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Abstract

In an attempt to conserve the world’s scarce energy and material
resources, a balance between the cost of heating a material and the optimum
thickness of the material becomes vey essential. One of such materials is the
local cast aluminium pot commonly used as cooking ware in Nigeria. This
paper therefore sets up a model that relates the thickness of a pot with the
cost of heating it. The model is then computer simulated to determine the
variation of heating cost with pot’s thickness. The result shows an optimum
thickness of 0.064 m for a pot of volume 2.405×10-5 m3. This is the thickness
at which the cost of heating the material is cheapest, without an adverse
effect on the thermal conductivity of the material. Above or below this
thickness, the cost of heating is high making such thicknesses uneconomical.
So, 0.064 m is the recommended optimum thickness for a pot of 2.405×10-5

m3 capacity for the makers of cook ware. The optimum thickness for a
different volume of pot can also be obtained from the model when computer
simulated.
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1.0 Introduction
The world population has almost exhausted much of the world’s natural and un-natural resources that the world can no more
tolerate wastage of materials either from natural or artificial sources. The world has therefore been driven towards the wisest
use of material. The wisest use could be referred to as the planning and the executing of the modern day project in such a way
as to maximize the use of material with minimum cost. This in turn leads to the economy of resources. The economy of
resources invites the optimum production of material. The optimum production could be based on achieving maximum profit
per unit of time or minimum cost per unit of production [1]. However, the cost of maintaining a material should not be left
out in the attempt to make wise use of the scarce natural and artificial resources. This cost of maintenance is targeted mostly
towards the cost of energy. In the developing countries where wastage of energy cannot be afforded but wisely utilized, the
balance between the cost of energy and the cost of production becomes very essential. The cost of energy of heating a
material relates to the optimum thickness of the material. It should be understood that despite the fact that wisest use of
material is important, the thermal property of the material should not also be affected. Otherwise, the so-called wisest use of
resources might turn into a mirage. Thus, the targeted property of material is the thickness of the material. So, an attempt
could be made to balance the relationship between the cost of heating and the thickness of material. Therefore, the optimum
thickness of material is that particular thickness at which the cost of heating the material is minimal, without affecting the
heat retention ability or the mechanical property of the material. This leads to the optimization of both energy and material.
This leads us to determining the optimum thickness of insulation of cast aluminium pot for heating purposes.
Of the vast varieties of refractory available today, clay and ceramic are the most popular. Cast aluminium is also a very good
refractory with the ability to withstand temperature of about 6000C without melting [2]. This class of material is inorganic
and metallic in nature and will maintain most of its chemical and physical properties even at high temperature of about 500oC
[2]. Due to the protective coating on the Al surface, it has a good resistance to chemical attack and will be able to absorb
shock and vibrations caused by the thermal stresses because it has been cast. In contact with air, aluminium rapidly becomes
covered with a tough, transparent layer of aluminium oxide that resists further corrosive action.
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For this reason, materials made of aluminium do not tarnish or rust. The application of aluminium is not however stagnant at
just boiling and heating purpose, it also found its application in transport, food preparation, energy generation, packaging,
architecture, and electrical transmission applications. Depending upon the application, aluminium can be used to replace
other materials like copper, steel, zinc, tin plate, stainless steel, titanium, wood, paper, concrete and composites. Aluminium
is also used in buildings covers a wide range of applications. The applications include roofing, foil insulation, windows,
cladding, doors, shop fronts, architectural hardware and guttering. Aluminium is also commonly used as the in the form of
tread plate and industrial flooring [2].
This cast Aluminium cooking pot commonly made in Saki, an ancient town in south west,Nigeria, is a renowned pot in the
country. This pot is known for its ability to cook food faster (high thermal conductivity) and heat retention for a relatively
long time even after the heat source has been put-off. This property enables the pot to maintain the taste of the food in the
pot. In order that the cost of heating be reduced, the thickness of the material should ordinarily be reduced. However, this
cannot be infinitely done because the mechanical properties of material will be affected. The pot of this type is liable to have
a very poor insulation which is a property of a good cookware.
Also, increase in the thickness of the pot layer leads to an increase in the cost of heating which might lead to unnecessary
increment in the use of energy. A minimum thickness must therefore exist which ensures the required reduction of heat loss
to the surroundings and ensures heating and insulating cost are brought to the minimum.
This work is therefore aimed at determining the optimum thickness of the Aluminium-cast pot. Since the local fine clay pot
are molded in a hemispherical configuration [3], and the shape of the cast ‘Saki’ pot is like that of the clay pot, the heat
transfer phenomena associated with casted-Aluminium pot is therefore analyzed using the thick spherical shell design
approach [4].

2.0 Materials and Method
Assuming conduction is the predominant mode of heat transfer in the system, Fourier’s law is therefore applied as a means to
finding solution to the problem.
2.1 Fourier’s Law
It states that the rate of heat flow, Q, through a homogeneous solid is directly proportional to the area, A, of the section at
right angle to the direction of heat flow, and to the temperature difference along the path of heat flow, dt/dx [5]. It is

mathematically represented as
dx

dt
KAQ  ……………………… (1)

Where
Q = quantity of heat transferred per second, (W)
K = thermal conductivity of the body, (W/m/K)
A = surface area of the material, (m2)
dt = temperature on any two faces, (K)
dx = thickness of the body through which heat flows, (m)
The thermal conductivity and the area of the pot are of significant meaning in this work and must be dealt with thoroughly.
2.2 Surface Area of the Pot
In this paper, an approximate area of the Al-casted pot is found in terms of a single variable, the radius, for easier
simplification and manipulation of data.
The picture of the Al-casted pot with its diagram is shown below

Fig. 1: The picture of the local
Al-casted pot.
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Fig. 2: The skeleton of the
local Al-casted pot

Fig.3: The skeleton of the Al-
casted pot with top being
approximated to a cylinder



317

Determination of the Optimum… Olatona and Abduljelili J of NAMP

Fig. 4: The skeleton of the Al-casted pot
with top approximated to a cylinder
2.3 Calculation of Total Surface Area of the Pot
Area of the hollow mini cylinder at the top of approximated pot, Ac

2
1 5

2
2 rrhAc  

…………. (2)

Where rh
5

1
1 

The resulting shape after the cylinder has been removed is the hemispherical frustrum which by extrapolation forms a full
sphere as shown Fig. 5

Fig. 5: The sphere formed by extrapolation of the spherical
frustrum after the removal of the cylindrical top.
The radius of the sphere, R is related to the radius r of the open top by equation 3:

rR
2

3


…………… (3)
Thus the surface area of the full sphere, As, from Fig. 5 is

29 rA s  …………… (4)

Area of the spherical cap, Asc is given in [6] as

22
2

2

4

5
)( rhrAsc   …………… (5)

Where rh
2

1
2 

………….. (6)
Area of the spherical frustrum, Asf is given by

2

4

31
rAAA scssf  …………. (7)

The total surface area of the pot, Ap, is therefore ,
215.8 rAAA sfcp  ……….. (8)

2.4 Calculation of Volume of the Pot
Volume of the mini-cylinder at the top,

32 2.0 rrVc   ………… (9)

Where rh
5

1
1 
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Volume of the sphere,

33 5.4
3

4
rRVs   …………. (10)

Volume of the spherical cap,

  32
2

2
2 27.03

6

1
rhrhVsc   ………….. (11)

Where rh
2

1
2 

The volume of the spherical frustrum,
Vsf = Vs- Vsc = 4.23πr3 …………. (12)
Therefore the volume of the pot,
Vp= Vc + Vsf = 4.43πr3 ………… (13)
3.0 Formulation of the Mathematical Model
3.1 Calculation of the thickness of the pot
The cross section of a spherical solid pot is shown Fig. 6. This is the related to the cross section of the pot.
t1 = temperature of the inside wall of the pot, (K)
t2 = outside temperature of the pot, (K)
r1 = inside radius of the hemispherical pot, (m)
r2 = outside radius of the pot, (m)
dt = temperature across the pot thickness, (K)
dr = small element of thickness, (m)

Fig. 6: The cross section of a solid spherical pot.
Substituting the area of the pot, Ap from equation 8, for A in equation 1  gives the quantity of heat transferred  through the
pot,

dr

dt
r-8.15K 2

dr

dt
AKQ p

……….. (14)
By separation of variables, equation 14 becomes,

dt
Q

K

r

dr







 


15.8
2

………. (15)

Integrating r from r1 to r2 and t from t1 to t2 and making Q the subject gives

.15.8
12

21
21 












rr

tt
rrKQ  ………. (16)

Taking the thickness of the pot, 12 rr  = X

Then 15.8 21
21 







 


X

tt
rrKQ  ……….. (17)

Equation 17 denotes the heat transferred across the pot’s thickness by conduction.
Another form of heat transferred is applied in cooking the food in the pot. Since liquid is used for most cooking, the heat
transfer from the inner layer of the pot to the food is by convection. The quantity of the heat is generally given by

TUAQ  …………. (18)
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Apply this equation to this problem gives,

   1
2

11 15.8 ttUrttUQ itemitem   …………. (19)

Where U is the overall coefficient of heat transfer.
Equating (17) with (19) and solving for X, yields

.
1

21

1

2













tt

tt

Ur

rK
X

item
……….. (20)

The above result is the thickness of the pot. However, the cost of heating through this thickness has to be obtained to get the
optimum thickness. Since the thickness does not depend directly on area, it implies that the model will be useful in
determination of thickness of various size of approximated cylindrical top spherical frustrum Aluminium casted pot.
3.2 Calculation of Total Cost of Heating
The first is the cost of transferring heat from firewood burning in a local stove to the item in the pot. Let this cost of heating
be Cfp

Cfp = QCw × 3600T ……….. (21)
T = time of operation of the pot per year, (s), in seconds.
Cw = the cost of dry wood; equivalent to 1 joule of heat i.e. cost of 0.0556kg of dry wood [7]

Cfp = 3600 QCwT ………… (22)
Another cost is associated with the cost of heating through the pot’s thickness. This is previewed as the cost of heating the
pot itself. This decreases as the years of operation of the pot increases. Let this be denoted by Cpot

1S

XC
C Al

pot 
[1]

…………. (23)

CAl = cost per unit volume of Aluminium, (Nm-3)
S1 = life span of the pot (years)

The total cost of heating, CHT =
1S

XCAl + 3600 QCwT ……….. (24)

By substituting (19) and (20) into (24)
 

    TCttUr
ttHrS

ttrKC
C witem

item

Al
HT 




 1

2
1

111

212 29340  …….. (25)

The above equation gives the total cost of heating in a particular period of year, T.
From equation 20







 

X

tt
rrK 21

2115.10  = )(15.10 1
2

1 ttUr item  …… (26)

The above equation is then reduced to
   11

21
2 ttUr

X

tt
rK item 



From where
UXrrK

UXtrtrK
t item

12

122
1 


 ……… (27)

The above result is the inner surface temperature of the pot.
3.3 Computer Simulation
A non-differential numerical method is employed in determining the thickness of insulation of the casted Aluminium pot.
With the predetermined volume of the pot by the manufacturer, the value of ‘r1’ can be obtained from

3
143.4 rV p 

………. (28)
The value of the outside radius, ‘r2’ is then guessed which results in guessed value for the thickness ‘X’ of the pot from the
equation

12 rr  = X

Since U, Kp,  titem are the properties of heating system and the casted Aluminium pot, the value of the inner temperature of the
pot can be found from the equation;
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UXrrK

UXtrtrK
t item

12

122
1 




……….. (29)

Hence, the total cost of heating can be deduced since CAl, S1, and Cw are also properties of cast Aluminium and heating

system by the equation
 

    TCttUr
ttUrS

ttrKC
C witem

item

Al
HT 1

2
1

111

212 29340 



 

……….. (30)

Therefore, writing the cost of heating as a function of just the thickness by substituting the values of t1, Q and r2 into equation

(24), gives

   
  

















11

12122
1

1

29340
rkXUrk

rtkrtkXtktk
TUCr

S

XC
C

pp

pitemppitemp
w

Al
HT  ......... (31)

The plot of the total cost of heating against the thickness of the pot from which the optimum thickness can be determined is
shown in Fig.7. Equation (31) is easier for calculation since it contains just the two important variables of interest which are
CHT and X.
A computer simulation of the above procedure was carried out. The program, written in C++ language and run on the Dev
C++ version 4.9.9.2  [8] compiler is presented with this paper. It carries out 32 iterations and the graph of the thickness of the
pot was plotted against the cost of heating the pot from which the optimum thickness of the pot is obtained.
The data used are: titem= 1000C, t2=27.830C, r1= 0.012m, r2= 0.02m, CAl=0.00000002 N/m3, Outside radius
increment=0.004m, S1= 5yrs, T=2180hrs/yr, Cw= N20.00 [1], U=1000.0,
kp =238.24

4.0 Results and Discussion
The above results were fed into the program and run using Dev cpp version 4.9.9.2 and the results of the computation is
shown in Table 1.
Initially, the cost of heating decreases as the thickness of the pot increases. This is because heat is transferred from the heat
source to the through the pot’s thickness to the item in the pot. Since the pot is also a conductor, it losses some part of heat
transferred to its surrounding. This heat loss depends also on the thickness of the pot. So, at a small thickness, the rate of
transfer of heat is almost equal to the rate heat loss to the surrounding making the effective heat gained by the pot very small
and therefore requires higher energy consumption at that particular thickness which makes the cost of heating high.
However, as the thickness of the pot increases, the cost of heating decreases till the minimum thickness is obtained before the
cost of heating starts increasing with the thickness of the pot.
The thickness of the pot later increases as the cost of heating the pot increases. Provided the same amount of energy is used
for the heating. As the thickness increases, the rate of flow of heat through the pot’s thickness decreases with the rate of heat
loss to the surrounding. So, higher energy is required to heat the pot through that particular thickness. Hence, the cost of
heating is high

Fig. 7: Plot of Cost of Heating against Pot’s thickness
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Hence, the thickness at which the cost of heating is most minimum is taken as the optimum thickness and this corresponds to
the turning point of the graph.
1. The Computer Program
#include<iostream>
#include<cmath>
#include<fstream>
using namespace std;
class proc{

private:
double r1,r2,dr,c_w,c_al,k_p,t_item,c1,c2,c3,c4,t2,T,s1,U,x_arr[33],t1_arr[33],c_ht_arr[33];
const int cnst;

public:
proc():cnst(29340){

cout<<"Please enter some varibles before program execution.\n"
<<"\n\t Enter Kp:______\b\b\b\b";
cin>> k_p;//we got value for k_p

cout<<"\n\t Enter U:______\b\b\b\b";
cin>> U;//we got value for U

cout<<"\n\t Enter t_item:______\b\b\b\b";
cin>> t_item;//we got value for t_item

cout<<"\n\t Enter t2:______\b\b\b\b";
cin>> t2;//we got value for t2

cout<<"\n\t Enter Cal:______\b\b\b\b";
cin>> c_al;//we got value for c_al

cout<<"\n\t Enter s1:______\b\b\b\b";
cin>> s1;//we got value for s1

cout<<"\n\t Enter Cw:______\b\b\b\b";
cin>> c_w;//we got value for c_w

cout<<"\n\t Enter T:______\b\b\b\b";
cin>> T;//we got value for T

cout<<"\n\t Enter dr:______\b\b\b\b";
cin>> dr;

cout<<"\n\t Enter r2:______\b\b\b\b";
cin>> r2;

cout<<"\n\t Enter r1:______\b\b\b\b";
cin>> r1;

cin.get();
}

int start_proc(){
//starting the iteration

for(int i=0;i<=32;i++){
r2+=dr;
x_arr[i]=r2-r1;//we got x here
c1=(c_al*x_arr[i])/s1;
c2=cnst*M_PI*r1*r1*U*c_w*T;
c3=((k_p*t_item)-(k_p*t2))+((k_p*t_item*r1)-(k_p*t2*r1));
c4=((k_p+r1*U)*x_arr[i])+(k_p*r1);
c_ht_arr[i]=c1+(c2*(c3/c4));//we got c_ht here

}
}

int output(char filename[]){ ofstream pfile(filename);
if(!pfile){cout<<"\nError! Failed to open file: "<<filename<<endl; return 0;}
pfile << "\tExternal temperature(t1)\t|\tTotal cost of heating(C_ht)\t|\tThickness of the pot(X)\t\n"

<< "---------------------------------------------------------------------------------------------------\n";
pfile.setf(ios_base::fixed, ios_base::floatfield);//used to avoid most output of exponentials
for(int i=0;i<=32;i++){

pfile <<"\t|\t"<<c_ht_arr[i]<<"\t\t\t|\t"<<x_arr[i]<<"\t|\n";
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}
pfile.close();
for(int i=0;i<=32;i++){

cout <<"\t|\t"<<c_ht_arr[i]<<"\t|\t"<<x_arr[i]<<"\t|\n";
}

cout<<"Program finished!!!";
}

};
int main(){

proc pro; pro.start_proc(); pro.output("output.txt");
cin.get();
return 0;

}
Table 1: Results of the iteration
Pot’s Thickness (m) Heating Cost(N)
0.012 40.78730
0.016 40.66083
0.020 40.57063
0.024 40.50441
0.028 40.45487
0.032 40.41741
0.036 40.38897
0.040 40.36744
0.044 40.35133
0.048 40.33954
0.052 40.33126
0.056 40.32586
0.060 40.32285
0.064 40.32186
0.068 40.32258
0.072 40.32477

5.0 Conclusion
The model which relates directly the cost of heating with the thickness of the pot has been obtained in this paper. Therefore,
the paper sets up an algorithm for computing the optimum thickness of the pot. The optimum thickness for a local aluminium
casted pot (the pure Al sample) of volume 2.405×10-5 m3 has been derived to be 0.064m using the data presented in this paper
and the algorithm for determine the optimum thickness of different various sizes of pot has also been obtained. The optimum
thickness of pots of other shapes and materials can also be determined from the model.
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Table 1 cont.
0.076 40.32822
0.080 40.33277
0.084 40.33828
0.088 40.34463
0.092 40.35173
0.096 40.35949
0.100 40.36785
0.104 40.37673
0.108 40.38609
0.112 40.39588
0.116 40.40606
0.120 40.41660
0.124 40.42745
0.128 40.43861
0.132 40.45003
0.136 40.46170


