002 O 0 0 p, +=10
0 0 0 0 -5002 11001 -6002 O 0 ps| |0
0 0 0 0 0 -6002 13001 -7002 O o o
0 0 0 0 0 0 -7002 23001 - 16002 p7 0
| O 0 0 0 0 0 0 -16002 15999 | | ° Q
Po) Qs (3.26)
The condensed equations are:
(144 -76 0 0o o0 o o o [P
-76 160 -84 0 0 0 0 o |[[Ps
0 -84 176 -92 0 0 o o ||P
0 0 -92 192 -100 O 0 0 Ps .
0 0 0O -100 208 -108 O 0 Ds
0 0 0 0 -108 224 -116 O p,
0 0 0 0 0 116 240 -124 b
/o 0 0 0 0 0 -124 124 p8
9
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3002 -2002 O 0 0 0 0 o [P |71002
~ 2002 5001 3002 O 0 0 0 o |[|Ps| [1002
0 -3002 7001 - 4002 O 0 0 o [P |0
0 0  -4002 9001 -5002 O 0 0 | |0
0 0 0 -5002 11001 - 6002 O 0 p.[ |0
0 0 0 0 -6002 13001 -7002 O p,| |0
0 0 0 0 0 -7002 23001 -16002| | |,
0 0 0 0 0 0 -16002 15999 || °| |,
Po (3.27)
Recall equation (2.12) that the finite element m¢BEM) was the form:
Thus,
(144 -76 0 0 0 0 0 0 ]
-76 160 -84 0 O 0 0 0
0 -84 176 -92 0 0 0 0
)= 0 0 -92 192 -100 O 0 0
0O 0O 0 -100 208 -108 O 0
0 0 O 0 -108 224 -116 O
0 0 O 0 0 116 240 -124
o o0 o0 0 0 0 -124 124 | (3.28)
[ 3002 - 2002 0 0 0 0 0 0 ]
- 2002 5001 3002 0 0 0 0 0
0 -13002 7001 -4002 O 0 0 0
[K]— 0 0 - 4002 9001 - 5002 0 0 0
0 0 0 - 5002 11001 - 6002 0 0
0 0 0 0 - 6002 13001 - 7002 0
0 0 0 0 0 -7002 23001 - 16002
0 0 0 0 0 0 -16002 15999 (3.29)
- 1002
1002
0
0
=1,
0
0
0 (3.30)

4.0  Finite Difference Modeling
In this study, we used th& -family of approximation in which weighted averagfetime derived of dependent variable P is
approximated at two consecutive time steps by timgarpolation of the values of the variable ab tsteps.

(1-a)ph. +a{pl.., ) [ A (4.1)

Ats.+1

Where{ }s refers to the value of the enclosed quantity aetinF t, = Z:At1 since the finite element model in valid for
i=1

any t>0, it is valid for tstand t=t,;

M}, +[K]p} ={Q}, (4.2)
[M ]{ p}s+1 + [K]{ }s+1 = {Q}s+1 (4-3)
We multiply both sides of equation (4.1) kﬁtsﬂ[M] to get:

Ats+lal[l\/I ]{ p}s+1 + Ats+l(1_ a)[M ]{ p}s = [M ]({ p}s+1 _{ p}s) (4_4)
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We substitute f0|[M ]{ p}m and [M ]{ p}s from equations (4.2) and (4.3) respectively.

At5+1a({Q}s+1 _{ p}s)

Rearranging the terms into known and unknown, we ge

(m]+ t,akKph,.s = (]t (- a)K]{p), + At (@{Qh... + (- a)al)

{Qh..={q. = {0}

Therefore writing

At = At

(m]+ atalkpl... = (M]- atle- @)k ) g}, + at{c) s

We apply the crank-Nicholson finite difference stieei.e. we take? =0.5 equation (4.4) becomes:

(1122, = (1120« sl
(= [0+ 20 - 229 [ 20 g

For one-element mesh, we have:
M111+O'Atk111 Mllz _aAtkilz P — Mlll_(l_a)Atkill Mllz +(1—0’)Atk112 P +alt Ql1 (4.6)
M;l_aAtkél M%z +aAtkéz P2) i M;1+(1_a)Atkél M%z —(1—0')Atké2 P Ql
Using the boundary conditions, we recast for the-element model as:

M2 —(1-a)Atk} AtQ}
L e ) @7

M3, + altk], M3, + altk],

The solutions are then obtained by substituting &guation (4.7) value d¥3,, K2, and taking a time steit = 05. We
then solved repeatedly fop Bt difference times, $S=0,1,2,3,...30.

(4.5)

2

5.0 Exact Solution
3
s p+KVdp+Kp+ 1dp =0
av? dv V dt
We assume thap =V(V)T( )

V(Sd p+KVdp+KpJ —dp

av? dv dt 5.1)
We solved equation (5.1) by separation of variabksg
p(v.t) =V(V)T(t)
Thus, equation (5.1) becomes
s dV v ,_-1dT_1
KV v aVv KT dt A (5.2)

1
Where? (Constant of separation )

We assumed the L.H.S. of equation (5.2) is independf (t) and R.H.S. independent of (V), then eside of equation (5.2)
can be equated to the constant of separation. dWe for both L.H.S and R.H.S. to obtain a gengradilution for any n.

p(V.t) = i B.S n(nijf_k[“j t (5.3)
n=1

We apply the initial condition
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p(v,0)= iﬁng n(%j (5.4)

. [ MV
We multiply both sides of equation (5.4) Qn(TJ and integrating from O to h gives

J'S( J Vodv J'hZ,BSn[ - JS‘n[nTdeV

(5.5)
Using the orthogonality o8 n(mm) and S n(nnv) we get
thi n(ﬂj p(v,0)dv = h B,
° h 2 (5.6)
Where
_2¢h N7~
B, = = L S| n(TJ p(v,0)dv (5.7)
(h=1234.)
Applying the initial condition p(v, O) = p(v) at t=0, we have
( ) Z,B Sn( H j for 0<V<h
So that
=— J' n—dv
n7v
=—|V Sn .
j o (5.8)

6.0  Results and Discussion

The abrasive wear rates at the nodes for diffemghes using linear interpolation functions arenshin Table 6.1. The
abrasive wear rates at points between nodes aretatsvn in Table 6.1. The numerical value of thiewdated nodal degree
of freedom shows progressive improvement of abeagigar rates with convergence characteristic. aisolute point wise
error is not greater than 0.5 percent for all poeansidered along the domain showing an admiradeof convergence to
the exact solution. Successive decrease in thlgHesf the elements produces solutions which apprdlae exact solution
which is an indication that the solutions are aatiand the method very robust.

Table 6.1: A comparison of the finite element solutions obggirfor linear element using time approximate schéme

(At = 0.5) with exact solution.

{(s) 1L 2L 4L 5L Exact

0.0 1.0000 1.0000 1.0000 1.0000 1.0000
05 0.9926 0.9869 0.9785 0.9753 0.9772
1.0 0.9854 0.9740 0.9574 0.9512 0.9502
15 0.9782 0.9613 0.9368 0.9277 0.9240
2.0 0.9710 0.9487 0.9167 0.9048 0.9146
25 0.9639 0.9363 0.8970 0.8825 0.8739
3.0 0.9568 0.9241 0.8777 0.8607 0.8613
35 0.9498 0.9120 0.8588 0.8394 0.8300
4.0 0.9429 0.9001 0.8404 0.8187 0.8172
45 0.9360 0.8883 0.8223 0.8185 0.8013
5.0 0.9291 0.8767 0.8223 0.7985 0.7952
55 0.9223 0.8653 0.8046 0.7788 0.7629
6.0 0.9156 0.8540 0.7873 0.7596 0.7478
6.5 0.9089 0.8428 0.7704 0.7408 0.7218
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Continuation of Table 6.1

7.0 0.9022 0.8318 0.7538 0.7225 0.7054
7.5 0.8956 0.8209 0.7376 0.7047 0.6884
8.0 0.8891 0.8102 0.7217 0.6873 0.6612
8.5 0.8826 0.7996 0.7062 0.6703 0.6408
9.0 0.8761 0.7892 0.6910 0.6538 0.6204
9.5 0.8697 0.7789 0.6762 0.6376 0.6151
10.0 0.8633 0.7687 0.6616 0.6219 0.5903
10.5 0.8570 0.7586 0.6335 0.5918 0.5800
11.0 0.8507 0.7487 0.6199 0.5772 0.5601
11.5 0.8445 0.7389 0.6065 0.5629 0.5503
12.0 0.8322 0.7293 0.5935 0.5491 0.5353
12.5 0.8261 0.7198 0.5807 0.5355 0.5206
13.0 0.8200 0.7103 0.5682 0.5223 0.5011
13.5 0.8140 0.7011 0.5560 0.5094 0.4912
14.0 0.8081 0.6919 0.5441 0.4968 0.4800
14.5 0.8022 0.6829 0.5324 0.4845 0.4624
15.0 0.7963 0.6739 0.5209 0.47261 0.4594
7.0 Conclusion

Finite element analysis of abrasive wear rate infbiging process has been presented. It has bemmnsthat the present
method can be used to predict the abrasive weatedtavior accurately with successive mesh refimem&he potential of
the finite element method has been successfullyodetrated.
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