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Abstract 
 
The analysis of one-dimensional abrasive wear rate in hot-forging 

process was computed using the Bubnov-Galerkin Finite Element Method in 
the present study. The weak form of the governing differential equation was 
obtained and  nodal contact pressures for linear interpolation functions for 
different elements are calculated for Neumann boundary conditions.  Time 
approximation was done with the aid of the Crank-Nicholson Finite 

difference scheme and time step ( )5.0=∆t  was used to obtain equation for 

the solution.  Using a numerical example the results showed a maximum 
error of 0.5 percent for a number of linear elements.  It is concluded that as 
the mesh is refined further progressively, the finite element solution 
approaches the exact solution which is an indication that the solutions are 
accurate and the method is robust. 

 
Keywords: Finite element method, Crank-Nicholson, Finite difference scheme, Bubnov-Galerkin, Time 

 approximate. 
 

1.0     Introduction 
Wear is a damage to solid surface, generally involving progressive loss of material, due to relative motion between that 
surface and contacting substance or surface[1].  Wear is generally described as abrasive, adhesive or erosive[2].  Among 
these types, abrasive wear is the most important due to its destructive character[3].  Abrasive wear is the detachment of the 
material from surfaces in relative motion, caused by sliding of hard particles between the opposing surfaces, the hard 
particles normally slide on a softer surface and detach material from the latter [4].  The direct cost of wear failures increased 
work and time, loss of productivity as well as direct losses of energy and increased environmental burden are real problems 
in every day work. 
A large number of researches on wear prediction exist in literature with mathematical models for the prediction of abrasive 
wear behavior in agricultural grade medium carbon steel [5], tool wear estimation using theoretical analysis and numerical 
stimulation technologies [6], development of a mathematical model for prediction of  friction and wear when a soft surface 
slides against a harder rough surface [7], prevention of abrasive tool wear by optimizing the geometry of tool [8], 
experimental and theoretical investigation of ploughing, cutting and wedge[9], out a development of microcontact based 
modeling of abrasive [10]. 
Other studies are an analysis based on the estimation of interface temperature during contact sliding [11], and a theoretical 
estimation of abrasive wear resistance based on microscopic wear mechanism [12].  It can be seen from the literature that the 
potential of finite element method for addressing abrasive wear problems has not been given attention. 
In this paper, we present the finite element analysis to solve the differential equation which governs the abrasive wear 
behaviour in hot forging process and compare the solution obtained with that of exact solution. 
 
2.0 Governing Differential Equation  
The governing differential equation for the abrasive wear behavior is given by: 
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dt

dp

v
kp

dv

KVdp
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pSd 1
2

2 −=++        (2.1) 

hv <<0  
Where, 
S: sliding distance 
K: dimensionless wear co-efficiencies 
V: wear volume 
P: contact pressure  
The associated boundary conditions are given by 

( ) 1, =top  and ( ) 0, =to
dv

dp
 

And the initial condition is ( ) 1, =ovp  

 
2.1   Materials and Methods 
The spatial domain of abrasive wear was divided into a number of uniform linear element with length V∆ . 
Stiffness matrix, mass matrix and flux vector were generated for each element using Bubnov-Galerkin finite element method 
to get the contact pressure at nodal points.  The stiffness matrix and mass matrix were assembled by enforcing continuity for 
the nodal degree of freedom to obtain the global system equations.  The lagrange linear interpolation functions were used to 
obtain a solution. 
A finite  difference modeling was developed using the α - family of approximation in which a weighted average of time 
derived of the dependent variable p is approximated at two consecutive time steps by linear interpolation of the values of the 
variable at two steps.  We then apply the Crank-Nicholson finite difference scheme by taking α =0.5 and a time step 

( )5.0=∆t  to obtain equation for the solution.  A numerical analysis was done to compare the finite element results with the 

exact solution. 
 
2.2   Weak Formulation 
The weak form of equation (2.1) is obtained by multiplying the equation by a weight function W=w(t) and integrating it over 
the domain of the element and since it is time dependent and this becomes: 
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That is, 
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The term 
2

2

dv

pSd
 was put in the weaker  order 

dv

dp
. Using integration by part principles  
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Substitute the weak form equation (2.4) into equation (2.3) 
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Equation (2.5) becomes 

( ) ( ) ( ) ( )∫ ∫ ∫ ∫ =






−−−−
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o dv
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   (2.6) 

Equation (2.6) is the weak form of equation (2.1) 
 
2.3   Finite Element Modeling 
Let the solution of equation (2.6) be of the separable variable form 
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( ) ( ) ( ) ( )∑
=

=≈
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e VtptVptvp
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,, ψ       (2.7) 

In finite element form, equation (2.7) becomes: 

( ) ( ) ( ) ( ) ( )∑ ∑
= =

==
n
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e
j

e
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1 1

, ψψ      (2.8) 

Where 
e
jψ  is lagrange interpolation function at the jth node and 

e
jp  the pressure at jth node of the element.  Since Bubnov-

Galerkin finite element is to be applied in the study, we assume that the weight function is equal to interpolation functions.  
That is: 

( ) ( )vtw jψ=          (2.9) 

Substituting equation (2.8) and (2.9) into equation (2.6) we obtain: 
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Let  
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That is, 

{ }∑
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=−+
n
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e
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In matrix form, equation (2.11) becomes: 

[ ]{ } [ ]{ } { }e
i

e
j

e
j QpMpK −+ &  

or 

[ ]{ } [ ]{ } { }e
i

e
j

e
j QpKpM =+&        (2.12) 

Where 
[M] = mass matrix 
[K] = stiffness matrix 
{Q} = Flux vector 
 
Equation (2.12) is the finite element mode (FEM) for the analysis 
The one-dimensional lagrange linear interpolation functions are: 

( )

( )
12

12
2

12

2
1

VV

VV
v

VV

VV
ve

−
−=

−
−=

ψ

ψ
 

The Lagrange linear interpolation  can be written compactly as ( ) jij v δψ = , where jiδ  is called kronecker delta and has the 

property. 
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3.0 Numerical Example 
Use the finite element analysis to predict the abrasive wear rate in hot forging process.  the governing differential equation is 
given: 

mVlm
dt

dp

v
KP

dv

Kvdp

dv

pSd

2

1
2

2

<

−=++
 

 
Boundary condition 

( ) 1, =top  and ( ) 0, =to
dv

dp
 

Initial condition ( ) 1, =ovp  

 
3.1   Solution 
In solving the problem, we shall use linear interpolation functions for the solution.  First, we will discretize the domain into 
eight linear elements which exposes nine nodes and observe the behaviour of the solution.  First we will need to calculate the 
element mass matrix, stiffness matrix, noting that 
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   (3.3) 

Where 

1+= iVe  = coordinate of the right end of element  

iVo = = coordinate of the left end of element. 

For a choice of linear interpolation lagrange functions, the element mass matrix and stiffness matrix will be in the form 
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Where 

2121 ,,, pppp && = nodal degree of freedom 21,QQ  = flux vector. 

For a uniform increment, ii VV −+1  for N elements 

That is, 
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In matrix form 
Element 1 
The element mass matrix is given as: 
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Element 2 
The element mass matrix is given as: 
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Element 3 
The element mass matrix is given as 
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Element 4 
The element mass matrix is given as 
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Element 5 
The element mass matrix is given as: 
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Element 6 
The element mass matrix is given as: 
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Element 7 
The element mass matrix is given as: 
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For the 8th elements, we have nodes 8 and 9.  Superimposing element 8 on element 1, we have node 8 becomes node 1 and 

node 9 becomes node 2.  875.1=iV  and 0.21 =+iV .  In matrix form, element (8) mass matrix becomes: 
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The next step is to assemble the element mass matrices for all the eight elements.  We obtain the system mass matrix below: 
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  (3.13) 
Similarly, we evaluated  for stiffness matrix to obtain 
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Where 

K= the dimensionless wear coefficient (10-2) 

S = sliding distance 

he = wear depth 

Element 1 

The element stiffness matrix is given as 
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Element 2 

The element stiffness matrix is given as: 
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Element 3 

The element stiffness matrix is given as: 
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Element 4 

The element stiffness matrix is given as: 
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Element 5 

The element stiffness matrix is given as: 
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Element 6 

The element stiffness matrix is given as: 
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Element 7 

The element stiffness matrix is given as: 
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Element 8 

For element 8, we have nodes 8 and 9, 20,, 98 =Spp  and 210−=k .  We then used superimposition of element 8 on 

element 1, node 8 becomes node 1 and node 9 becomes node 2.   
 
The element stiffness matrix obtained  is: 
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Using continuity for node 8, which is common to element 7 and element 8.  The matrix for all the element (1,2,3,4,5,6,7,8 

and 9) assembled to becomes 
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The global assembled equation for mass matrix [ ]eM , stiffness matrix [ ]eK  and flux vector { }eQ  becomes: 
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Due to balance of internal fluxes, it follows that 07
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6
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5
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2
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4
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Equation (3.24) becomes: 
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We consider the boundary condition ( ) 0, =top  which implies that ( ) 0,1 =t
dv

dp
 initial condition ( ) 10.1, povp ==  which 

implies that 01 =Q  
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The condensed equations are: 
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Recall equation (2.12) that the finite element model (FEM) was the form: 
Thus, 
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4.0 Finite Difference Modeling  
In this study, we used the α -family of approximation in which weighted average of time derived of dependent variable P is 
approximated at two consecutive time steps by linear interpolation of the values of the variable at two steps. 

( ){ } { } { } { }
1

1
11

+

+
+ ∆

−=+−
s

ss
ss t

pp
pp && αα  for 10 ≤≤ α     (4.1) 

Where { }s refers to the value of the enclosed quantity at time ∑
∞

=

∆==
1

1
i

s ttt  since the finite element model in valid for 

any t>0, it is valid for t=ts and t=ts+1 

[ ]{ } [ ]{ } { }sss QpKpM =+&        (4.2) 

[ ]{ } [ ]{ } { } 111 +++ =+ sss QKpM &        (4.3) 

We multiply both sides of equation (4.1) by [ ]Mts 1+∆  to get: 

[ ]{ } ( )[ ]{ } [ ] { } { }( )ssssss ppMpMtpMt −=−∆+∆ ++++ 1111 1 && αα
        (4.4) 
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We substitute for [ ]{ } 1+spM &  and [ ]{ }spM &  from equations (4.2) and (4.3) respectively. 

{ } { }( )sss pQt −∆ ++ 11α  

Rearranging the terms into known and unknown, we get 

[ ] [ ]( ){ } [ ] ( )[ ]( ){ } { } ( ){ }( )sssssss QQtpKtMpktM αααα −+∆+−∆−=∆+ +++++ 11 11111  

But 

{ } { } { }QQQ ss ==+1  

Therefore writing 

tts ∆=∆ +1  

[ ] [ ]( ){ } [ ] ( )[ ]( ){ } { }QtpKtMpKtM ss ∆+−∆−=∆+ + αα 11           (4.4)
 

We apply the crank-Nicholson finite difference scheme i.e. we take α =0.5 equation (4.4) becomes: 
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For one-element mesh, we have: 
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Using the boundary conditions, we recast for the one-element model as: 
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The solutions are then obtained by substituting into equation (4.7) value of 1
22

1
22,KM  and taking a time step 5.0=∆t .  We 

then solved repeatedly for P2 at difference times, S=0,1,2,3,…30. 
 
5.0 Exact Solution 
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We solved equation (5.1) by separation of variables using 

( ) ( ) ( )tTvVtvp =,  

Thus, equation (5.1) becomes 
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Where 
2

1

λ
 (Constant of separation ) 

We assumed the L.H.S. of equation (5.2) is independent of (t) and R.H.S. independent of (V), then each side of equation (5.2) 
can be equated to the constant of separation.  We solve for both L.H.S and R.H.S. to obtain a generally solution for any n. 
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We apply the initial condition 
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We multiply both sides of equation (5.4) by 
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 and integrating from 0 to h gives 
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Using the orthogonality of ( )vmSin π  and ( )vnSin π  we get 
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Applying the initial condition ( ) ( )vpovp =,  at t=0, we have 
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6.0 Results and Discussion 
The abrasive wear rates at the nodes for different meshes using linear interpolation functions are shown in Table 6.1.  The 
abrasive wear rates at points between nodes are also shown in Table 6.1.  The numerical value of the calculated nodal degree 
of freedom shows progressive improvement of abrasive wear rates with convergence characteristic.  The absolute point wise 
error is not greater than 0.5 percent for all points considered along the domain showing an admirable rate of convergence to 
the exact solution.  Successive decrease in the length of the elements produces solutions which approach the exact solution 
which is an indication that the solutions are accurate and the method very robust. 
Table 6.1: A comparison of the finite element solutions obtained for linear element using time approximate scheme (

( )5.0=∆t  with exact solution. 

t(s)  1L 2L 4L 5L Exact 
0.0 1.0000 1.0000 1.0000 1.0000 1.0000 
0.5 0.9926 0.9869 0.9785 0.9753 0.9772 
1.0 0.9854 0.9740 0.9574 0.9512 0.9502 
1.5 0.9782 0.9613 0.9368 0.9277 0.9240 
2.0 0.9710 0.9487 0.9167 0.9048 0.9146 
2.5 0.9639 0.9363 0.8970 0.8825 0.8739 
3.0 0.9568 0.9241 0.8777 0.8607 0.8613 
3.5 0.9498 0.9120 0.8588 0.8394 0.8300 
4.0 0.9429 0.9001 0.8404 0.8187 0.8172 
4.5 0.9360 0.8883 0.8223 0.8185 0.8013 
5.0 0.9291 0.8767 0.8223 0.7985 0.7952 
5.5 0.9223 0.8653 0.8046 0.7788 0.7629 
6.0 0.9156 0.8540 0.7873 0.7596 0.7478 
6.5 0.9089 0.8428 0.7704 0.7408 0.7218 
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Continuation of Table 6.1 
7.0 0.9022 0.8318 0.7538 0.7225 0.7054 
7.5 0.8956 0.8209 0.7376 0.7047 0.6884 
8.0 0.8891 0.8102 0.7217 0.6873 0.6612 
8.5 0.8826 0.7996 0.7062 0.6703 0.6408 
9.0 0.8761 0.7892 0.6910 0.6538 0.6204 
9.5 0.8697 0.7789 0.6762 0.6376 0.6151 
10.0 0.8633 0.7687 0.6616 0.6219 0.5903 
10.5 0.8570 0.7586 0.6335 0.5918 0.5800 
11.0 0.8507 0.7487 0.6199 0.5772 0.5601 
11.5 0.8445 0.7389 0.6065 0.5629 0.5503 
12.0 0.8322 0.7293 0.5935 0.5491 0.5353 
12.5 0.8261 0.7198 0.5807 0.5355 0.5206 
13.0 0.8200 0.7103 0.5682 0.5223 0.5011 
13.5 0.8140 0.7011 0.5560 0.5094 0.4912 
14.0 0.8081 0.6919 0.5441 0.4968 0.4800 
14.5 0.8022 0.6829 0.5324 0.4845 0.4624 
15.0 0.7963 0.6739 0.5209 0.47261 0.4594 
 
7.0 Conclusion 
Finite element analysis of abrasive wear rate in hot forging process has been presented. It has been shown that the present 
method can be used to predict the abrasive wear rate behavior accurately with successive mesh refinement.  The potential of 
the finite element method has been successfully demonstrated. 
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