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Abstract

This paper compares the error estimation of power series solution with
recursive Tau method for solving ordinary differential equations. From the
computational viewpoint, the power series using zeros of
Chebyshevpolunomial is effective, accurate and easy to use.
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1.0 Introduction
This paper is concerned with the error estimated of ordinary differential equation of the form:
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together with the associated conditions:
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by seeking  an approximate solution of the form
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of  xy which is the exact solution of the corresponding perturbed system
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where L is the linear differential operator, and     aNkmrNPf rrkrrk ,10,10,,, ,,  and b are real constants,

 ry denotes the derivatives of order  xyofr , and the perturbation term  xHn in equation (3) is defined by:
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and  n
rC is the coefficient of rx in the n – th degree chebyshev polynomial  xTn : that is,
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The s' are free parameters to be determined and s, the number of over determination of (1), is defined in [1-10]:

 mrrNs r  00max (7)

2.0 Review of Recursive formulation of the Tau approximant
In this section, we review the recursive approximant [2, 4, 11, 12, 13] and canonical polynomial [14], by adding perturbation
terms to the right hand sides of (1). We have in [4]:
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Assume      110,1  srPxQ rr , then
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Where     rrr PxQxq  and for the undetermined canonical polynomials (if any) assume 1rP , when equating the

coefficient of  xQr to zero, otherwise 0rP for  1,,1,0  sr  (that is equation (9) is the coefficient of

undetermined canonical polynomials),
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3.0 Error estimate for the recursive form (RF)
The canonical polynomials were generated and generalized [14, 19], and this was used in error estimation of the Tau method.

Adeniyi [16, 18] reported a polynomial estimate     xExe nnn 11   of degree  1n as:
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where  xvm is to ensure that  xEn 1 satisfies some or all the homogenous conditions of  xen .

He also reported that:

      xHxHxEL nnn   11
ˆ (13)

where
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After assuming that a transformation has been made such that 1,0  ba , equation (12) becomes:
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as an approximate to the error

     xyxyxe nn  (16)

in  xyn obtained from the Tau approximation process [4, 5]. The parameter n is to be determined along with sr '~
parameters [19] and the exact error (maximum error) is defined as:

    xyxybxa n max (17)

4.0 Error estimate for the power series form (PSF)
The error function (16), which satisfies the perturbed error problem
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Satisfies the perturbed error problem [17, 18, 19]
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where the extra smrr  ,,2,1,  parameters and n are to be determined, using zeroes of chebyshev polynomial

together with the given conditions. A forward elimination process is recommended for the solution of the resulting linear

system. The value of n is then inserted into (15) and subsequently, we get the estimate:
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5.0 Numerical Examples
In this section, we applied the presented method to some selected examples. The main objective here is to solve five
examples by power series using zeros of chebyshev polynomial and compare the results with method discussed in section 2.
All the approximant solution are subject to degree 5.
Example 4.1

        10,00,10,0  xyyxyxy

With analytical solution    xxy cos
Example 4.2

          10,10,012  xyxyxyxxLy

with analytical solution     2

1

1


 xxy
Example 4.3

        10,02  yxyxxyxLy

with analytical solution   





 3

3

1
exp xxy

Example 4.4
              ]19[10,00,10,20,  xyyyxyxyxyxy

with analytical solution      xxxy exp2 
Example 4.5

               1610,10000,1800136003601 2  xyyyyxxyxyxy iiiv
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with analytical solution           xxxxxxy exp2expexp21exp
2

1 2

Table 4.1: Exact Error
Method Example 4.1

( )
Example 4.2
( )

Example 4.3
( )

Example 4.4
( )

Example 4.5
( )

RF 1.16 x 10-5 3.08 x 10-5 2.07 x 10-4 1.70 x 10-5 2.77 x 10-3

PSF 1.16 x 10-5 1.16 x 10-5 2.07 x 10-4 1.70 x 10-5 2.77 x 10-3

Table 4.2: Error Estimate (Maximum Error)
Method Example 4.1 Example 4.2 Example 4.3 Example 4.4 Example 4.5
RF 1.34 x 10-5 2.90 x 10-5 4.94 x 10-4 4.72 x 10-4 7.68 x 10-6

PSF 1.20 x 10-5 2.90 x 10-5 4.44 x 10-4 3.93 x 10-4 7.68 10-6

6.0 Conclusion
In this work, we have studied the power series approach using zeros of chebyshev polynomial to compute the error estimate
of ODEs. The error estimate obtained with the presented method are in good agreement with the recursive form, as it is
favourably compared and give accurate results.
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