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Abstract

We examined permutations of vertices/sides of some regular shapes
viewed as rigid motions. In particular, we use combinatorial techniques to
enumerate symmetric permutations of vertices/ sides of an n-sided regular

polygon nP . Our results involve:

(1) A well knownformula, 2nNSYP n for generating the number of

symmetries in an n-sided regular polygon accomplished using permutations;

(2). A new formula,
( 3)

2n

n n
NWT


 for number of ways of triangulating

nP , (the number of ways of cutting nP into triangles by connecting its

vertices with straight lines); thereby providing a proof for Richard and
Stanley’s conjecture that “All diagonals are flipped in a geodesics between

two antipodes in exactly
( 3)

2

n n 
”.We also examined the set

[ ] {1, 2,... }S n n  of vertices of nP as poset and proved some known

theorems.
A discussion is given of lattices whose maximum length chains

correspond to restricted
permutations.

Keywords: Triangulation, equidissection, area discrepancy polygons, pattern-avoiding permutation, restricted
permutation and Symmetric permutation.

1.0 Introduction
The one line-notation form of a permutation  of a string of numbers [ ] {1, 2,3,..., }S n n  , is written

(1) (2) (3)... ( )n    . However, a permutation enclosed inside brackets is in cyclic form. For instance, if  is a

permutation of [5] {1, 2,3, 4,5} whose cyclic form is (13) , then  ’s one-line notation form is 32145 . Thus we have

(13) 32145 . In this paper we will use nS to refer to the set of permutations of [ ] {1, 2,3,..., }n n written in one-line

notation. If nS and kS  , then  contains  as a pattern if some subsequence of  of length k has the same

relative order as  . For example, the permutation 813524867 S   contains the pattern 42143 S   since there is

a subsequence 3 4 6 8 5287     in  of length 4 which has the same relative order as  . We say  avoids 
whenever  does not contains  . By polygon we mean a closed plane figure bounded by straight lines. The commonest
among them include triangles, Quadrilateral, Pentagon, Hexagon, Heptagon Octagon, etc.
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A poset (partially ordered set) is a set P together with a binary relation ≤ which istransitive (x < y and y < z implies x < z) and
irreflexive (x < x and y <y cannot both hold).We can partially order the set of all permutations of all numbers of letters by
declaring that for a bigger permutation π and a smaller permutation σ (a pattern), σ≤π iff σis contained as a pattern in π. It
would be interesting to study this as a poset.Ron M.A large number of articles directly or indirectly related to this Problem;
for instance,Adin and Yuval Riochman in [1] reported that the diameter of the flip graph on the set of all colored triangle-free

triangulations of a convex n-gon is exactly
( 3)

2

n n 
.In [2] Stein S.K reported that there is no definite formula for dividing

an n-sided polygon into triangles of equal areas. See also [3 and 5] for other related areas.

2.0 General Notations and Preliminaries
To make this write-up clear, let us adapt unique notations throughout the write-up in order not to confuse the reader. Let us

consistently denote an n-sided polygon by nP ; triangulation (possible number of triangles in nP ) by nT ; diagonalization

(possible number of diagonals in nP ) by nNDP ; set of all triangulations of nP by nS ;  so that 1, 2,3,...nT  ; set of

bijections on {1, 2,..., }n by nS ; set of all permutations of length n that avoids q by ( )nS q where nq S ; nP be a

regular polygon with n the number of sides; nNWT be the number of ways of triangulating nP ; nNSYP be number of

symmetries  in nP ; nNDP be the number of diagonals in nP .

3.0 Triangulation of Polygon
The representation of a permutation on some regular polygons such as Equilateral triangle, a square etc, further motivates

three common operations on permutations. For nS  , the reverse of  is ( ) ( 1)... (2) (1)R n n      . That is, R
is the permutation whose diagram is obtained by reflecting the diagram of  over a vertical axis.
We consider three symmetries that are natural both for the square and in the languageof permutations.
We note that:
 Reversal corresponds to flipping the graph of  over the vertical line of symmetry:

  1423Graph of     3241RGraph of  

Figure 1.1: Figure 1.2:

The graph of the permutation 1423  The graph of the permutation 3241R 
Similarly, the compliment of  is the permutation whose entries follow the formula ( ) 1 ( )c j n j    . The diagram of

c is obtained from that of  by reflection over a horizontal axis.
 Complement corresponds to flipping the graph of  over the horizontal line of symmetry:

  4132cGraph of  
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Figure 1.3:

The graph of the permutation 4132c 
Finally, the inverse of  , which we denoted by 1  is the inverse of  as a function, so if ( )j k  , then 1( )k j   .

The diagram of 1  is that of  , reflected over the diagonal from the lower left corner to the upper right corner.
 Inverse corresponds to flipping the graph of  over the main diagonal line of symmetry:

1  1342Graph of   

Figure 1.4:

The graph of the permutation 1 1342  
This set of operations,{ , , }reverse compliment inverse when considered as symmetries of a regular polygon such as

Equilateral triangle, Square, etc., motivates a brief foray into the algebra of dihedral groups. The dihedral group of eight

symmetries, 4D of a square, for instance is well-known to be generated by the above mappings (Reversing, Complimenting

and Inverting). We say that a permutation is preserved under some symmetry 4D  if its diagram is unchanged by  .

Equivalently, if we consider 4D to be a group of actions on the set of diagrams of permutations in nS , then nS  is

preserved by 4D  , if  is in the stabilizer of the diagram of  . Since the stabilizer of a diagram is a subgroup of 4D ,

we can consider the possible symmetries of a permutation by considering the 10 distinct subgroups of 4D .

4.0 Preliminaries
Recall that by triangulation of a polygon, we are presumably referring to dissection of the polygon into triangles by
connecting its vertices with straight lines. The starting point of our construction of sequences of triangulations which prove
equation (1) are certain triangulations of a polygon which differ slightly from that described by Stein and Szabo in [4]. Our

main concern is to find a generating function for n (ie. number of sides of a polygon) given an nT (ie. number of triangles

that can be dissected from P ). The following figures illustrate triangulation of some convex polygons (Triangle, a
Quadrilateral, a Pentagon, etc.):
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Figure 2a Figure 2b
Partition of a 14-sided polygon into triangles.
We consider the number of ways of partitioning a convex polygon into triangles.

Let nS be a symmetric group on the letters1, 2,..., n where the letters 1, 2,..., n are vertices of a regular polygon with n

sides. Denote the permutation nS by the sequence [ (1), (2),..., ( )]n   and transpositions by ( , )i j . Label the

vertices of an n-sided regular convex polygon P  ( 3)n n  by the elements 1, 2,..., n of the multiplicative cyclic group

( ,*)nS . Each edge of the polygon is called an external edge of the triangulation; all other edges of the triangulation are

called internal edges, or chords.
Definitions 4.1
Let ( ,*)G be a group, and suppose H is a nonempty subsetof G . If ( ,*)H is a group, then H is called a subgroup of G.

Definitions 4.2
Consider a regular polygon P , such as, for example, an equilateral triangle or a square or any n-sided regular polygon. Any
movement of P that preserves the general shape of P is called a rigid motion. There are two types of rigid motions:  (1)

rotations and (2) reflections. For a regular polygon P with n sides, there are 2n distinct rigid motions. These include the n
rotations of P through 360 i

n degrees for 1, 2,...,i n . The remaining n rigid motions are reflections. If n is even, these

are the reflections of P across the lines that connect opposite verticesor bisect opposite sides of P . If n is odd, these are the

reflections of P across the lines that are perpendicular bisectors of the sides of P . Since the rigid motions of P preserve the
general shape of P , they can be viewed as permutations of the vertices or sides of P. The set of rigid motions of a regular
polygon P forms a group called the symmetries of P .
Example 1. Consider the figure 3 below. To express the group of symmetries of this figure as permutations of its vertices
(123) of the triangle, consider the figure 3:

Figure3 above (an equilateral triangle with vertices 123) is a regular polygon. Any movement of the figure that preserves its
general shape ofis called a rigid motion. There are two types of rigid motions: (1) rotations and (2) reflections. For a regular
polygon P with n sides, there are 2n distinct rigid motions. These include the n rotations of P through 360 i

n degrees for

1, 2,...,i n .
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The remaining n rigid motions are reflections. If n is even, these are the reflections of P across the lines that connect opposite
vertices or bisect opposite sides of P. If n is odd, these are the reflections of P across the lines that are perpendicular bisectors
of the sides of P. Since the rigid motions of P preserve the general shape of P, they can be viewed as permutations of the
vertices or sides of P. The set of rigid motions of a regular polygon P forms a group called the symmetries of P.
The 6 symmetries of the triangle in figure 3 can be expressed as permutations of the vertices of this general figure as follows
(rotations are counterclockwise). Note in this case that 3;  1, 2,3n i  .

Table 1: Symmetries of an equilateral triangle
i Rigid motion 3(360 )i 3n  Permutations

1 0120 Rotation (123)
2 0240 Rotation (132)
3 0360 Rotation (1)(2)(3)

Reflection across perpendicular bisector of side 2 3 (23)

Reflection across perpendicular bisector of side 1 2 (12)

Reflection across perpendicular bisector of side 1 3 (13)
Note that expressing these rigid motions as permutations on the vertices of the preceding general figure yields a subgroup of

3S . It is easy to see that the symmetries of the regular triangle above form a group (dihedral group);

3 {(1)(2)(3), (12), (23), (13), (123), (132)}D  , where 3 3D S .

Example 2:
Consider the group of symmetries of a square. To express these symmetries as permutations of vertices of a square, consider
figure 4 below:

The 8 symmetries of a square can be expressed as permutations of the vertices of this figure as follows (rotations are
counterclockwise).

Table 2: Symmetries of a Square
i Rigid motion 4(360 )i , 4n  Permutations

1 090 Rotation (1234)
2 0180 Rotation (13)(24)
3 0270 Rotation (1432)
4 0360 Rotation (1)(2)(3)(4)

Reflection across 1-3 diagonal (24)
Reflection across 2-4 diagonal (13)
Reflection across horizontal line of symm. (12)(34)
Reflection across vertical line of symm. (14)(23)
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Note also that expressing these rigid motions as permutations on the vertices of the preceding general figure yields a

subgroup of 4S . It is easy to see that the symmetries of the general shape above (square) form a group (dihedral group);

4 {(1234), (13)(24), (143), (1)(2)(3)(4), (24), (13), (12)(34), (14)(23)}D  , where 4 4D S .

Remark
When the symmetries of an n sided regular polygon are expressed as

Permutations on the set{1, 2,..., }n , the resulting subgroup of nS is denoted by nD and called the dihedral group on n

letters. The subgroup of

3S in Example 1 above is the dihedral group 3D . Similarly, in Example 2 4D is the subgroup of 4S . It has been observed

from the preceding discussions (in Examples 1&2) that for a regular polygon P with n sides, there are 2n distinct rigid
motions. These include the n rotations of P through 360 i

n degrees for i 1,  2,. . . , n . The remaining n rigid motions are

reflections. If n is even, these are the reflections of P across the lines that connect opposite vertices or bisect opposite sides of
P. If n is odd, these are the reflections of P across the lines that are perpendicular bisectors of the sides of P. Since the rigid
motions of P preserve the general shape of P, they can be viewed as permutations of the vertices or sides of P. The set of
rigid motions of a regular polygon P forms a group called the symmetries of P. Tables 1&2 demonstrate these points more.

Let nP be a regular polygon with n the number of sides. Let nd be the number of diagonals in nP and, nNWT be the

number of ways of triangulating nP .

Table 3: Symmetries of a regular polygon

Regular Polygon nP 3n 
No. of sides of nP

| |nD

No. of Symmetries in nP
Equilateral Triangle 3 6 2(3)
Quadrilateral 4 8 2(4)
Pentagon 5 10 2(5)
Hexagon 6 12 2(6)
Heptagon 7 14 2(7)
Octagon 8 16 2(8)
… … …
… … …
n gon . n 2n

 2 , 3nNSYP n n   
When talking about the possible number of ways of partitioning a polygon into triangles by joining vertices with straight
lines (drawing the diagonals in the polygon), we observed that for the case of a polygon with three sides (triangle) there is no
diagonal (thus no construction is required); for a polygon with four sides there are two diagonals (by joining the opposite
vertices); for a pentagon there are five diagonals, etc.
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Table 4: Number of ways of triangulating a convex polygon

Polygon ( nP ) 3n 
No. of sides in nP

nNDP

No. of diagonals in nP

Generating nNWT

From nNDP & n
Triangle 3 0 = 3(3 3)

2



Quadrilateral 4 2 = 4(4 3)

2



Pentagon 5 5 = 5(5 3)

2



Hexagon 6 9 = 6(6 3)

2



Heptagon 7 14 = 7(7 3)

2



Octagon 8 20 = 8(8 3)

2



… … … …
… … … …
n gon . n ( 3)

2

n n 

( 3)
, 3

2n

n n
NWT n


   

It has been observed that by the preceding discussions

5.0 Symmetry Class:
Let {1,2,..., }nS n and nq S . If q is a permutation and 1q is its group theoretic inverse, then by elementary

arguments 1| ( ) | | ( ) |n nS q S q for all n (see [6, 7 and 8]). The same hold between q and its reverse Rq , where

1
R

i n iq q   , and 1 i n  .

Example; Let {1,2,3}S  be a set and nS the set of permutations of length n . If 132 (23)q   ; 3q S  , then

231 or (123)Rq  and 1 132 or (23)q 
These two operations generate the dihedral group of order 6.

3 {(1)(2)(3), (12), (23), (13), (123), (132)}D  .

Where 3 3D S and nS the set of permutations of length n . Another useful operation is known as complementation of q

denoted by 1C
i iq n q   , where 1 i n  .

Example if 132 (23)q   then 312 or (132)Cq  .

These lead to the natural symmetries:

Let 1 2p p ...p Sn np  . Then: , Snp q 

 avoids q  avoidsR Rp p q ,

 avoids q  avoidsC Cp p q ,
1 1 avoids q  avoidsp p q  ;

And moreover
1| S (Q) S (Q ) | | S (Q ) | | S (Q ) |R C

n n n n
   , where *Q is the set obtained by applying the operation * to

all patterns in the set Q .
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By repeatedly applying the operations of reverse, complement, and inverse, which generate the symmetries of the square, we
see that we can partition sets of patterns into equivalence classes up to size 8 that will necessarily have the same enumeration.

6.0 Properties of Posets:
Elements x and y of a poset X are comparable if x < y and/or y < x hold. A chain in a poset X is a subset C X such

that any two elements in C are comparable. An antichain in a poset X is a subset A X such that no two elements in A
are comparable.
An element x of a poset (X,≤) is called maximal if there is no element yϵXsatisfying x < y. Dually, x is minimal if no element
satisfies y < x.
In a general poset there may be no maximal element, or there may be more than one. But in a finite poset there is always at
least one maximal element, which can be found as follows: choose any element x, if it is not maximal, replace it by an
element y satisfying x < y, repeat until a maximal element is found. The process must terminate, since by the irreflexive and
transitive laws the chain can never revisit any element. Dually, a finite poset must contain minimal elements.
An element x is an upper bound for a subset Y of X if y ≤ x for all yϵY. Lower bounds are defined similarly. We say that x is a

least upper bound or l.u.b. (supremum)of Y if it is an upper bound and satisfies !x x for any upper bound !x . The concept
of a greatest lower bound or g.l.b.(infinimum) is defined similarly.
The height of a poset is the largest cardinality of a chain, and its width is the largest cardinality of an antichain. We denote the
height and width of (X,≤) by h(X) and w(X) respectively (suppressing as usual the relation R in the notation). In a finite poset
(X, ≤), a chain C and an antichain A have at most one element in common. Hence the least number of antichains whose union
is X is not less than the size h(X) of the largest chain in X. In fact there is a partition of X into h(X) antichains.

We examined a set of vertices/sides of a regular convex polygon as a poset. The number of subsets of an n-element set is 2X .

An important poset is the set 2X (all subsets of the set X with |X| = n) with set inclusion: x < y if X Y . Note the

bijections between subsets of the set 2X ( . . ,{1},{2},{3},{1, 2},{1,3},{2,3}, )i e X and the subperms of the

permutation Ϭ=123 ( . . ,1, 2,3,12,13, 23,123)i e  .

This poset can be visualized by a Hasse diagram (see figure 5a) for the set {1, 2,3}X  in example 1(set of vertices of the

triangle 123).

Figure 5a: A hasse diagram for {1, 2,3}X  .

6.1 Decomposition of Posets Using Antichain
We now partition the poset into antichains as shown in figure 5b.

Figure 5b: A partition of the poset ( , )X  into antichains.
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A poset with a chain of size r cannot be partitioned into fewer than r antichains (Anytwo elements of the chain

2 ({ }, )X a X   must be in a different antichain).

Theorem1: Suppose that the largest chain in theposet X has size r. Then X can be partitioned into r antichains.

Proof: Define l(x) as the size of the longest chain in X whose greatest element is x. Define iA as { : ( ) }iA x l x r  .

Then 1 ... rA A  is a partition of X into r mutually disjoint sets. Every iA is an antichain otherwise there exists two

points x, y in iA such that x y which implies ( ) ( )l x l y .

6.2 Decomposition of Posets Using Chains
We now partition the poset into chains as shown in Figure 5c.

Figure 5c: A partition of the poset ( , )X  into chains.

A poset with an antichain of size r cannot be partitioned into fewer than r chains (Any two elements of the antichain

2 ({ }, )X a X   must be in a different chain).

7.0 Conclusion
We proved most importantly, Richard Stanley’s conjecture which states that “All diagonals are flipped in a geodesics

between two antipodes in exactly
( 3)

2

n n 
”. We accomplished this assertion by rigid motions approach which was not done

anywhere by anyone before this work/research was conducted, and subsequently got a generation function (formula) for the

number of ways of triangulating a convex polygon as
( 3)

, 3
2n

n n
NWT n


   , which we discovered no one

accomplished using this approach.  We also established some Algebraic, Geometric and Number Theoretic properties of nP

(a regular polygon with n the number of sides) in relation to some other numbers nNWT (the number of ways of

triangulating nP ). As a result of our comparison, we observed the following results:

We accomplished a well known important result (a formula/relation for generating the number of symmetries in an n-sided

regular polygon) as 2 , 3nNSYP n n   .
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