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Abstract 
 
The purpose of this research paper is to give a classical (combinatorial) 

proof for the closed-form formula that evaluates the parameter estimation for 
arbitrary �-dimensional Multi-index. Statistically, this can be referred to as � -dimensional contingency table, such that the index (running) variable 
ī� = ����… ������, ��, … , ��is not necessarily a point (i), but rather a vector 
(ī�)=(��, ��, … , ��), where ��
���, ��
ℕ, �
��. 
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1.0     Introduction 
The joint-distribution of several (categorical) variables defines an array of values that generate a array (matrice), which is 
statistically refers to as contingency table. research in the typical models for contingency tables are of growing interest due to 
the routine collection of data on moderate to large numbers of categorical variables. The statistical analysis of contingency 
table routinely relies on log-linear model, and it turns out that a direct route to a likelihood function for a log-linear model 
lead to multinomial (product-multinomial) distribution, that is to say that the underlying distribution for log-linear model will 
turn out to be multinomial (product-multinomial) distribution or the (product of) independent Poisson distribution.  A 
standard approach to contingency table analysis parameterizes � as a log-linear model satisfying certain constraints. The log 
linear models express the logarithms of the joint probability mass function �of the variables as a linear function of 
parameters related to the index of each cell of the array or contingency table. Most of these parameters describe the 
interactions among the variables. Log-linear models for contingency table have many specialized applications in the social 
science, for example, the square-table, such as mobility table, where the variables in the table have the same categories. The 
development of appropriate models and test statistics are the major themes of several books [1-14] and others, have made 
important contributions to the contingency table literature. In the sequel,we shall state an explicit formula with proof for a 
closed form expression for: (1). saturated log-linear models (with its subclass)  (2). their parameters estimate for arbitrary �-dimensionalarray (�-dimensional contingency table). 
To achieve this, we give the following basic introduction, let ���be an observed frequency count in the (ij)�ℎ cell for a given � × �contingency table for two (categorical) variables with � and � categories respectively, such that ��� = ∑ ���!�"#  is the 

marginal frequency count in the ($)�ℎ row; ��� = ∑ ���%�"#  is the marginal frequency count in the (&)�ℎ column and $' =��� = ∑ .%�"# ∑ ���!�"#  is the number of observation in the sample, with the assumption that the '  observations are 
independently sampled from the population with proportion )�� in cell {ij}, which correspond to the probability of sampling 
an individual observation in the cell. Consequently, the marginal probability distributions )�� and)�� is similarly defined as 
above. If the row and column variable are independent in the population, then )�� = )��)��. Thus, if we let )�� to be the 
expected probability in each cell, then the expected frequency *�� in cell {$&} is define by *�� = '-��; by independent of the 
variables we  have ; 
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 *�� = '-�� = *��*��' 																																																																																																																											(1.1) 
Where *�� = ∑ -��!�"# /'�*�� = ∑ -��%�"#  
 If we take natural log of (1.1), we have -�� = log3 *�� + log3 *�� − log3 '																																																																																																	(1.2) 
Where6�� =	 log3 *��. 
Equation (1.2) is reminiscent of two-way ANOVA model. Hence by imposing the ANOVA-like sigma constraints on the 
model and then re-parameterize (1.2) so that  6�� = * + 7� − 8� 																																																																																																																																	(1.3) 
Where 7� = ∑ 7�%�"# = 0	/'�8� = ∑ 8�!�"# = 0 is the sigma constraints condition. 
 We call equation(1.3) the loglinear model for independency in the two-way (dimensional) table. Solving for the parameters 
in (1.3) we have that 6�� =;6���� =;*�� +;7��� +;8��� ;⟹;6���� = ��*;⟹ * = ∑ 6������*  

6� =;6��� =;*� +;7�� +;8�� ;⟹;6��� = �* +�7�;⟹ * = ∑ 6������*  

6� =;6��� =;*� +;7�� +;8�� ;⟹;6���� = �* + �8�;⟹ * = ∑ 6������*  

Where∑ .�� = ∑ .%�"# ∑ .!�"#  
Analogous to the two-way ANOVA model, we can add parameters to extend the loglinear model to data for which the row 
and column classifications are not independent in the population but are rather related in an arbitrary manner, as such we 
have. 6�� = * + 7� + 8� + >�� 																																																																																																																								(1.4)	
Where	* = 7� = 8� = >�� = >�� = 0			∀	$	& 
Basically, the solution of (1.4) and (1.3) are the same for *, 7� , 	8� so that >�� = 6�� − * − 7� − 8� is easily determined. >�� are 
referred as the Association Parameters since they represent deviation from independence. We call equation (1.4) the saturated 
(loglinear) model for the two-way contingency table.Similarly, a saturated loglinear model for a three-way contingency table 
of variables denoted by 1, 2, and 3 is given by 6��% = * + *#(�) + *A(�) + *B(%) + *#A(��) + *#B(�%) + *AB(�%) + *#AB(��%)	; 																												(1.5)	
Using the sigma constraints on the parameter we can solve for the parameters as follows 6��� =;6��%��% =;*��% 	+;(*#(�) + *A(�) + *B(%) + *#A(��) + *#B(�%) + *AB(�%) + *#AB(��%))��% 	
 ⟹	;6��%��% =	�#�A�B*	; 	⟹ 	* = 	∑ 6��%��%�#�A�B  

6��� =;6��%�% =;*�% 	+;(*#(�) + *A(�) + *B(%) + *#A(��) + *#B(�%) + *AB(�%) + *#AB(��%))�% 	
 ⟹	;6��%�% =	�A�B* + �A�B*#(�); 	⟹ 	*#(�) =	∑ 6��%�%�A�B − 	* 

Similarly, as we varies the summation over $&� ( in 2's ) we have  *#(�) =	∑ 6��%�%�#�B − 	*	
and *#(%) =	∑ 6��%�%�#�A − 	* 

6��� =;6��%% =;*% 	+;(*#(�) + *A(�) + *B(%) + *#A(��) + *#B(�%) + *AB(�%) + *#AB(��%))% 	
;6��%% = �B* + �B*#(�) + �B*A(�) + �B*#A(��)	; 

 
Journal of the Nigerian Association of Mathematical Physics Volume 31, (July, 2015), 19 – 26 



 

21 

 

Application of Multi-Set to…           O.C. Okoli, N. A. Nsiegbe and M. Laisin     J of NAMP 
 ⟹ *#A(��) =	∑ 6��%%�B − * − *#(�) − *A(�) 
Similarly, as we varies the summation over $&� we have  
 *#B(�%) =	∑ 6��%��A − * − *#(�) − *B(%) 
and *AB(�%) =	∑ 6��%��# − * − *A(�) − *B(%) 
However, several other log linear models are nested within the saturated model and could be obtained by setting some of the 
parameters equal to zero. In specifying this restriction, we ensure that whenever a high order term is included in the model, it 
lower-order relatives are included as well. Loglinear models of this type are often called Hierarchical. Among all this authors 
mentioned above non have been able to formulate an explicit formula that is easy to work with and at the same time 
expressing the property of the interactions of the variables in a concise and simply form for loglinear model and there 
parameter estimates as we aimed to do for an arbitrarily d-dimensional contingency table. To achieve this, we shall introduce 
certain concept, notations and definitions in the section that follows. 
The purpose of this research, is to consider the sets D(E)and F(7, D(E))that is more general than the set Dsuch that the index 
(running) variable (īE)=($#, $A, … , $E) is not necessarily a point, but rather a vector, where $HI��H, �HIℕ, JI��. Let D(E) = {	KīL ∶ $HI��H, �HIℕ, JI��	} 
and then define F(7, D(E)) = {	KīLNīL : �īLI�(E)	}	
to be the Multiset induced by D(E) due to the function 7:	D(E) → ℕsuch that 7QKīLR = �īL. Where  �(E) is a multi-index. We 
then give a classical proof of the associated closed-form formula forestimating the associated parameters. 
 
1.1  Multiset and Multinomial 
Definition1.1.1 [15-16]: A finite multiset F(7, D)	(	SJF) on a set D is a function 7:	D → ℕsuch that ;7	(K) < ∞	
If 7(K) = '∀K ∈ D , then F  is called an ' -multiset, hence we write '(F) = '.  Suppose D = {K�: $ = 1,2, . . . , �}		 and 7:	D → ℕ such that 7	(K�) = ��, we shall have F = {K�NW:	$ = 1,2, . . . , �}, where �� is called the multiplicity of K�($'F) and (�#, �A, …	, �%) is called the (associated) multi-index (or weak composition), which is also a row matrix (vector). For 
simplicity we write � = (�#� , �A�, …	, �%).We quickly remark that the function 7:	D(E) → ℕ  is the so-called "random 
variable" as often used by statisticians. To see this, given any finite Multiset F, then there exist 7:	D(E) → ℕ such that 7(K�) = ��(	$ = 1,2, . . . , �) and ∑7	(K�) = ' since F is finite. If we let  7	(K�) = D�, then  D� is a random variable that count 
the occurences of outcome K� in D (i.e. D� = ��; 	$ = 1,2, . . . , �). 
Definition1.2.1 [17-19]  By Multi-index, we mean a �-tuple vector (a row matrix or a column matrix)  �� , where each (��:	�� = {1,2, . . . , �})	is a non-negative interger. We define 
The associated integer |��|by 

|�| = 	;��%
�"# 																																																																																																																																									(1.6)	

The associated monomial KN by 

KN =	ZK�NW%
�"# 																																																																																																																																							(1.7)	

The associated factorial �! by 

�! 	= 	Z��%
�"# ! 																																																																																																																																							(1.8)	

 
Let D = {K#, KA, …	, K%} be a distinct finite set of points. If we associate to each element K� ∈ D with the number�� in �then 
certainly there exist a non-empty set F(�, D) induced by a non-negative integer 7:	D → ℕsuch that K� has multiplicity �� in  F(�, D)SJ	(F(7, D)), which is define by F(7, D) = 	 ^K#N_ , KAN` , … , K%Nab																																																																																																								(1.9)	
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is the multiset associated with D with respect to the non-negative integer function on D. Now consider the expansion of  (K# + KA +⋯+ K%)e, observe that if � = 2,3 then we have the binomial, trinomial expansion respectively. For arbitrary but 
fixed positive integer � the expansion of (∑ K�%�"# )eis a multinomial expansion of  D in one running (index) variable $, which 
can be referred to as one category or class of data. Observe that each K�has certain number of repeatition or multiplicity in the 
expansion of (∑ K�%�"# )e . There is no loss of generality if we assume that the multiplicity of K�  in the expansion of (∑ K�%�"# )e is  ��; 	$ = 1,2, . . . , �  provided ∑�� = ' . Thus, this will certainly induce a multiset representation due to the 
multinomial expansion, as such we have {K#N_ , KAN` , … , K%Na}as in (1.9). Furthermore, observe that each term (string) in this 
multinomial (�-nomial) expansion can be given in the general form f(�#, �A ,			… , �%)K#N_KAN` …K%Na 																																																																																																											(1.10)	
Where f(�#, �A ,			… , �%)is the associated �-nomial coefficient for each term. The following lemma gives the actual formular 
for f(�#, �A ,			… , �%)  and corresponding probability mass function. 
Now, we extend our description above to two-dimensional multiset and its associated two-dimensional multi-index  �(A) 	=(���), by considering the expansion Q∑ .%�"# ∑ K�!�"# Re where the multiplicity ��� 	($ ∈ ��, & ∈ ��, �,� ∈ ℕ) for each term K�� ∈ D(A)($ ∈ ��, & ∈ ��, �,� ∈ ℕ)  induces a � × �  array (vector) where each ��� 	($ ∈ ��, & ∈ ��, �,� ∈ ℕ)  is a 
non-negative integer. Hence for the vector 

�(A) = g�## ⋯ �#!⋮ ⋱ ⋮�%# ⋯ �%!j , SJ�(A) 	= Q���R:	$ ∈ ��, & ∈ �� 
We define 
The associated integer |�(A)	| by 

�(A) =;.%
�"# ;���!

�"# 	 ; kℎlJlm��(A)m =;���!
�"# 	 ; 	$ ∈ ��																																																																					(1.11)	

The associated monomial KN by 

KN(`) =	Z.%
�"# ZK��NWn!

�"# ; where	K�N(`) =	ZK��NWn!
�"# 																																																																															(1.12)	

The associated factorial �! by 

�(A)! 	= 	Z.%
�"# Z���!

�"# !; 	where		��(A)! = 	ZK��NWn!
�"# ! 																																																																										(1.13)	

 
It is important to remark that in lemma 1.2.1, given the set  D(A) = {K�� ∶ $ ∈ ��, & ∈ ��}and 7:	D(A) → ℕ, then that there 

exist a two-dimensional finite multiset F(A)Q�(A), D(A)R = {K��NWn: $ ∈ ��, & ∈ ��	} on D(A) with it corresponding multi-index �(A) = Q���R$ ∈ ��, & ∈ ��. By lemma 1.2.1, we wish to generalise the result for an arbitrary �-dimensional finite multiset F(E)Q�(E), D(E)R  with the corresponding � -dimensional multi-index �(E) = ��_,�`,…,�L , by considering the expansion s∑ .%_�_"# . . ∑ K�_,�`,…,�L%L�L"# te where the multiplicity ��_,�`,…,�L 	($H	I	��H	, �H	I	ℕ, J	I	�	�	)  for each term K�_,�`,…,�L ∈		D(E)($H 	I	��H	, �H	I	ℕ, J	I	�	�	)  induces a  �# × �A ×⋯× �E  vector (array) where each  ��_,�`,…,�L 	($H 	I	��H	, �H	I	ℕ, J	I	�	�	) is a non-negative integer. Similarly for the vector		�(E). we define 
The associated integer |�(A)	| by 

		�(E) = ; …%_
�_"#

; ��_,�`,…,�L
%L
�L"#

																																																																																																														(1.14)	
kℎlJl		m��_,�`,…,�u(E) m = ; …%uv_

�uv_"#
; ��_,�`,…,�u�uv_,…,�L
%L
�L"#

	 ; 1 ≤ x < � 

The associated monomial KN by 

KN(L) =	Z…%_
�_"#

ZK�_,�`,…,�LNW_,W`,…,WL%L
�L"#

																																																																																																													(1.15)	
where	K�_,�`,…,�uN(`) =	 Z …%uv_

�uv_"#
ZK�_,�`,…,�u�uv_,…,�LNW_,W`,…,WuWuv_,…,WL%L
�L"#

; 1 ≤ x < � 
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The associated factorial 		�(E)! by 

		�(E)! 	= 	Z…%_
�_"#

Z��_,�`,…,�L
%L
�L"#

! = m�īLm! 																																																																																									(1.16) 
Where 

��_,�`,…,�u(E) ! = 		 Z …%uv_
�uv_"#

Z��_,�`,…,�u�uv_,…,�L
%L
�L"#

! /'�	m�īum! = m��uy_#m! m��uy_Am!⋯ m��uy_%um! 
 
2.0  Preliminary 
For arbitrary but fixed �	 ∈ ℕ, zl�	�� = {1,2, . . . , �} denote the set of � categorical variables. Let 		�(E) be a �-dimensional 
array; that is �# × �A ×⋯× �E contingency table with cell counts (frequencies)  ��_,�`,…,�L. For any J ∈ ℕ such that 1 < J <�,  then the subset variable �J ⊂ ��   generate 		�(E)J -dimensional sub array with cell counts (frequencies) ��_,�`,…,�| =�ī|		(J ≤ �). Let *�H(ī|) denote the interaction among the variables in the index subset �J of the J-dimensional sub table of 		�(E) that correspond to īH cell. we shall assume that �J = ∅	$~	J = 0, so that we define *�∅Qī∅R = *.	 
 
Definition 2.1.1([20]) 
A loglinear model is said to be hierarchical if for every J	 ∈ ℕ such that 1 < J < � (�J ⊂ ��) for which *�H(ī|) = 0, then 
we have  *��(ī�) = 0 for all �	 ≥ J (�J ⊂ ��)   
Furthermore, let �E,H�  be the set of strings of J-combinations (in increasing order) of elements of �� and �(��) = 2�Edenote 
the power set of  ��. Thus, for any J	 ∈ ℕ such that 1 < J < � (�J ⊂ ��) we define �(��: 0 ≤ '({	ȷ	�}) ≤ J): = ^{ȷ	�} ∈ �(��): 0 ≤ '({ȷ	�}) ≤ Jb																																																						(2.1) 
Where ȷ	� ∈ �E,H� for J = 0,1,2, . . . , �	(� ≤ 	J)with {ȷ	�} = ∅ if J = 0 and '({ȷ	�}) denote the lenght of the string ȷ	� ∈ �E,H�  or the 
cardinality of the set {ȷ	�} ∈ �(��). Observe that �(��: 0 ≤ '({	ȷ	�}) ≤ J) is simply a subclass of �(��), however, �(��: 0 ≤'({	ȷ	�}) ≤ J) is equal to the power set �(��) if � = J. furthermore, by this, is easy to see that  

�(��: 0 ≤ '({ȷ	�}) ≤ �): =��(��:	'({ȷ	�}) = J)E
H"� =�{ȷ	�}HE

H"� 																																																			 (2.2) 
From (1.3), notice that �(��:	'({ȷ	�}) = J) is structurally equal to the (set) collections of elements of  �E,H� . As a consequence 
of above concept and definitions, we shall rather replace the notation *��(ī�) by *{�	�}Q��	�R such that '({ȷ	�}) = J. However, these 

notations could be used interchangeable if need be in the course of this work, also if'({ȷ	�}) = J, then {ȷ	�} ∈ {ȷ	�}H. The follwing 
lemma shall be useful in the sequel. 
 
3.0 Main Results 
Lemma 3.1 
For arbitrary but fixed 	� ∈ ℕ and let *{�	�}Q��	�R  be as define above such that ȷ	� ∈ �E,H�  ({ȷ	�} ∈ �(��: '({ȷ	�}) = )) then {ȷ	�} ∈P(��: 0 ≤ '({ȷ	�}) ≤ �) 

;.E
�"� ; *{�	�}Q��	�R#��_��`�⋯��u�E

=	 ; *{�	�}Q��	�R{�	�}∈�(�E:��e({�	�})�E)  

Proof 

;.E
�"� ; *{�	�}Q��	�R#��_��`�⋯��u�E

=	;.E
�"� ; *{�	�}Q��	�R�	�∈�L,|�

=		;.E
�"� ; *{�	�}Q��	�R{�	�}∈{�	�}�

 

;.E
�"� ; *{�	�}Q��	�R{�	�}∈�(�E:e({�	�})"�) =	 ; *{�	�}Q��	�R{�	�}∈⋃ �(�E:	e({�	�})"�)L���

=		 ; *{�	�}Q��	�R{�	�}∈�(�E:��e({�	�})�E)  

 
Theorem 3.2 
Let 		�(E) be a �-dimensional �# × �A ×⋯× �E contingency table with cell counts 
(frequencies)��_,�`,…,�L($H 	I	��H	, �H	I	ℕ, J	I	�	�	), then the saturated loglinear model for the �-way table of variables indexed 
in �� is given by; 
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 6�	�L = ; *{�	�}Q��	�R{�	�}∈�(�E:��e({�	�})�E)  

 Where log3 *�	�L = 6�	�L 	
Proof 
It suffices to show that, there are 2E terms of the parameters involving * in the model. Since {ȷ	�} is a (set) runing variable 
over P(��: 0 ≤ '({ȷ	�}) ≤ �), then the number of terms of * involving in the summation is determined by the cardinality of  P(��: 0 ≤ '({ȷ	�}) ≤ �). Thus  

nQP(��: 0 ≤ '({ȷ	�}) ≤ �)R 	= 	n ���(��:	'({ȷ	�}) = �)E
�"� � 

;nQ�(��:	'({ȷ	�}) = �)RE
�"� =	;nQ�E,�� RE

�"� =	;����
E
�"� =	2E 

This completes the proof. 
Theorem 3.3  
Let �, � ∈ ℕ   and the saturated loglinear model for the � -dimensional contingency table 		�(E) associated with F(E)Q)	, �(E), 	D(E)Rgiven by 

6�	�L =	;.E
H"� ; *{�	�}Q��	�R�	�∈�L,|�

 

Then the parameter estimators is  

*{�	��}Q��̅�R =	
 ¡
¡¢
¡¡
£ ∑ �īLīL¤īL 	; $~	� = 0.�(��	�| ,�)¤��	�L\��̅� – ;.!§#

H"� ; *^�	��bs��	��t	;�	�∈�L,|�.∀		ȷ	�! ∈ �E,!� 	; 	� = 1,2, … , �
¨ 

Where �(��	�| ,�) =	∑ �īL��	�L\��	�|  

Proof 
Let ȷ	� ∈ �E,H�  such that'({ȷ	�}) = �	(0 < � ≤ J ≤ �). Thus using the sigma constrain condition on 6�	�L we have  

; 	6�	�L��	�L\��̅�
		= 	 ; .��	�L\��̅�

;.E
H"� ; *{�	�}Q��	�R�	�∈�L,|�

 

		= 	 ; �;.!
H"� ; *{�	�}Q��	�R�	�∈�L,|�

+	 ; .E
H"!�# ; *{�	�}Q��	�R�	�∈�L,|�

���	�L\��̅�
 

=	 ; .��	�L\��̅�
;.E
H"� ; *{�	�}Q��	�R�	�∈�L,|�

 

*{�	��}Q��̅�R =	�(��	�| ,�)¤��	�L\��̅� –		;.!§#
H"� ; *{�	�}Q��	�R�	�∈�L,|�

 

 
 
4.0  Conclusion 
We observed that the results obtained in this paper solve certain parameter estimation problem with sigma constrain 
condition in the generalised sense.It is however interesting to note that this solutionhave pave way forresearchersin 
multivariate analysis to analyse data for any arbitrary �-dimensional �# × �A ×⋯× �E contingency table.We are not aware 
of the existence of the results obtained in this paper in literature. 
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