
305

Journal of the Nigerian Association of Mathematical Physics
Volume 30, (May, 2015), pp305 – 314

© J. of NAMP

Modelling Convergence of Finite Element Analysis of Cantilever Beam

S. O. Osuji and S. A. Adegbemileke

Department of Civil Engineering, Faculty of Engineering,
University of Benin, Benin City, Nigeria.

Abstract

Convergence studies are carried out by investigating the convergence of
numerical results as the number of elements is increased. If convergence is not
obtained, the engineer using the finite element method has absolutely no indication
whether the results are indicative of a meaningful approximation to the correct
solution. There are two major methods of mesh refinement; h-refinement and p-
refinement.

The cantilever beam plate was modelled using Abaqus/CAE 6.12-1, a finite
element analysis tool. The geometry consists of a 300 x 100 mm beam section,
spanning 3m and fixed at one end. A load of 1kN was applied at the free end. Also the
model was meshed using 2D plane stress linear and quadratic quadrilaterals elements
(CPS4R and CPS8), triangular elements (CPS3 and CPS6) and refined. For the
linear quadrilateral element, a total of 20, 40,160 and 2560 elements were used for the
coarse, medium, fine and very fine mesh respectively. Total numbers of 33, 63, 205
and 2737 nodes were generated accordingly.

The maximum bending stresses and shear stresses occurred at the fixed end.
Exact stress and maximum displacement value at the mid-top fibre and free end of the
beam was 100 N/mm2 and-19.5122 mm respectively. Simulated results at these points
were analysed using the four element types at different mesh refinement levels. The
study shows that linear FE converges slower compared to quadratic elements. Also a
finer mesh is required to predict accurate stresses than is needed to calculate accurate
displacements.
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1.0 Introduction
Finite element methods have been used for many years with success in the analysis of complex structures and many
aerospace structures are designed on the basis of these analysis. In spite of such widespread use, not enough is known of the
theoretical accuracy and convergence properties of these models when used to represent a structure. Accuracy studies are
usually based on numerical solutions to restricted problems for comparison with known results. Convergence studies are
carried out by investigating the convergence of numerical results as the number of elements is increased [1].
Solution accuracy is judged in terms of convergence as the element “mesh” is refined [2]. There are two major methods of
mesh refinement. In the first, known as h-refinement, it involves increasing the number of elements used to model a given
domain, consequently, reducing individual element size. In the second method, p-refinement, element size is unchanged but
the order of the polynomials used as interpolation functions is increased. Also it is possible to combine efficiently the h- and
p-refinements and this is called the hp-refinement [3].
Generally, local mesh refinements should be such that very small elements are not placed adjacent to very large ones [4]. A
good model involves a fine mesh in areas of stress concentration and a coarse mesh in the remainder of the model. To
produce a good mesh, a stress distribution should be known beforehand. However, stresses are not known before meshing but
there is need for a good understanding of the stress pattern before analysis.
The need for convergence during regular mesh refinement is rather clear. If convergence is not obtained, the engineer using
the finite element method has absolutely no indication whether the results are indicative of a meaningful approximation to the
correct solution.
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2.0 Types of Finite Elements
Bhavikatti [6] classified elements based on shapes as: (i) One-dimensional elements (ii) Two dimensional elements (iii) Axi-
symmetric elements and (iv) Three-dimensional elements. In two-dimensional analysis the simplest element shapes are
obviously a triangle and a rectangle, defined by three or four nodes respectively. We need two dimensional elements to solve
two dimensional problems. Common two dimensional problems in stress analysis are plane stress, plane strain and plate
problems [6].
Abaqus provides several different types of two-dimensional elements. For structural applications these include plane stress
elements and plane strain elements. Plane stress elements can be used when the thickness of a body or domain is small
relative to its lateral (in-plane) dimensions. The stresses are functions of planar coordinates alone, and the out-of-plane
normal and shear stresses are equal to zero. Plane stress elements must be defined in the X–Y plane, and all loading and
deformation are also restricted to this plane. This modelling method generally applies to thin, flat bodies [7].
Size of elements influences the convergence of the solution directly and hence it has to be chosen with care. If the size of
elements is small, the final solution is expected to be more accurate. However, we have to remember that the use of elements
of smaller size will also mean more computational time. Another characteristic related to the size of elements, which affects
the finite element solution, is the aspect ratio of elements. Elements with an aspect ratio of nearly unity generally yield best
results. However, the use of large number of elements involves large number of degrees of freedom and we may not be able
to store the resulting matrices in the available computer memory [8].

2.1 Shape Function
In the finite element analysis aim is to find the field variables at nodal points by rigorous analysis, assuming at any point
inside the element basic variable is a function of values at nodal points of the element. This function which relates the field
variable at any point within the element to the field variables of nodal points is called shape function. This is also called as
interpolation function and approximating function. In two dimensional stress analysis in which basic field variable is
displacement,= ∑ ; = ∑ (1)
where summation is over the number of nodes of the element.

2.2 Choices of Mesh
Reddy [4] suggested the following guidelines for generation of finite element mesh:
1. The mesh should represent the geometry of the computational domain and load representation accurately.
2. The mesh should be such that large gradients in the solution are adequately represented.
3. The mesh should not contain elements with unacceptable geometries, especially in regions of large gradients.
Within the above guidelines, the mesh used can be coarse (i.e., have few elements) or refined (i.e. have many elements), and
may consist of or more orders and types of elements (e.g., linear and quadratic, triangular and quadrilateral). A judicious
choice of element order and type could save computational cost while giving accurate results. It should be noted that the
choice of elements and mesh is problem-dependent.

2.3 Convergence Requirements
The solution to an analysis is greatly affected by convergence. A solution that has not converged could provide very
inaccurate results. In finite element analysis, solution accuracy is judged in terms of convergence as the element “mesh” is
refined.
For a general field problem in which the field variable of interest is expressed on an element basis in the discretized form

(2)
Where M is the number of element degrees of freedom, the interpolation functions must satisfy two primary conditions to
ensure convergence during mesh refinement: the compatibility and completeness requirements [9].

2.4 Cantilever Beam
A cantilever is a beam anchored at only one end. The beam carries the load to the support where it is forced against by a
moment and shear stress [10]. Cantilever construction allows for overhanging structures without external bracing. Cantilevers
are widely found in construction, notably in cantilever bridges and balconies. In cantilever bridges, the cantilevers are usually
built as pairs, with each cantilever used to support one end of a central section. They are also used as parking canopies, traffic
light stand, and billboards. Another use of the cantilever is in fixed-wing aircraft design, pioneered by Hugo Junkers in 1915
[11].
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3.0 Methodology
3.1 Finite Element Method
The Finite Element Method (FEM) is a key technology in the modelling and simulation of advanced engineering systems.
The behaviour of a phenomenon in an engineering system depends upon the geometry or domain of the system, the property
of the material or medium, and the boundary, initial and loading conditions.

3.1.1 Abaqus [7]
Abaqus is a product of Dassault Systèmes Simulia Corp., Providence, RI, USA. It is an indispensable software package due
to its abilities of dealing with nonlinear problems. An Abaqus model is composed of several different components that
together describe the physical problem to be analysed and the results to be obtained. At a minimum the analysis model
consists of the following information: discretized geometry, element section properties, material data, loads and boundary
conditions, analysis type, and output requests.

3.2 Modelling of the Geometry
The cantilever beam was modelled as a rectangular section of 300 x 100 mm and a span of 3000mm using the Part Module
and then partitioned mid-way so as to have nodes and obtain results on the neutral axis. The beam was represented as a 2D
solid, where one coordinate (z-axis) was removed (Figure 1).

Figure1: Idealized cantilever beam model

3.2.1 Material and Section Properties
The next step in creating the model involves defining and assigning material and section properties to the part. Each region of
a deformable body must refer to a section property, which includes the material definition. The material used was steel with
Young’s modulus of 205kN/mm2 and the Poisson’s ratio of 0.3 to set the structural behaviour of the part. As these material
parameters were chosen, the section parameters have to be assigned to the part. A unit thickness was used for the plane stress
analysis.

3.2.2 Load and Boundary Condition
A point load of 1kN was applied to the free end of the beam and fixed at other end. The self-weight of the beam was
neglected in this analysis for simplicity.

3.3 Analysis and Meshing Procedure
The beam of unit sectional width was analysed using plane stress analysis. The vertical displacements and horizontal stresses
at any point on the beam plate were manually calculated using the expressions [12].= + − + (3)

(4)
The beam was modelled using:

 CPS4R: A 4-node bilinear plane stress quadrilateral, reduced integration, hourglass control element and remeshed
using h-refinement;

 CPS8:  An 8-node biquadratic plane stress quadrilateral and remeshed using hp-refinement;
 CPS3:  A 3-node linear plane stress triangle and remeshed using h-refinement;
 CPS6:  A 6-node quadratic plane stress triangle and remeshed using hp-refinement.

An initial element size h (300mm) was used in the first coarse mesh, subsequent medium (normal) and fine meshes had
element sizes h / λ and h / λ2, where λ is the scale factor; typically λ ≈ 2.
The influence of the mesh density on two particular results was considered from this model:

i. The displacement of a region of the model.
ii. The bending stress on a region of the model.
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Coarse meshes are often adequate to predict trends and to compare how different concepts behave relative to each other. In
general, refinement of the mesh shall be made mainly in regions where accurate results are required. A finer mesh is required
to predict accurate stresses than is needed to calculate accurate displacements.

4.0 Result and Discussion
Figure 2 below shows the cantilever beam meshed with a 4-noded linear quadrilateral element. A total of 20, 40,160 and
2560 elements were used for the coarse, medium, fine and very fine mesh respectively. Total number of 33, 63, 205 and 2737
nodes were generated accordingly.

Figure 2: Coarse, medium, fine and very fine mesh using 4-noded linear quadrilateral elements (h-refinement)

The horizontal stress, shear stress, maximum and minimum principal stress distributions are shown in Figures 3a- 3d for the
quadratic quadrilateral element mesh. The maximum horizontal stresses (±206.0 N/mm2, tension and compression) occurred
at the fixed end of the beam. Positive stresses, i.e tensile stresses, occurred above the neutral axis while the negative, i.e.
compressive stresses, occurred below the neutral axis of the beam. Minimum values of horizontal stresses occurred around
the neutral axis. Maximum shear stress (21.1 N/mm2) was also recorded at the fixed end of the beam. The maximum and
minimum principal stresses occurred around the top and bottom fibre towards the support as shown in Figures 3c and 3d.

Fig 3a: Horizontal stress distribution (S11)

Fig 3b: Shear stress distribution (S12)
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Fig 3c: Maximum Principal stress (σ1) distribution

Figure 3d: Minimum Princippal stress (σ2) distribution

Table 1 shows the analytic and simulated result using the linear quadrilateral element, CPS4R. The stress at mid-point of the
top fibre (coordinate 1500, 150) and the maximum displacement at the free end along neutral axis (coordinate 0, 0) was
studied for convergence. The exact stress and maximum displacement values as shown in the table are 100N/mm2 and -
19.5122mm respectively. The negative sign shows downward displacement. The simulated stress and displacement values
ranges from 66.5068 to -94.1166 N/mm2 and 26.0492 to -19.7231mm respectively from coarse meshing to very fine meshing.
Also the percentage error (i.e. deviation from the exact solution) for stress and displacement simulations ranges from 33.49 to
5.88 % and 33.50 to 1.08 % respectively.
Table 1:  Analytic and simulated solution using linear quadrilateral element, CPS4R
MODEL σ

(N/mm2)
EXACT

σ (N/mm2)
SIMULATE
D

Δσ
(N/mm2
)

ERRO
R (%)

δmax(mm
) EXACT

δmax (mm)
SIMULATE
D

Δδmax
(mm)

ERRO
R (%)

Coarse mesh 100 66.5068 33.49 -19.5122 -26.0492 33.50

Medium mesh 100 66.6026 0.0958 33.40 -19.5122 -26.1461 -0.0969 34.00

Fine mesh 100 79.9846 13.3820 20.02 -19.5122 -20.9424 5.2037 7.33

Very fine mesh 100 94.1166 14.1320 5.88 -19.5122 -19.7231 1.2193 1.08

Using the second element type i.e. the 8-noded quadratic quadrilateral, and at the points of interest stated earlier, the
simulated stress values yielded the exact result. However the maximum displacement values ranges from -19.5852 to -
19.6382mm, and maximum percentage error deviation of 0.65% as shown in Table A.1 (see Appendix A).
The 3-noded linear triangular element mesh is shown in Figure 4a. The coarse, medium, fine and very fine meshes consist of
a total of 40, 80, 320 and 5120 elements respectively. And a total of 33, 63, 205 and 2737 nodes were generated for the
meshes accordingly. Also the 6-noded quadratic triangular element mesh is shown in Figure 4b. Though the numbers of
elements are the same for every mesh as in the 3-noded triangular element, the numbers of nodes differ. A total of 105, 205,
729 and 10593 nodes were generated for the coarse, medium, fine and very fine mesh respectively.

Figure 4a: Meshed model using the 3-noded linear triangular elements
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Figure 4b: Meshed model using the 6-noded quadratic triangular elements
The simulated stress and max displacement values at the stipulated points are presented in Table A.2 (see Appendix A); the
values range from 25.1622 to 94.6026N/mm2 and -7.2411 to -19.3669mm respectively. The percentage error ranges from
74.84 to 5.40% and 62.89 to 0.74% on stress and max displacement respectively. Also the max displacement result shows
quick convergence compared to stress values.
The refinement procedure for the 6-noded quadratic triangular element shows close results to the exact solution for stress and
max displacement values. Also the max displacement result shows divergence of result, though very negligible (max
percentage error of 0.64%).

Figure 5a: Stress distribution along top fibre for analytic and simulated solutions using 4-noded linear quadrilateral element
(h-refinement).
Stress distribution along the top surface of the beam was also determined analytically and using the FE method for the four
element types at different levels of refinement. The results were plotted as shown in Figures 5a- 5d.

Figure 5b: Stress distribution along top fibre for analytic and simulated solutions using 3-noded linear triangular element (h-
refinement).

Figure 5c: Stress distribution along top fibre for analytic and simulated solutions using 8-noded quadratic quadrilateral
element (hp-refinement).
Also the displacement along the neutral axis was determined analytically and using the FE method for the four different
element types and levels of refinement. The results are shown in Figures 5a - 5d.
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The convergence results of stresses at the mid-top fibre presented earlier show that the linear elements produce unsatisfactory
solution when used in finite element analysis without proper refinement of the mesh. The linear quadrilateral elements
produced better solution than the linear triangular elements, especially on a coarse mesh. This is seen by the stress value of
66.6026 N/mm2 for the medium mesh of the linear quadrilateral element, CPS4R (see Table 1); closer to the exact solution
(100 N/mm2) than that using the linear triangular element, CPS3 (36.7649 N/mm2, see Table A.2). Figures 5a, 5b, 6a and 6c
show this observation very clearly in the stress distribution along the top fibre and maximum displacement values along the
neutral axis of the beam.

Figure 5d: Stress distribution along top fibre for analytic and simulated solutions using 6-noded quadratic triangular element
(hp-refinement).
Also the maximum displacements result shows quick convergence than in the stress computation. This means that a finer
mesh is required to predict accurate stresses than is needed to calculate accurate displacements as also discovered by Cugnoni
[13].
Ergatoudis et al. [14] stated that both the triangular and rectangular elements present the lowest possible forms of
approximation and are of limited accuracy. This was observed especially in the coarsely and medially refined meshes.
However, further refinement has shown to produce better and very close result.
Using the quadratic elements in the meshing, the displacements result tends to match up with the exact solution even with the
coarse mesh. This shows the accuracy of quadratic elements in predicting displacement values. The convergence test shows
that using hp-refinement to determine displacement solution leads to divergence of the result. However this divergence is
very negligible even at a very fine meshing (a maximum of 0.65% from the exact displacement solution). P-refinement
would however be sufficient for a considerable choice of mesh size. More so, the stress values converge very fast with the
quadratic element types.
The divergence in the displacement result using the quadratic elements, (though negligible, max of 0.65%) shows that
quadratic elements do not necessarily result in accurate result. This was argued by Kurowski [5] that models made with any
order may or may not be accurate. It depends on how well the real stress distribution is represented with the given mesh.
Higher order elements converge faster and models usually need fewer of them, however, by themselves, they are not any
more or less accurate than lower order elements.

Figure 6a: Displacement along neutral axis for analytic and FEM using 4-noded linear quadrilateral element (h-refinement).
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Figure 6b: Displacement along neutral axis for analytic and FEM using 8-noded quadratic quadrilateral element (hp-
refinement).

Figure 6c: Displacement along neutral axis for analytic and FEM using 3-noded linear triangular element.

Figure 6d: Displacement along neutral axis for analytic and FEM using 6-noded quadratic triangular element.
The accurate prediction of both stress and displacement values along the path (especially using the quadratic element) as
shown in Figures 5and 6 shows the reliability of the Abaqus software in FE solutions.

5.0 Conclusion and Recommendation
The need for convergence during regular mesh refinement is rather clear. If convergence is not obtained, the engineer using
the finite element method has absolutely no indication whether the results are indicative of a meaningful approximation to the
correct solution. A good model involves a fine mesh in areas of stress concentration and a coarse mesh in the remainder of
the model. To produce a good mesh, there is need for a good understanding of the stress pattern before analysis.
The study shows that linear FE converges slower compared to quadratic elements. Also a finer mesh is required to predict
accurate stresses than is needed to calculate accurate displacements.
The finite element method of analysis is a powerful tool for numerical analysis, however, the governing mathematics are
tedious and complex. Also the availability of veritable commercial software such as Abaqus makes it possible to test and
judge solutions.
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The following recommendations may be adopted from the convergence study,
1. Choose quadratic elements for stress analysis
2. Use linear elements, but with adequate mesh refinement. However, the computer memory and time will determine

the level of refinement.
3. By default use reduced integration. For very thin structures, reduced int. is preferred.
4. Build your own experience by doing convergence tests

Appendix A
Table A.1 Analytic and simulated solution using quadratic quadrilateral element, CPS4R
MODEL σ (N/mm2)

EXACT
SOLUTIO
N

σ (N/mm2)
SIMULATE
D

Δσ
(N/mm2
)

ERRO
R (%)

δmax (mm)
EXACT
SOLUTIO
N

δmax (mm)
SIMULATE
D

Δδ
(mm)

ERRO
R (%)

Coarse mesh 100 99.9989 0.0011 -19.5122 -19.5852 0.37

Medium mesh 100 100.0000 0.00 0.0000 -19.5122 -19.6068 -0.0216 0.48

Fine mesh 100 100.0000 0.00 0.0000 -19.5122 -19.6262 -0.0194 0.58

Very fine
mesh

100 100.0000 0.00 0.0000 -19.5122 -19.6382 -0.0120 0.65

Table A.2 Analytic and simulated solution using linear triangular element, CPS3
MODEL σ (N/mm2)

EXACT
SOLUTIO
N

σ (N/mm2)
SIMULATE
D

Δσ
(N/mm2)

ERROR
(%)

δmax (mm)
EXACT
SOLUTIO
N

δmax (mm)
SIMULATE
D

Δδ
(mm)

ERRO
R (%)

Coarse mesh 100 25.1622 74.8378 -19.5122 -7.2411 -62.89

Medium mesh 100 36.7649 11.6027 63.2351 -19.5122 -10.5678 -3.3267 -45.84

Fine mesh 100 68.9529 32.1880 31.0471 -19.5122 -16.1349 -5.5671 -17.31

Very fine mesh 100 94.6026 25.6497 5.3974 -19.5122 -19.3669 -3.2320 -0.74

Table A.3 Analytic and simulated solution using quadratic triangular element, CPS6
MODEL σ (N/mm2)

EXACT
SOLUTIO
N

σ (N/mm2)
SIMULAT
ED

Δσ
(N/mm2)

ERROR
(%)

δmax
(mm)
EXACT
SOLTIO
N

δmax (mm)
SIMULAT
ED

Δδ
(mm)

ERRO
R (%)

Coarse mesh 100 98.1506 1.8494 -19.5122 -19.5458 0.17

Medium mesh 100 99.139 0.9884 0.8610 -19.5122 -19.5966 -0.0508 0.43

Fine mesh 100 99.7842 0.6452 0.2158 -19.5122 -19.6234 -0.0268 0.57

Very fine mesh 100 99.9865 0.2023 0.0135 -19.5122 -19.6373 -0.0139 0.64
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