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Abstract 

 
Spatial variability, concerned with variation among observations in 

space, is usually ignored in the analysis of field experiments.  Inclusion of 
significant random spatial effects enhances the efficiency of estimation of 
fixed effects. Mixed modelling provides the opportunity to perform such 
analysis. Two datasets were investigated for the existence of spatial patterns 
and, where appropriate, the incorporation of such existence in the analysis of 
the data sets. The study indicated that spatial patterns varied over different 
datasets and that these patterns could be modelled using appropriate spatial 
variance and covariance structures. The approach is recommended as a 
standard practice in the analysis of agronomic and spatial-temporal related 
trials. 

 
 

1.0     Introduction 
Statistics, the science of uncertainty, attempts to model order in disorder [1]. It is not surprising that most people find the 
subject enigmatic.  However, as life experiences and scientific experiences accumulate, statistics has come to be recognized 
as an extremely powerful research tool.  Even when the disorder is discovered to have a perfectly rational explanation at one 
scale, where the data do not fit the theory exactly and when the need arises to investigate the new residual uncertainty, 
scientists and engineers have attempted to measure the level of disorder using entropy [1].  
All data have precise spatial and temporal labels. Generally, data that are close together in space (and time) are often more 
alike than those that are far apart. A spatial model incorporates this spatial variation into the generating mechanism in 
contrast to a non-spatial model [2]. Whether one chooses to model the spatial variation through the non-stochastic mean 
structure (also called large-scale variation) or the stochastic-dependence structure (also called small-scale variation) 
depending on the underlying scientific problem, there can sometimes be simply a trade-off between model fit and parsimony 
of model description. Allowing for explanatory variables, models with spatial dependence typically have a more 
parsimonious description than classical trend-surface models [3]. They also have more stable spatial extrapolation properties 
and hence yield more efficient estimators of explanatory - variable effects.   
Statistical methods for spatial correlation can be divided into 2 basic groups, characterization and adjustment. 
Characterization involves estimating covariance parameters and making spatial maps. Adjustment involves removing the 
effects of spatial correlation to obtain more accurate and more precise estimates of, for example, treatment means or 
differences.  Some statistical computer packages including PROC MIXED in SAS [4] and REML in GENSTAT [5] for 
mixed model analysis are particularly well suited for these adjustments.  
The subject matter of this paper is simply based on the fact that methods need to be developed to ensure as much closeness as 
possible to realities of the empirical data and of the substantive field base of the data. The objective of this study is to 
demonstrate the existence and subsequent isolation of spatial pattern in experimental data and then  
(i) to demonstrate how the spatial distance and direction from a particular focal point affect the response, and 
(ii)  to investigate the spatial variance structures most appropriate for rectifying the observed anomalies  
 
2.0 Methodology 
Models for spatial correlation have their origin in statistical methods developed in geology for application in mining industry.  
Owing to this heritage, many important spatial models are called ‘geostatistical” models [1,6].  
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We describe the approach used in SAS [4]. In the simplest sense, we have a set of observations whose physical locations and 
responses are known.  Our primary objective is to estimate spatial correlation. 
The model we are considering  is a stationary model 
Y i =  µ + ei            (1)  
where Yi is the ith observation on Y and ei is the corresponding error.  Let si denote the physical location of Yi where si is 
specified by two coordinates.  For example, the coordinates could be latitude and longitude.  Alternatively, the coordinates 
might be indices on a grid, such as north-south and east-west, or row-column dimensions respectively.  In this particular 
work, we refer to the coordinates of si as the “row” and “column” coordinates. 
In general, spatial correlation models can be defined by letting 
Var (ei) = σ2

ii           (2) 
Cov (ei,ej) =  σij          (3) 
Typically, the covariance is assumed to be a function of the distance between the locations si and sj.  Let dij be distance 
between si and sj.  The resulting models have the general form: 

Cov (ei, ej)  = σ2  [f (dij)]       (4) 
 Models for which f(dij) is the same for all pairs of equally distant locations in a given direction, for example, along the row, 
along the column, or otherwise are called “stationary” models.  If, in addition, f (dij) does not depend on the direction, then 
the model is said to be “isotropic” [7,8]. 
SAS allows one to work with the following models which are available in PROC MIXED: - 

(1) Spherical        
 f(dij) = [1 – 1.5 (dij/ρ)  +  0.5 (dij/ρ)3] l (dij <ρ)   (5) 
(2) Experimental 
 f(dij)  = [ exp (-dij/ρ)]      (6) 
(3) Gaussian 
 f(dij) = [exp(-dij

2/ρ2)]      (7) 
(4) Linear 
 f(dij) = (1 –ρdij) l (ρdij<2)      (8) 
(5) Linear log 
 f(dij) = [1 – ρlog (dij)][ρlog l  (dij<2)]    (9) 
(6) Power 
 f(dij) = ρdij       (10) 

The power function is a reparameterization of the exponential covariance model.  The function l (dij <ρ), used in the 
spherical model, equals 1 when dij < ρ, and equals 0 otherwise.  Similarly 1(•) functions used for the linear and linear log 
models equal 1 when the condition within the parenthesis holds and equals 0 otherwise [7]. 
In some applications, the covariance models given above may not adequately account for abrupt changes over relatively 
small distances.  These cases can be modelled by adding an additional parameter.  The resulting covariance models are 

 Var ( ei) = σ2 + σ2
1      (11) 

 Cov (ei, ej) = σ2 [f(d ij)]      (12) 
where the f (dij) can be any of the six models given above.  For these models, the parameters σ2

1, σ2 + σ2
1, and ρ correspond 

to the geostatistics parameters nugget, sill and range, respectively.  Using geostatistics terminology, models with Var (ei) = σ2 

+ σ2
1, are called models with a nugget effect whereas models with Var (ei) = σ2 are called no nugget models [9]. 

In this work, two case studies were considered.  
CASE STUDY 1  
A brief description of the experiment and treatment design and the analysis of the split-plot experiment which formed our 
case study one is given below. 
The experiment was carried out at the International Institute for Tropical Agriculture (IITA) main station in Ibadan, Nigeria. 
The site had been uncropped for at least 25 years. There were four fallow management systems namely Bush fallow 
regrowth, Pueraria phaseoloides live mulch, Alley cropping with Leucaena leucocephala and forest were implemented. The 
cropping cycles adopted were continuous cropping, 3-year-cycle and two 4-year-cycles. In each year, one of the cropping 
cycles was cropped, the others remained or returned into undisturbed fallow for soil fertility restoration. 
The experiment had a split-plot complete block design with four replicates, where fallow management system was the 
mainplot and cropping frequency the subplot. Plots measured 12 × 24m. The experiment was on a contiguous plot of land. 
After clearing in 1989. L. leucocephala hedgerows were planted at 4m interrow distance and P. phaseoloides was planted at 
1.0 × 0.25m spacing in all phases of all cropping frequency treatments. After three years of fallow, all biomass of the 25 
percent cropping frequency treatment of Bush fallow regrowth (BFR) and Phaseoloides Live Mulch (PLM) was slashed and 
burned. In the alley cropping, five distances from the hedge rows called position were incorporated.  
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0 - 10, 10 - 30, 30 - 60, 60 - 100, 100 – 200 cm respectively.  Two factors, the X and the Y coordinates of the plots are used 
to identify the positions of the plots. The blocking effect was intuitively taken care of by the coordinates.  
The coordinates are shown in Table 1. 
Table 1:  Co-ordinates for the layout of the split-plot experiment 
Rep1 Fallow and 

Cropping 
systems 

Rep2 Fallow and 
Cropping 
systems 

Rep3 Fallow and 
Cropping 
systems 

Rep4 Fallow and 
Cropping 
systems 

1,5 C6 1,3 B10 1,4 C1 1,4 B7 
2,3 C7 1,4 B6 1,5 A6 1,5 C7 
2,5 C1 1,5 C10 2,1 B1 2,1 A6 
3,4 C10 2,2 A6 2,4 C6 2,3 B1 
4,4 A10 2,3 B1 2,5 A1 3,1 A1 
5,4 A7 2,5 C7 3,1 B7 3,3 B6 
5,5 B6 3,6 C1 4,1 B10 3,5 C10 
5,6 B7 4,1 A7 4,2 B6 3,6 C6 
6,3 A6 4,2 A10 4,5 A10 4,2 A10 
6,5 B1 4,3 B7 4,6 A7 4,5 C1 
7,5 B10 5,1 A1 5,3 C10 5,1 A7 
8,4 A1 5,5 C6 5,4 C7 5,3 B10 

Keys to Table 1 
Fallow System Codes (letters) 
A = Bush Fallow 
B = Pueraria live mulch  

C = Alley Cropping 
D = Forest 

Cropping Cycle Codes(numbers) 
1 = Continuous cropping 
2 = 3 year-cycle (6) 
3 = 4 year-cycle (7) 
4 = 4 year-cycle (10) 
(For example, C6 from Table 1 represents ‘Alley Cropping’ for a 3 year-cycle, A1 represents ‘Bush Fallow’ system on 
continuous cropping). 
The data were collected for six months at three or four days interval. The analyses carried out on the data include Traditional 
split-plot design analysis (with and without repeated observations over time and mixed modelling with several variance 
structures using SAS version 9.3 [4]. 
CASE STUDY 2 – Simulated data 
These data were simulated  [10,11], purposely to ensure the presence of trend in the spatial pattern.  Three cultivars (CULT) 
of winter wheat were randomly assigned to rectangular plots within each of three blocks.  The nine plots were located side-
by-side, and a line-source sprinkler was placed through the middle.  Each plot was subdivided into twelve subplots, six to the 
north of the line-source and six to the south (DIR).  The two plots closest to the line-source represented maximum irrigation 
level, the two next-closest plots represent the next-highest level, and so forth.  
Analyses: 
Two alternative analytical procedures namely general linear model (GLM) and  the mixed model (MIXED) procedures in 
SAS software were used [4] . 
 
3.0 Results 
The Split Plot, Repeated Measure Data of Case Study One 
A summary of the analysis of the split-plot trial where the observations were made repeatedly over six times are presented in 
Tables 2 to 6. 
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Table 2: Analysis Of Variance  Over The Six Time 

SOURCE DF TIME ONE 
MS       p-value 

TIME TWO 
MS             p-value 

TIME THREE 
MS           p-value 

TIME FOUR 
MS           p-value 

TIME FIVE 
MS          p-value 

TIME SIX 
MS            p-value 

REP 3 4.2201   0.9150 31.7453    0.2897 438.8596   0.0001 699.0849    0.0001 742.6047     0.0002 10.5394    0.0812 
2 166.1016   0.0663 565.1909    0.0357 1026.8738   0.0029 993.6523    0.0117 1206.4577     0.0039 26.2194    0.0139 

Wholeplot Error 6 37.6360   0.1818 92.5249    0.5317 56.7956    0.0340 97.4185    0.0809 75.3492     0.5910 2.7683    0.7167 
CC 3 129.6999   0.0026 37.8872    0.7887 181.7753   0.0002 72.6404    0.0001 1217.8839     0.0001 24.1066   0.0023 
FS × CC 6 50.7040   0.0697 93.7807    0.5233 136.9440   0.0001 289.7880     0.0001 723.2052      0.0001 14.2669    0.0087 
Subplot Error 27 20.5824    0.6878 85.9840    0.7401 149.8113    0.0001 206.5434    0.0001 436.9068      0.0001 19.3737    0.0001 
Residual 64 24.5532 108.0277 23.1792 49.0934 96.9811 4.4942 

Keys to Table 2: DF – degree of freedom, MS-Mean Square 
 
 
Table 3:  Tests of hypothesis for between subject effects and Univariate test of hypothesis for within Subject effects 

Between Subjects Within Subjects   
Source DF MS p-value Source DF MS p-value Adj G-G H-F 
Rep 
FS 
Wholeplot Error 
CC 
FS*CC 
Subplot Error 
Residual 

3 
2 
6 
3 
6 
27 
64 

1170.2958 
3177.2602 
119.9129 
1060.6436 
881.7623 
572.4096 
165.1135 

0.0003 
0.0001 
0.6301 
0.0007 
0.0002 
0.0001 

Time 
Time× Rep 
Time × FS 
Time × FS × Rep 
Time × CC 
Time × FS × CC 
Time × FS× CC× Rep 

5 
15 
10 
30 
15 
30 
90 

2236.72 
151.35 
161.44 
48.52 
220.67 
85.38 
85.25 

0.0001 
0.0001 
0.0001 
0.0129 
0.0001 
0.0001 
0.0001 

0.0001 
0.0006 
0.0001 
0.0371 
0.0001 
0.0001 
0.0001 

0.0001 
0.0001 
0.0001 
0.0129 
0.0001 
0.0001 
0.0001 
 

Keys to Table 3: DF – degree of freedom, MS-Mean Square 
In table 3, two types of adjustments to p-values are presented, the G-G, for Greenhouse - Geisser and the H-F, for Huynh-
Feldt. 
 
Table 4: Polynomial and Profile Options in Analysis of Time Effects 
              Profile Analysis Polynomial Effects Analysis 
Contrast  DF MS p-value Effect DF MS p-value 
Time 1 vs Time 2 1 2908.9524 0.0001 Linear 1 2908.9524 0.0001 
Time 2 vs Time 3 1 400.6186 0.0440 Quadratic 1 400.6186 0.0440 
Time 3 vs Time 4 1 339.0123 0.0020 Cubic 1 339.0123 0.0020 
Time 4 vs Time 5 1 58.3878 0.1696 Quartic 1 58.3878 0.1696 
Time 5 vs Time 6 1 12486.3536 0.0001 Quintic 1 12486.3530 0.0001 

Keys to Table 4: DF – degree of freedom, MS-Mean Square 
 
Mixed Model Procedure.  
Here the total worm cast during the whole period of the experiment is the dependent variable, while new variables like time 
and the co-ordinates  X and Y are included in the analysis as explanatory factors. 
 
Table 5: Covariance Parameter Estimates  
 
Covariance  
Parameter 

REML  
Estimate Standard 

 Error 
Z p-value Estimate Standard 

 Error 
Z p-value 

Rep 
FS x Rep 
FS x CC 
Residual 
 

10.8373 
    0.000 
28.6892 
91.1871 

11.8762 
       - 
  8.9161 
  5.1569 

  0.91 
   - 
  3.22 
17.68 

0.3615 
     - 
0.0013 
0.0001 

10.8487 
0.00 
29.0454 
79.0706 

11.8609 
- 
8.8306 
4.6856 

0.91 
- 
3.29 
16.88 

0.3604 
- 
0.0010 
0.0001 

*REML – Restricted Maximum Likelihood 
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Table 6:  Tests of Fixed Effects 
Source NDF DDF Type III F p-value 
FS 2 6 7.56 0.0217 
CC 3 25 3.80 0.0225 
FSxCC 6 25 3.42 0.0132 
TIME 
FSxTIME 
CCxTIME 
FSxCCxTIME 
X 

5 
10  
15  
30  
1 

564 
564 
564  
564  
564 

28.09 
1.95 
3.29 
1.19 
0.03 

0.0001** 
0.0370 
0.0001** 
0.2222 
0.8667 

Y 1 564 0.01 0.9373 
     
** significant at 5% 

In Table 6, NDF stands for Numerators degree of freedom, DDF stands for Denominators degree of freedom. In this table, 
the co-ordinates do not show any significance which suggests that the co-ordinates do not affect the spatial pattern of the 
data. But time is very significant 

 
ANALYSIS OF DATA 2 
Table 7: GLM Analysis of Data Two (ANOVA) 
Source  MS p-value 
BLK 221.0803 0.0001 
DIR 105.0694 0.0001 
IRRIG  90.7844 0.0001 
DIRxIRRIG 2.8414 0.7772 
CULT  3.0024 0.6667 
DIRxCULT 8.5658  0.2246 
IRRIGxCULT 2.4611 0.9633 
DIRxIRRIGxCULT 4.8938 0.6140 
Table 7 shows the regular analysis of variance table for data 2, where the direction (DIR) and the irrigation 
method (IRRIG) are highly significant.  
 
Table 8:  Covariance Parameter Estimates (REML) {Mixed Model}  
Covariance Parameter Subject Estimate Std Error Z Pr>|Z| 
BLK  5.8553 6.4725 0.90 0.3657 
BLK X DIR  0.7649 1.5369 0.50 0.6187 
BLK X IRRIG  0.7199 0.7231 1.00 0.3194 
TOEP (2) BLK x CULT -0.7660 0.5827 -1.31 0.1887 
TOEP (3) BLK x CULT 1.2835 0.4242 3.03 0.0025 
TOEP (4) BLK x CULT -1.9564 0.7299 -2.68 0.0074 
Residual  4.6810 1.0318 4.54 0.0001 
Table 8 lists the covariance parameters for the data.  The first three rows are the variance components and the final four make 
up the Toeplitz structure. Here, the estimated range or ρ for the different factors are given in the ‘Estimate’ column  and their 
various Standard Errors in column 4.  The estimated sill or σ2 is seen as the residual with a standard error of 1.0318. 
The model fitting Information or fit statistics for the covariance parameter estimates gave -186.31 for the residual log 
likelihood, -193.31 for the Akaike’s Information Criterion,(AIC) -201.43 for the Schwarz’s Bayesian Criterion (BIC) and 
372.63 for the -2 Res Log Likelihood. These values are used to determine how good your model is, the smaller, the better 
your model. 
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Table 9: Tests Of Fixed Effects 
Source NDF DDF   

Type III F  Pr>F Type III F  Pr>F 
CULT 
DIR 
CULT x DIR 
IRRIG 
CULT x IRRIG 
DIR x IRRIG 

3 
1 
3 
5 
15 
5 

61 
2 
61 
10 
61 
61 

0.92 
4.28 
0.92 
11.32 
0.74 
0.77 

0.4388 
0.1744 
0.4376 
0.0007 
0.7342 
0.5765 

2.38 
4.38 
0.84 
11.42 
0.97 
0.59 

0.0782 
0.1713 
0.4786 
0.0007 
0.4920 
0.7055 

In Table 9,  only IRRIG is significant at 5% level. discuss 
Estimates and tests of significance of a cropping system contrast, linear effect of IRRIG and the interaction of the two effects 
are presented in Table 10. 
 
Table 10: Cropping System, Irrigation and Interaction Effects 
Effect Estimate  Std Error DF T Pr>|T| 
C1 vs C2 
Linear IRRIG 
C1 vs C2 x Linear IRRIG 

-0.1521 
42.0572 
1.7783 

0.3659 
5.8772 
9.0260 

61 
10 
61 

-0.42 
7.16 
0.20 

0.6790 
0.0001 
0.8445 

 
Table 11: Estimates of Covariance models: 
Cov Parm Subject Compound  Symmetry 

(CS) Covariance 
Autoregressive Order 1 
[AR(1)] Covariance 

Estimate Estimate Std Error Z Pr>|Z| 
BLK  8.3094 5.5417 6.1743 0.90 0.3694 
BLK x DIR  1.4118 0.7078 1.5920 0.44 0.6566 
BLK x IRRIG  0.2415 1.1216 0.6657 1.68 0.0920 
AR (1)  BLK x CULT -1.9668 -0.5171 0.1199 -4.31 0.0001 
RESIDUAL  4.9227 4.1951 0.9180 4.57 0.0001 
In Table 11, the fit statistics for the estimates of covariance models gave -188.31 for the residual log likelihood, -193.47 for 
the Akaike’s Information Criterion,(AIC) -199.27 for the Schwarz’s Bayesian Criterion (BIC) and 376.95 for the -2 Res Log 
Likelihood. These values are just  slightly different from what was observed in Table 8 model. 
 
4.0 Discussion 
From the  first data, it was discovered in the traditional GLM analysis (Table 2) that the Cropping Cycle (CC) is very 
significant in the 3rd, 4th, and 5th months while it is not significant in the 2nd month; TA represents the 1st month of the 
experiment, TB the 2nd and so on. 
The Fallow System (FS) is significant throughout, It was noted that there is a very significant interaction between the FS and 
CC in the 3rd month to the 6th month of the experiment (Table 2) while it is slightly significant in the first month and 
definitely not significant in the 2nd month. From this, we can see that the time has a great effect on the experiment. 
From the tests of hypothesis for between subject effects (Table 3), it’s noted that every other effect except FS x Rep was 
significant, this indicates that there’s a strong relationship between subject effects in the model. 
In the Univariate test of hypothesis for within subject effects (Table 3), we have the F-test for the within subject effects with 
time and adjustments to the p-values according to the assessed degree of failure for the Huynh-Feldt conditions to be met. 
Two types of adjustments to p-values are presented in this table, the G-G, for Greenhouse - Geisser and the H-F, for Huynh-
Feldt. Each of these adjustments is obtained by discounting the degree of freedom by a factor of “epsilon”.  Epsilon is a 
quantity whose value equals 1 if the H-F conditions is not met, and has a value, which decreases with increasing failure for 
the H-F conditions to be met. These two adjustments differ in the manner by which epsilon is estimated. 
This could make the result rather inconsistent so it’s advisable to use PROC MIXED in their stead. 
For these data, G-G Epsilon = 0.6181 and  H-F Epsilon  = 1.1300. 
In the ANOVA of contrast variables (Table 4), we have the ANOVA tables for the variables computed sequentially as the 
regression coefficients for polynomial models. It was noted that Time 1, which is the linear coefficient in the linear model, is 
very significant. Time 2, the quadratic coefficient in a quadratic model is not significant in the profile option while the story 
is different in the polynomial option. Here, it is noted that there is no linear trend but there are quadratic, cubic and quartic 
trends in the data. 
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Using the Mixed Model approach, with co-ordinates and time as additional factors (Table 6), we discover that the co-
ordinates are not significant but the time is with covariance parameter estimates (Table 5), we have the estimated range ρ, for 
the effects listed under the estimate column with their various standard errors and the estimated sill, σ2 i.e. the variance as the 
residual to be 79.0706 with a standard error of 4.6856 and is highly significant. 
From the second data, it was observed that using the GLM approach (Table 7), the Block, DIR and irrigation levels are highly 
significant.  On the other hand, in the Mixed Model approach (Table 9), it was discovered that only the Irrigation levels are 
significant, i.e. the block does not have any effect contrary to what was seen in the GLM. 
Modelling the covariance structure (Table 8), it was discovered that the covariance structure follows the Toeplitz with four 
(4) bands. From Table 10, it was observed that C1 is not significantly different from C2, the interaction of the two is not 
significant and IRRIG possesses a strong linear component.   
The data were tested using three covariance structures, the result is presented in table 11. It is noted here that the 
Unstructured and the Compound Symmetry  have infinite likelihood and unable to make hessian positive definite respectively 
and therefore model fitting diagnosis are not available.  On the other hand, the Toeplitz criterion estimate (-0.5171+ 0.1199) 
in AR(1) model suggests that the data have Auto Regressive order (1) structure. 
 
5.0 Conclusion 
After modelling with two different datasets, a conclusion could be reached that the spatial patterns in different datasets differ 
and that the pattern could be modeled using various covariance structures and spatial covariance structures. Our data 
suggested the Toeplitz with four (4) bands covariance structure and Autoregressive order (1) structure. 
 
6.0 References 

[1]  Cressie, N. (2015). Statistics for Spatial Data.  John Wiley, New York. 

[2]  Robinson, G. M. (1998). Methods and techniques in human geography. John Wiley, New York 

[3]  Gelfand, A.E.;Diggle, P. J.; GuttorpP.; Fuentes, M. (2010). Handbook of Spatial Statistics. CRC 
Press, Taylor and Francis Group, FL.  

[4]  SAS software, (2011). http://support.sas.com/documentation/93/. SAS Institute Inc. Cary, NC, 
USA. 

[5]  Payne, R.W., Murray, D.A., Harding, S. A., Baird, D.B. and Soutar, D.M. (2007). GenStat for 
Windows (10th Edition) Introduction. VSN International, Hemel Hempstead. GenStat 
https://www.vsni.co.uk/downloads/genstat/ 

[6]  Isaaks, E. H. and Srivastava, R.M. (1989).  An Introduction to Applied Geostatistics.  Oxford 
University Press, Oxford. 

[7]  Ramon, C. L; George, A. M.; Walter, W. S. and Russell D. W. (1996). SAS System for Mixed 
Models. SAS Institute Inc. Cary, NC, USA. 

[8]  Banerjee, S.; Finley, A.O.; Waldmann, P.; Ericsson, T. (2010). Hierarchical Spatial Process 
Models for Multiple Traits in Large Genetic Trials. Journal of the American Statistical 
Association Vol 105(490), Applications and Case Studies. 

[9]  Clark, I. (2010). Statistics or Geostatistics? Sampling Error or Nugget Effect? The journal of the 
South African Institute of Mining and Metallurgy vol. 110.  

[10]  Hanks,R. J.; Sisson, D. V.; Hurst, R. L. and Hubbard, K. G.(1980). Statistical Analysis of results 
from irrigation experiments using the line-source sprinkler system. Soil Sc. Soc. Amer. J. 44: 
886-888. 

 
Journal of the Nigerian Association of Mathematical Physics Volume 31, (July, 2015), 27 – 34 

https://www.vsni.co.uk/downloads/genstat/
http://support.sas.com/documentation/93/


 

34 

 

Incorporating Spatial Structures…           Ojurongbe and Bashiru     J of NAMP 
 

[11]  Johnson, D. E.; Chaudhuri, U. N.; and Kanemasu, E. T. (1983). Statistical Analysis of line-
source sprinkler experiments and other nonrandomized experiments using multivariate methods. 
Soils Soc. Amer. J. 47:309-312 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Journal of the Nigerian Association of Mathematical Physics Volume 31, (July, 2015), 27 – 34 


