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Abstract 

 
Diffusion approximation is an improvement to the fluid approximation 

by permitting ( )tα and ( )tδ to have variations about the mean, where ( )tα  

represents the total number of arrivals upto time t and ( )tδ the total number 

of departures. It is a second-order approximation to queueing systems. In this 
paper we provide a detailed analysis of the diffusion approximation, and also 
present some specific examples of the application of the diffusion model. 
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1.0     Introduction 
The fluid flow approximation to queues is in fact a first-order approximation for queues in which the arrival and departure 
processes are replaced by their mean values, thereby creating a deterministic continuous process. Kleinrock [1] stated that 

diffusion approximation is an improvement to the fluid approximation by permitting ( )tα  and ( )tδ  to have variation about 

the mean, where ( )tα  represents the total number of arrivals up to time t and ( )tδ the total number of departures. We 

introduce the variances ( )tασ 2  and ( )tδσ 2  for the arrival and departure processes respectively in order to represent the 

random fluctuations of these processes about their means. To introduce these fluctuations about the mean value of the process 

is to represent these fluctuations by normal distribution. This assumption of normality for ( )tα {and for ( )tδ } is the 

cornerstone of the diffusion approximation.  

He further stated that, for the diffusion approximation, it is proposed that the arrival process ( )tα and the departure process 

( )tδ  are both to be approximated by continuous random process (with independent increments) which at time t are normally 

distributed with means ( )tα  and ( )tδ  and variances ( )tασ 2  and ( )tδσ 2 respectively. This approximation is intended to 

be used to make statements about number of customers in the system N(t) and the unfinished work in the system U(t). As it is 

well known, if we have two independent normally distributed random processes, say ( )tα  and  ( )tδ , then any linear 

combination of these two is also a normally distributed process (with some appropriate mean and variance). One linear 

combination we are interested in is ( ) ( )tt δα − , which represents N(t)the backlog expressed in number of customers. We 

are also very much interested in the unfinished work U(t), which represents the backlog in units of time. Thus when N(t) is 
large, we have a departure process that is approximately independent of the arrival process; and it is this case which is of 
interest to us. The approximation that we make when the system is lightly loaded should be expected to be poor, thus we have 

the framework for a second-order approximation (the diffusion approximation) to queueing systems. If we replace ( )tα  by 

its mean ( )tα and its variance ( )tασ 2 , then it is equivalent to making a Taylor expansion  

( ) ( ) ( ) x,;,,;, xwytxFytwF −=− ττ  
��

��
+ ( )2

2
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xw − �

2
�

��
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+ ( )[ ]2xw −ο    (1.1) 

If we substitute equation (1.1) into the equation ( ) ( )ττ ,;,,;, ytxFyttxF −∆−  
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( ) ( )[ ] ( )∫
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and take the limit as 0→∆t , then from the following equations: 
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we arrive at the following partial differential equation for F: 
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       (1.5) 

This is the backward Kolmogorov equation for a continuous time continuous state Markov process and F will satisfy this 
equation except at points of accumulation (such as the origin, y=0).  
 
Keinrock [1] also stated that the diffusion equation (also  known as the Fokker-Planck equation) is the forward equation for 
the diffusion process. He showed that if we take the   first two terms in the series  
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to be non zero and assume ( ) 0, =twAn for n=3, 4,5… 

we have 
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Equation (1.7) is known as a one-dimensional Fokker-Planck equation. Both equations (1.5) and (1.7) are referred to as 
diffusion equations.  
 
In fluid approximation, we take the unfinished work U(t) as the related stochastic process of interest instead of the number in 
system N(t). The diffusion approximation to the equilibrium for the waiting time is given by the equation 

( ) 0,1
2/2 ≥−= wewF mw σ          (1.8) 

where ( ) ( ) 1,/1/ >−== ρρ xttNm  

This paper is divided into 5 sections. Section 1 is the introduction, section 2 is the review of relevant literature, while section 
3 deals with areas of application. Section 4 deals with specific examples of application, and section 5 is the conclusion. 
 
2.0 Relevant Literature Review 
Kimura [2] studied a diffusion model for a work station in a flexible manufacturing system. He noted that flexible 
manufacturing systems (FMSs) are a class of automated systems being used in many industries to improve productivity and 
that a typical FMS work station has a set of parallel machines with general multi-server queues with service times modeled as 
a general processing time and a limited buffer, so that it can be modeled as a general multi-server queue with finite waiting 
space. He developed a diffusion approximation model for the standard GI/G/s/s+r queue, having a general independent 
arrival process, general service times, s servers, s extra waiting spaces and abandonment rates r, (the +r). The author also 
noted that this model refines some defects in another models of Yao and Buzacott [3]. He approximated the process of the 
number of customers by a time-homogeneous diffusion process in a closed interval on the nonnegative real line.  
Kimura [4] considered base family of state-dependent queues whose queue-length process can be formulated by a 
continuous-time Markov process. He developed a piecewise-constant diffusion model for an enlarged family of queues, each 
of whose members has arrival and service time distributions generalized from those of the model. He stated that this is an 
extension as well as a refinement of the M/M/s-consistent diffusion model for the GI/G/s queue developed by Kimura [5], 
where the base was a birth-and-death process. As a typical base, he focused on birth-and-death processes, and also considered 
a class of continuous-time Markov processes with lower-triangular infinitesimal generators. He noted that there have been 
various diffusion models for stable queues [1, 6]. Also, see Whitt [7] and Kimura [8] for brief reviews of the previous 
diffusion models for single-and multi-server queues, respectively. Kimura [4] considered a base family of state-dependent 
queues arrival and service distributions generalized from those of the associated queue in M.  The Birth-Death (BD) family 
M is a special subset of Markovian queues whose queue-length process is a continuous-time Markov process.   
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The model is applicable to queues with finite waiting spaces [3,9-13]. The model is also a refinement of the M/M/s-consistent 
model in the sense that it satisfies a conservation law for the steady-state distribution. 
To obtain the steady-state distribution,  
he let p(x, t|xo) be the probability density function (pdf) of X(t) starting from X(0)=xo, i.e., p(x, t|xo)dx=P{x< X(t) < x + dx| 
X(0) = xo} and pdf p(x, t | xo) to satisfy the Kolmogorov forward (or Fokker-Planck) equation 

( ) ( ){ } ( ) ( ){ },|,|,
2

1
2

2
oo xtxpxbxtxpxa

xt

p −
∂
∂=

∂
∂

     (2.1) 

so that the steady-state pdf 
( ) ( ),|,lim o

t xtxpxp ∞→=
if it exists, satisfies the ordinary differential equation 

( ) ( ){ } ( ) ( ){ } .0,0
2

1
2

2

Nxxxpxb
dx

d
xpxa

dx

d <<=−     (2.2) 

At the origin x=0 and xN, the pdf p(x) also satisfies the boundary conditions 

( ) ( ){ } ( ) ( ) ,0
2

1
,02
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=−
= NXX
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d
      (2.3) 

Solving (2.2) together with (2.3) and using the Piecewise Constant (PC) assumption, he obtained 

( ) ( ) ,0, NxxxCqxp ≤≤=         (2.4) 

where C is the normalization constant, 
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−= −γ        (2.6) 

To extract an approximation for the steady-state distribution {pk} from the steady-state pdf p(x), he used the pointwise 
discretization defined by 

( ) .1,...,1,
1
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=

Nkj
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where we set µ0 ≡ 0. 
Kimura [4] noted that (2.8) is an approximation for queues in G, i.e. queues with general or general independent arrival 

process. In general, { }Pk in the left-hand side of (2.7) should be replaced by the steady-state probabilities just before 

arrivals. This means that (2.7) is still true for queues with Poisson arrivals.  
Kimura [12] developed a diffusion approximation for finite-capacity multiserver queues with finite waiting space. He focused 
mainly on the steady-state distribution and congestion measures for the number of customers in the system. He observed that 
finite waiting spaces have been useful models of computer, communication, and manufacturing systems experiencing 
congestion due to irregular flows. He assumed that the limited waiting room corresponds to a local storage or buffer for 
waiting customers, considering the local storage at a work station in a flexible manufacturing system (FMS) that typically has 

a small number waiting spaces. He considered the model; GI/G/s/s + r queuing system with: s1 identical servers in parallel, 

r 0, extra waiting spaces, and the FCFS (first-come first-served) discipline.  
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He assumed if: N(t) be the number of customers (either waiting or being served) in the system at time t 0; the generic 

random variable N (No) to indicate the number of customers in the system at an arbitrary time (just before an arrival epoch) in 
equilibrium.  
For k = 0, …, s+r, let pk = P(N=k) and qk = P(No= k).     (2.10) 
He generalized that it is quite difficult to obtain an analytical solution for the distribution {pk} (and also {qk}) except for a 
few special cases such as the M/M/s/s + r queue and the GI/M/s/s + r queue, [13]. Kimura [12] observed from Kimura [8], 
that generalizing the M/M/s-consistent diffusion model for the GI/G/s queue has limitations and refined the model as 
GI/G/s/s + r queue without these defects: which is consistent with the exact results for the M/G/s/s and M/M/s/s + r queues, 
and it satisfies the exact relation between ps+ r and qs+r for the GI/M/s/s + r queue. From his basic assumption, the GI/G/s/s 
+ r queueing system was considered and specified by the following assumptions: let F (G) denote the interarrival-time 

(service-time) cumulative distribution function (CDF) with mean ( )1/1 −− ρX , for 1>ρ  and let x/ci 2σ=  be the 

squared coefficient of variation (SCV, that is, variance divided by the square of the mean) of F(G). Let spx /=ρ  be the 

traffic intensity and assume that the system is in steady state. In addition, let A(t), D(t), and L(t) denote the cumulative 
numbers of arrivals, departures, and lost customers during the time interval (0, t], respectively. Then, the number of 
customers N(t) was represented as 
N(t) = N(0) + A(t) - D(t) - L(t), t > 0      (2.11) 
He maintained that the diffusion approximations for finite-capacity queues is to approximate the discrete-valued process 

{N(t); t 0} by an appropriate time - homogeneous diffusion process {X(t); t 0} on a finite subset of R+ = (0, ), utilizing 

asymptotic properties of the counting processes A(.), D(.), and L(.) in (2.11). Kimura [12] defined an interval Zk of R+ 
corresponding to the event. {N = k}, (k = 0,. . , s + r). In the SBN model, they proposed that Ik(SBN) = [k - 0.5, k + 0.5] for k 
= 0,…, s+r-1 and Zs+r(SBN) = [s + r - 0.5, s + r + 0.5], whereas, in the YB model, the irregular intervals such that Z0(YB) = 
{0}, Z 1(YB)  = [0,[(s+r)/(s+r-1)], Zk(YB) = [(k - l),([s+r]/[s+r-1]), k[(s+r)/(s+r-1)] for k = 2,3,…, s + r – 1 and (s+r)/(s+r-
1)>1, and Zs+r(YB) = {s + r } were used, for k = 2,3,… s+r-1, and (s + r)/(s + r - 1) > 1. Kimura [12] also suggested the use of 
intervals defined by 
{ }
( ) rskxx

k

kk +=
=

− ,...,2,1,

,0,0

,1

                                                                               (2.12) 

Whitt [14], developed a diffusion approximation for the queue-length stochastic process in the G/GI/n/m queuing model, for 
large n. He noted that the rapid growth of telephone call centers and more general customer contact centers has generated 
renewed interest in the performance of multiserver queuing models when the number of servers is large. He further noted that 
the primary focus of the approximation is for the steady-state delay probability and the steady-state probability that all servers 
are busy in the G/GI/n/∞ model. Whit [14] focused on the steady-state distribution of the diffusion process to obtain 
approximations for steady-state performance measures of the queuing model, especially upon the steady-state delay 
probability. The approximations are based on heavy-traffic limits in which n tends to infinity as the traffic intensity increases. 
Thus, the approximations are intended for large n and observed that Halfin and Whitt [15] showed that scale version of the 

queue-length for GI/M/n/  converge to a diffusion process when the traffic intensity ρn approaches 1 with (1- ρn)√
 →β for 

0< β< . Also, Whitt [16], extended that limit to a special class of G/GI/n/mn models in which the number of waiting places 

depends on n and the service-time distribution is a mixture of an exponential distribution with probability p and a unit point 
mass at 0 with probability 1 − p. He maintained that finite waiting rooms are treated by incorporating the additional limit 
mn/√
 →k for 0< k≤ ∞. From the heuristic diffusion approximation for the G/GI/n/∞, he obtained the approximation for the 
delay probability as  

( ) ( )zznGIGnGIG /,////// βαβαα ≈≡ ∞∞      (2.13) 

where α is the M/M/n/∞ asymptotic-delay-probability function defined by  

( ) ( ) ( )[ ] 1/1 −Φ+=≡ βϕβββαα        (2.14) 

where β  is the limit in  

( )
( ) ( ) ( ),11,

0,1
22 GcGczz

andforn

aa

n

η
ββρ

−+≅≅

∞<<→−
     (2.15) 

where G is the service-time DF, assumed to have finite mean GGc −≡ 1,1 µ  is the associated complementary DF, 
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( ) ( )
( )
( )dxxG

dxxG
dxxGG

c

c

c

∫

∫
∫ ∞

∞
∞

≡≡
0

2

0
2

0
µη      (2.16) 

and, is in (2.17), 

( ) ( ) ( )
22

1
1,

222
2 saa
a

ccPcP
Pczz

+=−+=≅    (2.17) 

2
ac  is the normalization constant in a FCLT for the arrival process (assumed to hold), which requires that 2

ac  be finite.  

To seek an approximation for the queue-length process and its steady-state distribution in the general G/GI/n/m model, the 
author used the approximation (2.15) for z to get: 

2

22
sa cc

P

z
v

+=≅        (2.18) 

for v, and then obtained the associated approximation for ρ as: 

,
2

22
sa cc

z

v

z
P

+
==         (2.19) 

where z is given by (2.15) z
aC  is the scaling constant in the FCLT, as in  

( ) ( )[ ] 0,2 ≥−≡ tncnttCtC an      (2.20) 

(for some nonnegative scaling constant z
ac )  

and  

( )1,JDinBCn ⇒        (2.21) 

(where B is standard (zero drift, unit diffusion coefficient, Brownian motion), and 2
sC  is the square of the co-variance (scv) 

of the service-time distribution. 
Whit [16] noted that:  

(1) the analysis of superposition arrival processes leads to approximations of the form  

( )
2

122 wwCC
V sa −++=       (2.22) 

where the weight w is a strictly decreasing function of ( )ρβ −= 1n  with ( ) 10 =w  and ( ) 0=∞w   

(2) a specific function based on simulation experiments by Albin [29, 30] is  

( ) [ ]
( ),1

41
12

ρβ
ββ

−=

+=≡ −

nfor

ww
        (2.23) 

(3) a direct application of (2.23) is effective. 
 
Whitt [16] established heavy-traffic stochastic process limits for a class of G/GI/n/m queues in which the number of servers 
is allowed to increase along with the traffic intensity, and noted that Puhalaki and Reiman [17], already established many-
server heavy-traffic limits for the GI/PH/n/∞ model with phase-type service-time distributions, but the limit process there is a 
complicated multidimensional diffusion process, whose steady-state distribution remains to be determined. Whitt [16] 

formulated the heavy-traffic stochastic-process limits for the mnHG /// *
2  model and also stated and proved the following 

theorem:  

Theorem: Given the family of mnHG /// *
2  models, where the rate-1 arrival process obeys the Functional Central Limit 

Theorem (FCLT) in  

( )1
2 JD,inBcCCn a≡⇒           (2.24) 

and suppose that the arrival rate nλ and the number of waiting spaces Mn change with n so that; 
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( )
and

forn n ∞<<∞−→− ββρ1

       

(2.25)

 ∞≤<→ kforknmn 0/         (2.26) 

hold with .0 ∞≤<∞<<∞− kandβ  In addition, suppose that the initial conditions are as specified in (2.27) – 
(2.29) as follows 

( ) nn mnQ +≤≤ 00

         

(2.27)

( ) ( ) ∞→⇒ nasQQn 00         (2.28)

 

( ) ( )[ ] nnQQ nn /00 −≡         (2.29) 

Then,  

( ) ( ) ( ) ∞→⇒ nasJDinQQQQ aa
nn

2
1,,,       (2.30) 

where 

( ) ( )( ) 0, ≥≡ ttQgtQ ρ         (2.31) 

( )


≡ <

≤≤
0,

0,

xx

Pkxxxg
ρ

         (2.32) 

( ) 1−≡ e
a oQQ µ           (2.33) 

and Qp is a diffusion process starting at ( ) ( )( )00 1 QgQ P −=  with a reflecting upper barrier at pk if k<∞ and an 

inaccessible upper boundary at infinity if k=∞.  
The diffusion process Qp has infinitesimal mean (drift function). 

( ){ PkxP
xxPQ pm <≤−

<+−= 0,
.0,

µβ
βµ     (2.34) 

and infinitesimal variance (diffusion function) 

( ) (( ) ( ) PkxccPPcNPx saaQ P <<∞−+=−+= ,1)/2 222222 µσ    (2.35) 

Note: Cn(t) denotes the arrival process, B is the standard (zero drift, unit diffusion coefficient) Brownian motion, and J1 is the 
customary Skorohod topology. 
Choi et al. [18] presented a diffusion approximation of the first overflow time in the GI/G/m system with finite capacity and 
derived the Laplace-Stieltjes transform of the first passage time of the diffusion process which approximates the system size. 
The authors noted that numerical results showed that the diffusion approximation is a good approximation for heavy traffic 
systems. 
Chen and Ye [19], studied methods in diffusion approximation for multiserver systems on sandwich, uniform attraction and 
state-space collapse models. They observed that so many authors have worked on this area since the pioneer work of Kigman 
[20], and Iglehart and Whitt [21, 22]. Chen and Ye [19] stated that fluid approximation resembles the strong law of large 
numbers (SLLNs) and the central limit theorem (CLT) to the random sequences. Chen and Ye [19] gave examples of 
summation of X(n); of n independent and identically distributed random variables. Chen and Ye [19] stated that the strong 
law of large numbers suggests that X(n)/n converges almost surely to a constant m which is the common mean of the random 
variables, and central limit theorem suggests that √
[��
� − �]  converge weakly (or in distribution) to a normal 
distribution. Chen and Ye [19] observed that the limiting result is fundamental to many applications; matching SLLNs as 
fundamental to the point of estimate and CLT to the confidence interval in statistics. Chen and Ye [19] stated that fluid 
approximation is about the convergence of the fluid scale process, ��n(n):∶= ��
��/
, as n→ ∞; when if exists, its limit, 
denoted as �����, is referred to as the fluid limit and affirmed that fluid limit is a deterministic process which might in special 
cases is a linear process or a piecewise linear process. Chen and Ye [19] also observed that the standard procedure in 
establishing the diffusion approximation for a single scale server queuing system is through the use of the reflection mapping. 
This reflection mapping is used to characterize the dynamics of queueing length or the work load process and the 
commutative idle time process. The authors assumed �� to denote space k-dimension on RCLL (Right Continuous with Left 

Limit) function on [0, ] endowed with uniform norm. 

Given that �� = �� ∈ ��: ��0� ≥ 0�, Chen and Ye [19] affirmed that a sequence of the process � 	in �� that converges to a 

process x under the uniform norm is the same as �  that converges to x on any compact set, and denoted it by x X, uniform 

on any compact set.  
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Chen and Ye [19] also stated that the sequence of the stochastic process �  converges to x weakly as n→ ∞, and denoted this 
by � =X as n→ ∞. 
 
3.0 Areas of Application 
The diffusion model is applicable to: 

• flexible manufacturing systems (FMS), which are used in many industries to improve productivity 
• a communication system with a trunk reservation in scheme 
• machine interference problem 

   
4.0 Some specific examples of the application of the diffusion model  
Example 1: A finite GI/G/s queue 
As an example of BD-based diffusion model, Kimura [2] applied it to the GI/G/s queue with finite waiting space, which is an 
extension of the M/M/s-consistent diffusion model for the GI/G/s queue with infinite capacity in Kimura [8]. He considered 
the standard GI/G/s/N system with s (≥ 1) identical servers in parallel, N-s≡r(≥ 0) extra waiting spaces, and FCFS (first-come 
first-served) discipline. The system can be specified by the following notations: Let F(G) denote the interarrival-time 

(service-time)  distribution function (DF) with mean ( ),11 −− µλ and let ( )22
sa cc be the squared coefficient of variation (scv, 

i.e., variance divided by the square of mean) of F (G). Let µλρ s/=  be the traffic intensity and assume that the system is 

in steady-state, so that .1 ∞→< Nifρ  

Since the arrival process A(⋅) in the GI/G/s queue is a renewal process that is independent of the event {L = k} (i.e., Ak(⋅) = 

A(⋅) and hence 22
ak c=α  for dSk ∈ ), we need to focus only on the conditional departure process Dk(⋅) for obtaining the 

expressions of the infinitesimal parameters {bk} and {ak}. Following Kimura [8], for the case ∞→N , we briefly 
summarize the key ideas to obtain these parameters. He suggested approximating the conditional departure process Dk(⋅) by 
the superposition or sum of min (k, s) independent and continuously busy service processes, i.e., 

( ) ( )
( )

∑
=

−=≥≈
sk

j
jk NkttStD

,min

1

,1,...,1,0,      (4.1) 

where Sj(.) (j=1,…, s) is the counting process whose renewal points are generated by the service-time DF G. Note that this 
approximation assumes the conditional departure process Dk(⋅) to be (approximately) independent of the arrival process A(.), 

and that the superposition process in (4.1) is not a renewal process in general. Since the conditional departure rate kµ  is the 

intensity of the superposition process, we have ( ) ( ),1,min ≥= kskk µµ and hence, from the expressions  

NkNb kkk ...,,1, =−= λ
        

(4.2) 

and  

( ) .1...,,1,,min −=−= Nkskbk µλ       (4.3) 

As shown in the central limit theorem, 
( ) ( ) ( ) ( )1,01,0

22
N

t

tNtD
andN

t

ttA

kk

kk

kk

kk ⇒
−

⇒
−

δµαλ
λ

     (4.4) 

and 2
kδ  denote the scv of the approximately renewal DF of the process Dk(.) in (4.4). Then, by virtue of the renewal theory 

and the basic relation, the infinitesimal variance {ak} can be written as  

( ) ( ) ( ) ( ) 0,0 ≥−+= ttDtALtL

       

 (4.5) 

( ) ( ) 1,...,1,,min ,min
2 −=+= Nkskca skak µδλ        (4.6) 

Kimura [2] then noted there are two basic methods for obtaining ,2
kδ  i.e., the asymptotic method (AM) and the stationary-

interval method (SIM) [23].  
While Kimura [8] used a hybrid approximation generated by combining these two methods, Kimura [4] used a simpler 
approximation based on the AM, which is 

  ( )( ){ ,1,...,1,1

,,11,min1

2
2

−=
=−+

≈ sk

skck
sρδ       (4.7) 
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due to the empirical facts that the AM approximations are accurate in heavy traffic and that a delay system behaves like a loss 
system in light traffic. 
Example 2:  
Secondary servers with a buffer: 
Kimura [4] also noted that a second example can be found in the work of Browne and Whitt [24] which may be found in a 
communication system with a trunk reservation scheme. Consider a service facility with one primary server plus a buffer of 

capacity ( )01 ≥r . There are ( )1≥s  secondary servers that accept overflows from the primary buffer, which have an 

additional buffer of capacity ( )02 ≥r  to hold arrivals when all servers are busy. Assume that a customer in service in the 

secondary system immediately leaves and enters the primary buffer, whenever space opens up in the primary buffer. Kimura 
[4] noted that in the original example of Browne and Whitt [24], inter-arrival and service times are assumed to be 
exponentially distributed. In his paper, however, the author considered the model in more general settings, assuming that they 

are iid random variables with general distributions. Let F denote the interarrival-time DF with mean 1−λ   and the scv ,2
ac and 

let Gi (i=1, 2) denote the service-time cdf at the ith server(s) with mean 1−
iη and the scv 2

ic . 

From these assumptions, Kimura obtained the parameters of the BD-based diffusion model, i.e., 

( ){ } ,,1min,0max,,1 21121 ηηµλλ srksrrN kk −−+==+++=  and hence, 

( )








++++=−−
++=−−−−

=−
=

....,,1

,...,1,1

,,...,1,

21121

11211

11

srrsrks

srrkrk

rk

bk

ηηλ
ηηλ

ηλ
  (4.8) 

to obtain {ak}, he decomposed the conditional departure process Dk(.) into two streams from the primary single server and the 
secondary multiple servers. Applying the same renewal-theoretic argument as in the previous example to these streams, he 
obtained  

( )








++++=+−

++=−−+−

=−

=

....,,1

,...,1,1

,,...,1,

211
2
22

2
11

2

1121
2
11

2

1
2
11

2

srrsrkdsdc

srrkrkdc

rkdc

a

a

a

a

k

ηηλ
ηηλ

ηλ
  (4.9) 

where 2
id  is given by  

( )( ) .2,1,11,min1 22 =−+= icpd ii        (4.10) 

Example 3: 
A GI/G/s machine interference problem: 
As a third example, Kimura [4], showed how the BD-based diffusion model can be applied to the so-called machine 
interference problem. In the queueing context, this system is classified into finite-source queues and is denoted by GI/G/s/./K. 
In particular, if the running-time distribution is exponential, the arrival process is called quasi-random input [see Cooper [25], 
section 3.5]. Kimura [4] stated that Benson and Cox [26], obtained the steady-state distribution for the M/M/s/K case by 
using the BD formulation; Bunday and Scraton [27], analysed the GI/M/s/K case to find the insensitivity property that the 
steady-state distribution of the number of failed machines is the same in the M/M/s/K and GI/M/s/K cases. Kimura [4] further 
noted that Halachmi and Franta [11], proposed a basic diffusion model for the GI/G/s/K queue [10]. Sivazlian and Wang [28] 
proposed a similar diffusion model for a generalized machine interference problem with warm-standby spare machines. All 
of these diffusion models have the inconsistency defect. 
To specify the BD-based diffusion model for the GI/G/s/./K queue precisely, he claimed that he needs some notations: He let 

F(G) denote the running-time (repair-time) DF with mean ( )11 −− µλ  and the scv ( ).22
sa cc  In addition, Kimura [4] let 

( )( )KjtB j ,...,1=  denote the counting process whose renewal points are generated by the running-time DF F, which 

counts the number of breakdowns of the jth machine in the time interval (0, t], assuming that the repair times are virtually 
ignored. Then, the author approximated the conditional arrival process Ak(.) by the sum of K-k independent running 
processes, i.e.,  

( ) ( ) .1,...,0,0,
1

−=≥≈ ∑
−

=

KkttBtA
kK

j
jk     (4.11) 
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From (4.11), Kimura [4] showed that ( ) ( ).1,...0 −=−= KkkKk λλ Hence, by using the same renewal-theoretic 

argument as in the first example, he gave the infinitesimal parameters as 

( ) ( )
( ) ( ) ( )

2
,min

2 ,min

,,min

skkk

k

skkKa

andskkKb

µδλα
µλ

+−=

−−=
        (4.12) 

for k=1,…,K, where 2
kα denotes the scv of the approximately renewal DF of Ak(.) in (4.11) and ( )skk ,...,12 =δ  is given by  

  ( )( ){ 1,...,1,1

,11,min1

2
2

−=
=−+

≈ sk

skck
sρδ      (4.13) 

For the scv 2
kα  in {ak}, the AM approximation ( )1,...,122 −=≈ Kkcakα  has been used in all of the previous diffusion 

models. However, the author proposed in his paper a much simpler approximation, which is given by  

.1,...,1,12 −=≈ Kkkα        (4.14) 

This approximation is due to the insensitive property for the exponential repair case, and it is partially supported by 

simulation results in [9] which show that the steady-state distribution is nearly independent of 2
ac  even if the repair-time 

distribution is non-exponential. Clearly, the BD-based diffusion model with this approximation is completely insensitive to 
the distribution form of F. 
Finally, Kimura [4] noted that the insensitivity in GI/M/s/./K queue enables us to develop a modified diffusion approximation 

which depends on the DF F only through its scv {2
kα } and stated that between the two basic approximations for { 2

kα }, the 

SIM approximation is more appropriate than the AM one, since the SIM approximation satisfies the well-known property that 
a super-position arrival process converges to a Poisson process as the number of component processes tend to infinity, i.e., 

cfkforkK ;1lim 2 ∞<=∞→ α , [8]. On the other hand, the AM approximation 22
ak c≈α does not satisfy this property 

except for the exponential case. From (4.11), the SIM approximation for { 2
kα } can be written as  

( ) ( ) ( ){ } ,1,...,1,112
0

2 −=−−−=
−∞

∫ KkdttFkKSIM
kK

ekα    (4.15) 

where Fe is the stationary-excess DF associated with the interarrival-time DF F. He used 0kα defined by 

( ) ( ) ( ) ,1,...,1,,min2
k

0 −=+−= KkskSIMkKk µλαα     (4.16) 

instead of 2
kα  in the expression 
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and hence, Kimura [4] obtained 
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Kimura [4] noted that {Pk} in (4.18) is another approximation for the steady-state distribution that is consistent with the exact 
result for the GI/M/s/./K case. 
 
5.0 Conclusion  
We have shown that the diffusion approximation is an improvement to the fluid approximation. It is a second-order 
approximation. It is a good approximation for heavy-traffic system.  
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We also showed that it is applicable to a number of systems, even though it is an approximation method. 
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