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Abstract 
 
A Metropolis-Hasting algorithm was adapted to perform simulation on 

marginal posterior distribution of heteroscedastic linear model using 
Minimum Message Length87 which was conjugated with normal and 
inverted gamma priors to derive joint posterior distributions. The asymptotic 
behaviour was compared using absolute bias and mean square error criteria 
in order to ascertain consistency and efficiency of the estimator. The 
estimator is both asymptotically consistent and efficient. Results from this 
study would assist social and behavioural scientists if the methodology is 
adopted when presence of heteroscedasticity is established. This will enable 
them to  have good precision of the inferences of the models parameters 
estimate. The estimator performed better when compare with conventional 
ordinary least square estimator. The algorithm runs faster in computation. 
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1.0     Introduction 
Minimum message length87 parameter estimation is similar to Bayesian inference because the duo incorporatespriors; the 
distinction is that mml87 uses negative log likelihood. Enes and Daniel [1,2] used mml87 to estimate efficient regression 
parameter estimates by adapting normal prior for parameter�� , uniform prior for P and discrete set gamma for ��. This 
works extends the work of Enes and Daniel by incorporating Harvey [3] heteroscedastic error structure into the mml87 
likelihood. The study assumes unknown mean and precision thereby adapting normal gamma priors for parameter �� and �� 
respectively, the reference prior is placed on the parameter of heteroscedastic error structure λ�i =0,..,2. 
It is has been established in the literature that presence of heteroscedasticity in the data and or model often render the 
parameter estimates, standard error, test of hypothesis and confidence interval invalid Oloyede [4-6], Hadri and  Guermat 
[7]..This paper combines mml87 ols with heteroscedastic error structure to form mml87-het. Enes and Daniel [1] combined 
orthogonal least squares with mml criterion using polynomial regression to form mml-ols. This paper extends their work. 
Viswana than and  Wallace[8] applied mml criterion to polynomial inference while Fitzigibbon etal[9] used mml criterion for 
Monte Carlo message length. In the Bayesian MML formulation, the sender and receiver agree on a prior distributionℎ
��, 
and likelihood function 
�/�� over the parameter spaceΘand data space �, which will then allow both to construct the 
codebook of minimum expected message length. Enes and Daniel[10] applied MML87 to  logistic regression for both 
parameter estimation and model selection which are commonly estimated  maximum likelihood approach and  Akaike 
information criterion or Bayesian Information Criterion respectively. It was concluded that  Minimum Message Length 
(MML) principle outperform maximum likelihood in model parameter estimation, and outperform both Akaike information 
criterion and Bayesian Information Criterion in model selection for both real and simulated data. Daniel and Enes [11] 
introduced  minimum message length principle as model selection and ridge parameter estimation  for generalized linear 
models  and concluded  that the MML87 criterion outperformed the corrected Akaike information criterion  both in parameter 
estimation and model selection. 
 
2.0 The Designs of Monte Carlo 
Define our y as the combinations of X and u which is assumed to be iid as �~�
0, ���� with unequal variances across the 
diagonals of �
��′�. We define our regressors to be matrix (x‘x) with error u incorporated  as 
�′����� . Thus, the   
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parameters are defined as � = 
�, �, �, �� . The task is to find a ��  that minimizes the length (MML87). Harvey [3] 
multiplicative heteroscedastic error structure considered and represented by � . Differentiating the full message length 
expression to obtain MML87 heteroscedastic estimator for continuous model parameters 
�′���� + �� !"#
$������
�′���%�.We derived our mml87 heteroscedasticity estimator through second derivative of 
sum of squares of mml87 heteroscedastic model. Six set of sample sizes were specified with seven scales of 
heteroscedasticity. For detail readers should see Oloyede[4-6]. In the Bayesian experiment, a Metropolis Hasting Algorithm 
was developed to simulate our MML87 heteroscedastic based models. The posterior simulation iteration was set to 10,000.  
The Burn-in is set at 1000 while thinning is set at 5. 
The likelihood function of � , where � = 
�&, ��, ��, �, ��  given the sample vector ��, �� = 
1,2, … , ��′      and % =
%�, %�, … , %*�′The heteroscedastic mml87 is expressed as 

+,#-.�
�, %�/01 =	−45#	
67
78ℎ
�� [:�;<=>?@/=∏ B?λ/=CDEF� G=σ=∑ B?λ[IJ�DβK=LJMG NOPLJMG

QRST=UVWX′XWT=Y ZR G=[\]^	
G�U _̀
à + b� 
1 + logkb� − logh
n�( 2.1) 

Multivariate normal prior is considered for �, while inverse gamma is considered for  �  and a uniform distribution is 
considered for �  which stand for ℎ
��: i
�� ∝ 
Ψ�G/=�;
YkG�/= exp F− �� 
� − ��Ψ
� − ��N , � > 0;      (2.2) i
��� ∝ 
����pGq� exp
−r�/��� , �� > 0      (2.3) i
�� ∝ s	!,s5�,t"�t(2.4) 
The posterior distribution of� = 
�, �, �� .considering independence among the parameters is given by :  

i
�, �, �|�, %� ∝ −45#	
67
78 
Ψ�G/==[
YkG�/=:σ=>?
vG?G?L/=� CDEF�G=
w�x�Ψ
w�x�N∏ B?λCDEF� G=σ=∑ B?λ[IJ�DβK=LJMG NLJMG

QRST=UVWX′XWT=Y ZR G=[\]^	
G�U _̀
à + b� 
1 + logkb� − logh
n� 

          (2.5) 
where "�, r�  are the hyper-parameters for the inverse-gamma distribution. Hyper-parameters are excluded for �-parameters 
since they would be estimated from the data and may be arbitrarily small leading to problems which may eventually affect 
the inferences. Integrating the posterior i
�, �, �|�, %�   with respect to  �, thus we have joint  posterior distribution for 
�, �� 
i
�, �, �|�, %� ∝ −45#

67
78
�;�?@= CDEF�G=
w�x�Ψ
w�x�N∏ y?z/=@{MG {�}G�G=∑ y?z
~��â�=}?
�G?G?@/=�@{MG

QRSó=UVWX′XWó=Y ZR G=ð\]^	
G�U _̀
à + b� 
1 + logkb� − logh
n�(2.6) 

Metropolis Hasting Algorithm update is performed on the full conditional distribution 

ofó� ∝ ��
"� + *� , r� + ��∑ ���
% − �â��*��� � 
and� ∝ � R
�′���� + �� !"#
$������
�′���%�, �� ��∑ ���
% − �â��*��� U  (2.7) 

This yields the following full conditional density of the parameters â  and ó: 
In order to expunge the nuisance parameter Marginal posterior density is obtained by integrating the joint posterior density 
with respect to nuisance parameter. The study adapted distributional approach which seems to be simple to derive the 
marginal posterior density. 
Recall � ��

Γ� ��
�q�� exp R��� U∞&  � = 1       (2.8) 

Relating the joint posterior density with inverted gamma above

Ψ�G/=�;
YkG�/= 
σ���
�G���b/�� exp F− �� 
� − ��Ψ
� −

��N∏ ���/�*��� exp	{− �<� 
r� + ��∑ ���
% − ����}*���     (2.9) 

By setting   � = "� − 1 − �/2 q = exp F− �� 
� − ��Ψ
� − ��N∏ ���/�*��� {− �<� 
r� + ��∑ ���
% − ����}*���   (2.10) x = σ� � ��
�q�� exp R��� U∞&  � = Γ���       (2.11) 

Therefore  � ��
�q�� exp R��� U∞&  � ∝ ���       (2.12) 
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Thus the marginal posterior distribution for  � is obtained by substitution into��� 

i
�|�, �, %� ∝ −45#
67
78CDEF�G=
w�x��
w�x�N∏ y?z/=@{MG 	{�G=∑ y?z
~��w�=}?
�G?G?@/=�@{MG

QRST=U�WX�XWT=Y �R G=[\]^	
G�U _̀
à + b� 
1 + logkb� − logh
n�(2.13) 

i
�|�. �, %� ∝ −45#
67
78:�=>?
vG?G?L/=�CDE:�}G/<=>∏ y?z/=@{MG {� GT=
}�qG=∑ y?z
~��w�=}?
�Gk@/=�@{MG

QRST=U�WX�XWT=Y �R G=[\]^	
G�U _̀
à + b� 
1 + logkb� − logh
n�(2.14) 

i
�|�, �, %� ∝ −45#
67
78∏ y?�/=@{MG 
}GqG=∑ y?�
~��w�=}?
��k@/=�@{MG

QRST=U�WX�XWT=Y �R G=[\]^	
G�U _̀
à + b� 
1 + logkb� − logh
n� (2.15) 

.  
3.0 Results 
In this study, we presented MML87 heteroscedastic contaminated linear model, using multiplicative heteroscedasticity 
structure. Parameters were obtained through the posterior location and spread estimates of Metropolis –Hasting Algorithm 
simulation, The level of convergence of the chains were monitored using the method proposed by Gelman and Rubin [12] 
and graphic analysis was carried out using coda package in R package. Multivariate normal and inverse gamma distributions 
were chosen as priors for parameter estimates and  �� respectively.   
 
Table1: Absolute bias of Posterior Estimation of   BMML87 Heteroscedastic Linear Model@0.0 

Samples Absolute bias ��� ��  ��¡ 
25 0.06410 0.00663 0.00235 
50 0.04157 0.00316 0.00010 
100 0.00773 0.00083 0.00044 
200 0.02629 0.00155 0.00141 
500 0.01051 0.00109 0.00051 
1000 0.00457 0.00066 0.00060 

 
Table 2: Absolute bias of Posterior Estimation of   BMML87 Heteroscedastic Linear Model@0.3 

Samples Absolute bias ��� ��  ��¡ 
25 0.08924 0.00909 0.00307 
50 0.05268 0.00390 5.87E-5 
100 0.00185 0.00075 0.00120 
200 0.03189 0.00187 0.00172 
500 0.01106 0.00136 0.00097 
1000 0.00545 0.00078 0.00063 

 
 Table 3: Absolute bias of Posterior Estimation of   BMML87 Heteroscedastic Linear Model@0.5 

Samples Absolute bias ��� ��  ��¡ 
25 0.10877 0.01104 0.00366 
50 0.06367 0.00471 7.85E-5 
100 0.00225 0.00092 0.00147 
200 0.03870 0.00227 0.00209 
500 0.01343 0.00165 0.00118 
1000 0.00662 0.00095 0.00076 
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Table 4:  Absolute bias of Posterior Estimation of   BMML87 Heteroscedastic Linear Model @ 0.6 

Samples Absolute bias ��� ��  ��¡ 
25 0.12007 0.01216 0.00399 
50 0.06998 0.00518 9.08E-5 
100 0.00249 0.00101 0.00162 
200 0.04262 0.00251 0.00230 
500 0.01479 0.00182 0.00131 
1000 0.00729 0.00105 0.00084 

 
Table 5: Absolute bias of Posterior Estimation of   BMML87 Heteroscedastic Linear Model @ 0.9 

Samples Absolute bias ��� ��  ��¡ 
25 0.16142 0.01626 0.00517 
50 0.09288 0.00687 0.00014 
100 0.00334 0.00135 0.00218 
200 0.05691 0.00336 0.00309 
500 0.01976 0.00243 0.00176 
1000 0.00974 0.00140 0.00113 

 
Table 6: Absolute bias of Posterior Estimation of   BMML87 Heteroscedastic Linear Model@1 

Samples Absolute bias ��� ��  ��¡ 
25 0.17812 0.01790 0.00563 
50 0.10205 0.00755 0.00016 
100 0.00369 0.00149 0.00241 
200 0.06266 0.00371 0.00341 
500 0.02176 0.00268 0.00194 
1000 0.01072 0.00154 0.00124 

Table 7: Absolute bias of Posterior Estimation of   BMML87 Heteroscedastic Linear Model@2 

Samples Absolute bias ��� ��  ��¡ 
25 0.47437 0.04673 0.01295 
50 0.26030 0.01925 0.00067 
100 0.00976 0.00391 0.00648 
200 0.16308 0.00971 0.00912 
500 0.05662 0.00699 0.00521 
1000 0.02791 0.00402 0.00330 

 
Performances of the BMML87 Heteroscedastic linear model on the basis of  Absolute Bias criterion   
Table 1-7  revealed the outcome of our estimation of MML87 heteroscedastic linear model. It shows that the bias for �& 
decreases algebraically as sample size increases while it increased at sample size 200 and thereafter decreases at higher 
sample sizes across all scale of heteroscedasticity considered in the study. The bias for ��  is negative and absolutely 
decreases algebraically as sample size increases while it increased at sample size 200 and thereafter decreases at higher 
sample sizes across all scale of heteroscedasticity considered in the study. These depict consistency. The bias for �� is 
interchangeable, it increases and decreases algebraically as sample size increases which bring about 
inconsistency.Considering the degree of heteroscedasticity, we observed that the bias for �& increases algebraically as the 
scale of heteroscedasticity increases, the bias for ��  is negative and absolutely increases algebraically as the scale of 
heteroscedasticity increases, and also the bias for ��  absolutely increases algebraically as the scale of heteroscedasticity 
increases. Thus there exists consistency. 
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Table 8: Mean Squared Error criterion of Posterior Estimation MML87 Estimator@0.0 

samples Mean squared Errors ��� ��  ��¡ 
25 6.48009 0.03813 0.03930 
50 3.41774 0.01914 0.01456 
100 1.66303 0.00831 0.00721 
200 0.72911 0.00379 0.00391 
500 0.32890 0.00163 0.00140 
1000 0.15650 0.00077 0.00081 

 
Table 9: Mean Squared Error criterion of Posterior Estimation MML87 Estimator@0.3 

samples Mean squared Errors ��� ��  ��¡ 
25 11.7418 0.06844 0.07096 
50 6.05299 0.03390 0.02620 
100 2.99225 0.01507 0.01297 
200 1.29466 0.00677 0.00707 
500 0.58449 0.00292 0.00254 
1000 0.28048 0.00138 0.00147 

 
Table 10: Mean Squared Error criterion of Posterior Estimation MML87 Estimator @0.5 

samples Mean squared Errors ��� ��  ��¡ 
25 17.4542 0.10112 0.10514 
50 8.84275 0.04950 0.03883 
100 4.41316 0.02236 0.01920 
200 1.90625 0.01002 0.01047 
500 0.86052 0.00432 0.00376 
1000 0.41272 0.00204 0.00217 

 
 
Table 11: Mean Squared Error criterion of Posterior Estimation MML87 Estimator@0.6 

samples Mean squared Errors ��� ��  ��¡ 
25 21.2747 0.12286 0.12800 
50 10.6849 0.05979 0.04728 
100 5.35801 0.02723 0.02337 
200 2.31238 0.01218 0.01274 
500 1.04380 0.00525 0.00457 
1000 0.50051 0.00247 0.00265 

 
Table 12: Mean Squared Error criterion of Posterior Estimation MML87 Estimator@0.9 

Samples Mean squared Errors ��� ��  ��¡ 
25 38.4844 0.22010 0.23103 
50 18.8284 0.10526 0.08535 
100 9.57812 0.04908 0.04211 
200 4.12247 0.02186 0.02296 
500 1.86048 0.00942 0.00824 
1000 0.89159 0.00443 0.00474 
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Table 13: Mean Squared Error criterion of Posterior Estimation MML87 Estimator@1 

Samples Mean squared Errors ��� ��  ��¡ 
25 46.8747 0.26719 0.28133 
50 22.7333 0.12705 0.10393 
100 11.6201 0.05970 0.05126 
200 4.99664 0.02655 0.02794 
500 2.25482 0.01144 0.01002 
1000 1.08038 0.00538 0.00577 

 
Table 14: Mean Squared Error criterion of Posterior Estimation MML87 Estimator@2 

Samples Mean squared Errors ��� ��  ��¡ 
25 333.787 1.83311 2.02460 
50 148.152 0.82395 0.74699 
100 79.4487 0.41774 0.36643 
200 33.8050 0.18288 0.19899 
500 15.2393 0.07857 0.07152 
1000 7.29500 0.03700 0.04094 

 
Performances of the BMML87 Heteroscedastic Linear Model on the basis of Mean Squares Error Criterion 
Tables 8-14revealed the mean squared error criterion, the mean squares error for �& decreases algebraically as the sample size 
increases irrespective of the scale of heteroscedasticity. Thus sample size 1000 has the least mean squares error, 
asymptotically, larger sample size bring about improvement in the estimation and reduce the effect of the error on the 
inferences. Moreover, the mean squares error for both �� and �� have asymptotic efficiency since the mse decreases as the 
sample size increases. 
Considering the scale of heteroscedasticity, the study revealed that the mean squared error increases as the scale of 
heteroscedasticity increases for posterior mean of �&, �� and ��. 
 
4.0 Conclusion 
In this paper, we have presented a simple way of modeling and estimating heteroscedastic linear model under simulation 
approach (MCMC) by incorporating it into celebrated Minimum Message Length87. We observed that modeling 
heteroscedasticity in a full Bayesian improve the precision of the inferences of the estimates. We conclude that 
asymptotically there exist consistency and efficiency in the estimation. Results from this study would assist social and 
behavioural scientists if the methodology is adopted when presence of heteroscedasticity is established. This will enable them 
to have good precision of the inferences of the models parameters estimate. The algorithm is faster and efficient in 
computation. The performance of MML87 heteroscedastic prove robust compare to conventional ordinary least squares 
which had already been established in the literature that is inefficient in the face of heteroscedasticity Hadri and Gumert [7] 
Our approach can be applied to further studies in the area of simultaneous equation and other econometric models. 
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Figure 1: showing Absolute bias of Posterior Estimation of   BMML87 Heteroscedastic Linear Model at beta 0, beta 1 and 
beta2 with 0 degree of heteroscedasticity 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: showing Absolute bias of Posterior Estimation of   BMML87 Heteroscedastic Linear Model at beta 0, beta 1 and 
beta2 with 0.3 degree of heteroscedasticity  
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Figure 3: showing Absolute bias of Posterior Estimation of   BMML87 Heteroscedastic Linear Model at beta 0, beta 1 and 
beta2 with 0.5 degree of heteroscedasticity  
 
 
 
 
 
 
 
 
 
 

 
Figure 4: showing Absolute bias of Posterior Estimation of   BMML87 Heteroscedastic Linear Model at beta 0, beta 1 and 
beta2 with 0.6 degree of heteroscedasticity  
 
 
 
 
 
 
 
 
 
 
 
Figure 5: showing Absolute bias of Posterior Estimation of   BMML87 Heteroscedastic Linear Model at beta 0, beta 1 and 
beta2 with 0.9 degree of heteroscedasticity  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: showing Absolute bias of Posterior Estimation of   BMML87 Heteroscedastic Linear Model at beta 0, beta 1 and 
beta2 with 1 degree of heteroscedasticity  
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Figure 7: showing Absolute bias of Posterior Estimation of   BMML87 Heteroscedastic Linear Model at beta 0, beta 1 and 
beta2 with 2 degree of heteroscedasticity  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8: showing Mean Squared Error criterion of Posterior Estimation MML87 Estimator at beta 0, beta 1 and beta2 with 0 
degree of heteroscedasticity  
 
 
 
 
 
 
 
 
 
 
 
Mean Squared Error criterion of Posterior Estimation MML87 Estimator @0.5 
Figure 9: showing Mean Squared Error criterion of Posterior Estimation MML87 Estimator at beta 0, beta 1 and beta2 with 
0.3 degree of heteroscedasticity  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10: showing Mean Squared Error criterion of Posterior Estimation MML87 Estimator at beta 0, beta 1 and beta2 with 
0.5 degree of heteroscedasticity  
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Figure 11: showing Mean Squared Error criterion of Posterior Estimation MML87 Estimator at beta 0, beta 1 and beta2 with 
0.6 degree of heteroscedasticity  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12: showing Mean Squared Error criterion of Posterior Estimation MML87 Estimator at beta 0, beta 1 and beta2 with 
0.9 degree of heteroscedasticity  
 
 
 
 
 
 
 
 
 
 
 
 
Mean Squared Error criterion of Posterior Estimation MML87 Estimator@2 
Figure 13: showing Mean Squared Error criterion of Posterior Estimation MML87 Estimator at beta 0, beta 1 and beta2 with 
1 degree of heteroscedasticity  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14: showing Mean Squared Error criterion of Posterior Estimation MML87 Estimator at beta 0, beta 1 and beta2 with 
2 degree of heteroscedasticity  
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