On Subgroups of Non-Commutative General Rhotrix Group

A. Mohammed ${ }^{1}$ and U. E. Okon ${ }^{2}$
Department of Mathematics, Ahmadu Bello University, Zaria, Nigeria.

Abstract

This paper considers the pair $\left(G R_{n}(F), \circ\right)$ consisting of the set of all invertible rhotrices of size n over an arbitrary field F; and together with the binary operation of row-column based method for rhotrix multiplication; ' \circ ' , in order to introduce it as the concept of "non-commutative general rhotrix group". We identify a number of subgroups of $\left(G R_{n}(F), \circ\right)$ and then advance to show that its particular subgroup is embedded in a particular subgroup of the well-known general linear group $\left(G L_{n}(F), \cdot\right)$. Furthermore, we shall investigate isomorphic relationship between some subgroups of $\left(G R_{n}(F), \circ\right)$.

Keywords: Rhotrix, matrix, group, rhotrix groups, matrix groups, general rhotrix group, general linear group.

1.0 Introduction

Rhotrix theory deals with the study of algebra and analysis of array of numbers in rhomboid shape. Since the introduction of the theory by Ajibade [1] as an extension of ideas on matrix-tertions and matrix-noitrets suggested by Atanassov and Shannon [2], there have been many demonstration of interest by researchers in the usage of rhotrix set as an underlying set in the study of various forms of algebraic structures (see [3], [4], [5], [6]). The addition and multiplication for heart-based rhotrices of size 3 were defined in [1]. Sani [4] defined a rhotrix R of size n as a rhomboidal array of numbers which can be expressed as a couple of two square matrices A and C of $\operatorname{sizes}(t \times t)$ and $(t-1) \times(t-1)$, where $t=\frac{n+1}{2}$ and $n \in 2 Z^{+}+1$. That is,

$$
\begin{aligned}
& R_{n}=\left\langle A_{1 \mathrm{xt}}, C_{(t-1) \times(t-1)}\right\rangle=\left\{\begin{array}{ccccccc}
& & & a_{11} & & & \\
& & a_{21} & c_{11} & a_{12} & & \\
& \ldots & \ldots . & \ldots & \ldots & \ldots & \\
a_{t 1} & \ldots & \ldots & \ldots & \ldots & \ldots & a_{1 t} \\
& \ldots & \ldots & \ldots & \ldots & \ldots & \\
& & a_{t(t-1)} & c_{(t-1)(t-1)} & a_{(t-1) t} & & \\
& & & & a_{t t} & & \\
& & & & & &
\end{array}\right) \\
& =\left\langle\left[\begin{array}{ccccc}
a_{11} & a_{12} & \ldots & a_{1(t-1)} & a_{1 t} \\
a_{21} & a_{22} & \ldots & a_{2(t-1)} & a_{2 t} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{(t-1) 1} & a_{(t-1) 2} & \ldots & a_{(t-1)(t-1)} & a_{(t-1) t} \\
a_{t 1} & a_{t 2} & \ldots & a_{t(t-1)} & a_{t t}
\end{array}\right],\left[\begin{array}{ccc}
c_{11} & \ldots & c_{1(t-1)} \\
\ldots & \ldots & \ldots \\
c_{(t-1) 1} & \ldots & c_{(t-1)(t-1)}
\end{array}\right]\right\rangle,
\end{aligned}
$$

Corresponding author: A. Mohammed, E-mail: abdulmaths@yahoo.com, Tel.: +2348065519683 \& +2348038840778(U.E.O)
where $\left[a_{i j}\right]$ and $\left[c_{l k}\right]$ are called the major and minor matrices of R_{n} respectively. The set of all such collections of rhotrices with entries from an arbitrary field F is given as

$$
R_{n}(F)=\left\{\left\{\begin{array}{ccccccc}
& & & a_{11} & & & \\
& & a_{21} & c_{11} & a_{12} & & \\
& \ldots & \ldots . & \ldots & \ldots & \ldots & \\
a_{t 1} & \ldots & \ldots & \ldots & \ldots & \ldots & a_{1 t} \\
& \ldots & \ldots & \ldots & \ldots & \ldots & \\
& & a_{t(t-1)} & c_{(t-1)(t-1)} & a_{(t-1) t} & &
\end{array}\right\}: a_{i j} \in F, c_{l k} \in F\right\},
$$

where $1 \leq i, j \leq t, 1 \leq l, k \leq t-1 ; t=\frac{n+1}{2}$ and $n \in 2 Z^{+}+1$.
A row-column method for multiplication of two rhotrices R_{n}, Q_{n} having the same size was defined by Sani[4] as follows:
$R_{n} \circ Q_{n}=\left\langle a_{i_{1} j_{1}}, c_{l_{1} k_{1}}\right\rangle \circ\left\langle b_{i_{2} j_{2}}, d_{l_{2} k_{2}}\right\rangle=\left\langle\sum_{i_{2} j_{1}}^{t}\left(a_{i_{1} j_{1} j_{1}} b_{i_{2} j_{2}}\right), \sum_{l_{2} k_{1}}^{t-1}\left(c_{l_{1} k_{1}} d_{l_{2} k_{2}}\right)\right\rangle$.
It was noted in [4] that this rhotrix multiplication is non-commutative but associative. The identity rhotrix for any real rhotrix of size n was given as

$$
I_{n}=\left\langle I_{t \times t}, I_{(t-1) \times(t-1)}\right\rangle=\left\langle\begin{array}{cccccc}
& & 1 & & \\
& & 0 & 1 & 0 & \\
& \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & \ldots & \ldots & 1 & \ldots & \ldots \\
& \ldots & \ldots & \ldots & \ldots & \ldots \\
\\
& & 0 & 1 & 0 & \\
& & & 1 & &
\end{array}\right\rangle .
$$

It was also stated in [4] that since R_{n} can be represented as $R_{n}=\left\langle a_{i j}, c_{l k}\right\rangle$; if both matrices $\left[a_{i j}\right]$ and [$\left.c_{l k}\right]$ are invertible, then R_{n} is invertible and $R_{n}^{-1}=\left\langle q_{i j}, r_{l k}\right\rangle$, where $q_{i j}$ and $\quad r_{l k}$ are the inverse entries of $A_{t \times t}$ and $C_{(t-1) \times(t-1)}$ respectively.
The determinant of a rhotrix R of size n was also defined as $\operatorname{det}\left(R_{n}\right)=\operatorname{det}\left\langle a_{i j}, c_{l k}\right\rangle=\operatorname{det}\left(A_{t \times t}\right) \cdot \operatorname{det}\left(C_{(t-1) \times(t-1)}\right)$; and that R_{n} is invertible if and only if $\operatorname{det}\left(R_{n}\right) \neq 0$. Furthermore, for any rhotrix $R_{n}=\left\langle a_{i j}, c_{l k}\right\rangle$, the transpose of R_{n} was defined in [4] as $R_{n}^{T}=\left\langle a_{j i}, c_{k l}\right\rangle$. It was also shown in [4] that $\operatorname{det}\left(R_{n} \circ Q_{n}\right)=\operatorname{det}\left(R_{n}\right) \circ \operatorname{det}\left(Q_{n}\right)=\operatorname{det}\left(R_{n}\right) \cdot \operatorname{det}\left(Q_{n}\right)$ and $\left(R_{n} \circ Q_{n}\right)^{T}=\left(Q_{n}\right)^{T} \circ\left(R_{n}\right)^{T}$.
It was noted in [4] that the set of all invertible rhotrices of size n with entries in set of real numbers together with the binary operation of row and column method of rhotrix multiplication is a group. This idea of a rhotrix group given in [4] provides us with the motivation to consider its generalization for our study under the class of non-commutative general rhotrix group of size n over an arbitrary field F. The name results from the non-commutative but associative property of the row-column multiplication method.
In this paper, we shall adopt the row-column method for rhotrix multiplication in order to consider an algebraic study of noncommutative groups of rhotrices and their generalization. This will be achieved through our consideration of the pair $\left(G R_{n}(F), \circ\right)$, consisting of a set of all invertible rhotrices of size n having entries from an arbitrary field F and together with the binary operation of row-column method for rhotrix multiplication that forms a group of all non-singular rhotrices of size n, which we term as 'the non-commutative general rhotrix group. Weidentify certain subgroups of $\left(G R_{n}(F), \circ\right)$ and then proceed to show that its particular subgroup is embedded in a particular subgroup of the well-known general linear group. In the process, a number of theorems will be developed.

Journal of the Nigerian Association of Mathematical Physics Volume 30, (May, 2015), 49 - 64

2.0 Definitions

The following definition will serve in our discussion in subsequent sections:

2.1 Invertible rhotrix

A rhotrix R_{n} is said to be invertible or non- singular if the determinant is non-zero. That is R_{n} is invertible iff $\operatorname{det}\left(R_{n}\right) \neq 0$.

2.2 Set of all invertible rhotrices of size n

This is a collection of all rhotrices of size n with entries from a field F and satisfying the property that the determinant of all the rhotrices is non-zero. We denote such collection as $G R_{n}(F)$. Thus,
$G R_{n}(F)=\left\{\left(\begin{array}{cccccc} & & & a_{11} & & \\ & & a_{21} & c_{11} & a_{12} & \\ \\ & \ldots & \ldots & \ldots & \ldots & \ldots \\ a_{t 1} & \ldots & \ldots & \ldots & \ldots & \ldots \\ & \ldots & \ldots & \ldots & a_{1 t} \\ & & a_{t(t-1)} & c_{(t-1)(t-1)} & a_{(t-1) t} & \\ & & & a_{t t} & & \end{array}\right\}: a_{i j}, c_{l k} \in F\right.$ and $\left.\operatorname{det}\left(\left[a_{i j}\right]\right) \neq 0 \neq \operatorname{det}\left(\left[c_{l k}\right]\right)\right\}$,
where $1 \leq i, j \leq t, 1 \leq l, k \leq t-1 ; t=\frac{n+1}{2}$ and $n \in 2 Z^{+}+1$.

3.0 The Non-Commutative General rhotrix Group

In [4], it was noted that the set of all invertible rhotrices of sizen with entries from the set of real numbers is a group with respect to row-column method for rhotrix multiplication. We generalize this notion in the following theorem.

3.1 Theorem (A Generalization of Non-Commutativerhotrix Groups)

Let $G R_{n}(F)$ be the set of all invertible rhotrices with entries from an arbitrary field F and let obe the row-column method for rhotrix multiplication. Then, the pair $\left(G R_{n}(F), \circ\right)$ is a non-commutative general rhotrix group of size n over F.

Proof

We shall show that the pair $\left(G R_{n}(F), \circ\right)$ is a group under the binary operation of row-column multiplication of rhotrices. i.e. we shall show that the following group axioms are satisfied:
(i) Closure:

For any two rhotrices of $A_{n}, B_{n} \in G R_{n}(F), \operatorname{det}\left(A_{n}\right) \neq 0 \Rightarrow A_{n}$ is invertible, and $\operatorname{det}\left(B_{n}\right) \neq 0 \Rightarrow B_{n}$ is invertible.
Now, $A_{n} \circ B_{n} \in G R_{n}(F)$ since $\operatorname{det}\left(A_{n} \circ B_{n} \neq \operatorname{det}\left(A_{n}\right) \cdot \operatorname{de} \boldsymbol{B}_{n} \neq\right)$
Thus, $G R_{n}(F)$ is closed under the group binary operation.
(ii) Associativity:

For all A_{n}, B_{n} and $C_{n} \in G R_{n}(F)$

$$
\left(A_{n} \circ B_{n}\right) \circ C_{n}=A_{n} \circ\left(B_{n} \circ C_{n}\right)
$$

(iii) Existence of identity:

$$
\text { For each } R_{n} \in G R_{n}(F), \exists
$$

such that $I_{n} \circ R_{n}=R_{n} \circ I_{n}=R_{n}$
(iv) Existence of inverse:
for each $A_{n} \in G R_{n}(F), \exists A_{n}^{-1} \in G R_{n}(F)$ such that $A_{n} \circ A_{n}^{-1}=I_{n} \in G R_{n}(F)$.
Hence, the pair $\left(G R_{n}(F), \circ\right)$ is a non-commutative general rhotrix group of size n over F.

3.2 Corollary

Let $G R_{n}(\mathfrak{R})$ be the set of all invertible rhotrices of size n with entries in \mathfrak{R}. Let o be the row-column multiplication of rhotrices; then the pair $\left(G R_{n}(\Re), \circ\right)$ is the general non-commutative group of all invertible real rhotrices of size n.
Proof
By substituting $F=\mathfrak{R}$ in theorem 3.1 above, the result follows.

3.3 Corollary

The pair $\left(G R_{3}(\mathfrak{R}), \circ\right)$ is a general non-commutative group of all invertible real rhotrices of size 3 .

Proof

Putting $F=\mathfrak{R}$ and $n=3$ in theorem 3.1, it follows that the pair $\left(G R_{3}(\mathfrak{R}), \circ\right)$ is the general non-commutative group of all invertible real rhotrices of size 3 .
This completes the proof.

3.4 Theorem

The non-commutative general rhotrixgroup $\left(G R_{n}(F), \circ\right)$ is embedded in the general linear group $\left(G L_{n}(F), \cdot\right)$.
Proof
Let $\left(G R_{n}(F), \circ\right)$ be a group of all invertible n-dimensional rhotrices and let $\left(G L_{n}(F), \cdot\right)$ be the group of all invertible matrices of dimension $n x n$. We define the mapping
$\theta:\left(\left(G R_{n}(F), \circ\right)\right) \rightarrow\left(G L_{n}(F), \cdot\right)$ by

That is θ maps each R_{n} in $G R_{n}(F)$ to its corresponding filled coupled matrix M_{n} in $\left(G L_{n}(F), \cdot\right)$
\circ and - denote respectively, the row-column based method for multiplication of rhotrices and the usually matrix multiplication.

Proof

Clearly, θ is a $1-1$ homomorphism since no two different rhotrices may have the same filled coupled matrix, hence $\left(G R_{n}(F), \circ\right)$ is embedded $\operatorname{in}\left(G L_{n}(F), \cdot\right)$. This completes the proof.

4.0 Subgroups of Non-Commutative General rhotrix Group Definition (Unitary rhotrix)
 A rhotrix R_{n} is called a unitary rhotrix if the determinant of R_{n} is equal to 1 .
 We denote the set of all such unitary rhotrices of size n with entries from field F as $S R_{n}(F)$. Thus,

$\left.\left.S R_{n}(F)=\left\{\begin{array}{cccccccc} \\ & & & a_{11} & & & \\ & & a_{21} & c_{11} & a_{12} & & \\ & a_{31} & c_{21} & a_{22} & c_{12} & a_{13} & & \\ & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \\ a_{t 1} & \ldots \\ & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \\ & a_{t(t-2)} & c_{(t-1)(t-2)} & a_{t(t)(t-1)} & c_{(t-2)(t-1)} & a_{(t-2) t} & & \\ & & a_{t(t-1)} & c_{(t-1)(t-1)} & a_{(t-1) t} & & \end{array}\right): a_{i j}, c_{l k} \in F, \operatorname{det}\left(\left[a_{i j}\right]\right)=1=\operatorname{det}\left(\left[c_{l k}\right]\right)\right),\right\}$

4.1 Theorem

The pair $\left(S R_{n}(F), \circ\right)$ is a special rhotrix subgroup of $\left(G R_{n}(F), \circ\right)$.
Proof
Since $I_{n} \in S R_{n}(F)$, then $S R_{n}(F) \neq \varnothing$.
Now, Let A_{n} and $B_{n} \in S R_{n}(F)$,
Then it follows that, $\operatorname{det}\left(A_{n}\right)=1 \neq 0$ and $\operatorname{det}\left(B_{n}\right)=1 \neq 0$ respectively. This implies that for each A_{n} and $B_{n} \in S R_{n}(F)$,
$\exists A_{n}^{-1}$ and $B_{n}^{-1} \in S R_{n}(F) \ni A_{n} \circ B_{n}^{-1} \in S R_{n}(F)$ and $\operatorname{det}\left(A_{n} \circ B_{n}^{-1}\right)=\operatorname{det}\left(A_{n}\right) \circ \operatorname{det}\left(B_{n}^{-1}\right)=1 \circ 1^{-1}=1$
Hence $\left(S R_{n}(F), \circ\right)$ is a subgroup of $\left(G R_{n}(F), \circ\right)$.

4.2 Theorem

The special rhotrix subgroup $\left(S R_{n}(F), \circ\right)$ of $\left(G R_{n}(F), \circ\right)$ is a embedded in the special linear subgroup $\left(S L_{n}(F), \cdot\right)$ of $\left(G L_{n}(F), \cdot\right)$.
Proof
Let $\left(S R_{n}(F), \circ\right)$ be a special rhotrix group of $\left(G R_{n}(F), \circ\right)$ and let $\left(S L_{n}(F), \cdot\right)$ be a special linear subgroup of $\left(G L_{n}(F), \cdot\right)$ We define a mapping $\theta:\left(S R_{n}(F), \circ\right) \rightarrow\left(S L_{n}(F), \cdot\right)$ by

Where θ maps each R_{n} in $S R_{n}(F)$ to its corresponding filled coupled matrix M_{n} in $\left(S L_{n}(F), \cdot\right)$ It is clear to see that θ is an injective homomorphism, furthermore,

Hence the result.

Definition (Diagonal rhotrix)

A rhotrix R_{n} is called a diagonal rhotrix if all the elements in the vertical diagonal are non-zero, while others are zeros. We denote the set of all invertible diagonal rhotrices of size n as $D R_{n}(F)$. Thus,

4.3 Theorem

The pair $\left(D R_{n}(F), \circ\right)$ is a rhotrix subgroup of $\left(G R_{n}(F), \circ\right)$.
Proof

it follows that $\operatorname{det}\left(A_{n}\right) \neq 0$ and $\operatorname{det}\left(B_{n}\right) \neq 0$ respectively. Implying that A_{n}^{-1} and B_{n}^{-1} exist in $D R_{n}(F)$.
So,

Hence $\left(D R_{n}(F), \circ\right)$ is a rhotrix subgroup of $\left(G R_{n}(F), \circ\right)$

4.4 Theorem

The Diagonal rhotrix subgroup $\left(D R_{n}(F), \circ\right)$ of $\left(G R_{n}(F), \circ\right)$ is embedded in the diagonal linear subgroup $\left(D L_{n}(F), \cdot\right)$ of $\left(G L_{n}(F), \cdot\right)$
Proof
Let $\left(D R_{n}(F), \circ\right)$ be a diagonal rhotrix subgroup of $\left(G R_{n}(F), \circ\right)$ and let $\left(D L_{n}(F), \cdot\right)$ be a diagonal linear subgroup of $\left(G L_{n}(F), \cdot\right)$,

We define a mapping $\phi:\left(D R_{n}(F), \circ\right) \rightarrow\left(D L_{n}(F), \cdot\right)$ by
$\phi\left(\begin{array}{ccccccccc} \\ & & & & a_{11} & & & \\ & & 0 & c_{11} & 0 & & \\ & & 0 & 0 & a_{22} & 0 & 0 & & \\ & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & & \\ 0 & \ldots & 0 \\ & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & & \\ & & 0 & 0 & 0 & 0 & 0 & & \\ & & & 0 & c_{(t-1)(t-1)} & 0 & & & \end{array}\right)=\left[\begin{array}{ccccccccc}a_{11} & 0 & 0 & 0 & \ldots & \ldots & \ldots & 0 & 0 \\ 0 & c_{11} & 0 & 0 & \ldots & \ldots & \ldots & 0 & 0 \\ 0 & 0 & a_{22} & 0 & \ldots & \ldots & \ldots & 0 & 0 \\ \ldots & \ldots \\ \ldots & \ldots \\ \ldots & \ldots \\ 0 & 0 & 0 & 0 & \ldots & \ldots & \ldots & 0 & 0 \\ 0 & 0 & 0 & 0 & \ldots & \ldots & \ldots & c_{(t-1)(t-1)} & 0 \\ 0 & 0 & 0 & 0 & \ldots & \ldots & \ldots & 0 & a_{t t}\end{array}\right]$

Where ϕ mapped each rhotrix R_{n} in $D R_{n}(F)$, to its filled coupled matrix M_{n} in $D L_{n}(F)$, Clearly, it ϕ is an injective homomorphism. Since no two rhotrices have the same filled coupled matrix, hence the diagonal rhotrix subgroup is embedded in the diagonal linear subgroup.

Definition (Scalar rhotrix)

A rhotrix R_{n} is called a scalar rhotrix if all the elements in the vertical diagonal are non-zero scalar, while others are zero(s).
Scalar rhotrices are rhotrices of the form $K I$, where I is the identity rhotrix and K is a non-zero constant.
We denote the set of all invertible scalar rhotrices of size n as $K R_{n}(F)$.

4.5 Theorem

The pair $\left(K R_{n}(F), \circ\right)$ is a rhotrix subgroup of $\left(G R_{n}(F), \circ\right)$
Proof
$K R_{n}(F) \neq \varnothing$ since $I_{n}=\left(\begin{array}{ccccccc} & & & 1 & & & \\ & & 0 & 1 & 0 & & \\ & & \ldots & \ldots & \ldots & \ldots & \ldots \\ 0 & \ldots & \ldots & 1 & \ldots & \ldots & 0 \\ & \ldots & \ldots & \ldots & \ldots & \ldots & \\ & & 0 & 1 & 0 & & \end{array}\right) \in K R_{n}(F)$.

It follows that $\operatorname{det}\left(A_{n}\right) \neq 0$ and $\operatorname{det}\left(B_{n}\right) \neq 0$ respectively. Implying that A_{n}^{-1} and B_{n}^{-1} exist in $K R_{n}(F)$.
So,

Journal of the Nigerian Association of Mathematical Physics Volume 30, (May, 2015), 49 - 64

Hence $\left(K R_{n}(F), \circ\right)$ is a rhotrix subgroup of $\left(G R_{n}(F), \circ\right)$

4.6 Theorem

The scalar rhotrix subgroup $\left(K R_{n}(F), \circ\right)$ of $\left(G R_{n}(F), \circ\right)$ is embedded in the Scalar linear subgroup $\left(K L_{n}(F), \cdot\right)$ of $\left(G L_{n}(F), \cdot\right)$
Proof
Let $\left(K R_{n}(F), \circ\right)$ be a scalar rhotrix subgroup of $\left(G R_{n}(F), \circ\right)$ and let $\left(K L_{n}(F), \cdot\right)$ be a scalar linear subgroup of $\left(G L_{n}(F), \cdot\right)$,
We define a mapping $\mu:\left(K R_{n}(F), \circ\right) \rightarrow\left(K L_{n}(F), \cdot\right)$ by
$\mu\left(\begin{array}{ccccccccc} \\ & & & & a_{11} & & & \\ \\ & & 0 & a_{11} & 0 & & & \\ & & 0 & a_{11} & 0 & 0 & & \\ & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & & \\ 0 & \ldots & 0 \\ & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & & \\ & & 0 & 0 & 0 & 0 & 0 & & \\ & & & 0 & a_{11} & 0 & & & \end{array}\right)=\left[\begin{array}{ccccccccc}a_{11} & 0 & 0 & 0 & \ldots & \ldots & \ldots & 0 & 0 \\ 0 & a_{11} & 0 & 0 & \ldots & \ldots & \ldots & 0 & 0 \\ 0 & 0 & a_{11} & 0 & \ldots & \ldots & \ldots & 0 & 0 \\ \ldots & \ldots \\ \ldots & \ldots \\ \ldots & \ldots \\ 0 & 0 & 0 & 0 & \ldots & \ldots & \ldots & 0 & 0 \\ 0 & 0 & 0 & 0 & \ldots & \ldots & \ldots & a_{11} & 0 \\ 0 & 0 & 0 & 0 & \ldots & \ldots & \ldots & 0 & a_{11}\end{array}\right]$

Where μ maps each rhotrix R_{n} in $K R_{n}(F)$, to its filled coupled matrix M_{n} in $K L_{n}(F)$, clearly, it follows that:
$\mu\left(A_{n} \circ B_{n}\right)=\mu\left(A_{n}\right) \cdot \mu\left(B_{n}\right) \forall A_{n}, B_{n} \in G R_{n}(F)$
μ is a homomorphism. Also, μ is $1-1$ since no two rhotrices have the same filled coupled matrix.
Definition (Left triangular rhotrix)
A rhotrix R_{n} is called a left triangular rhotrix if all the elements in the right of the vertical diagonal are all zero.
We denote the set of all invertible left triangular rhotrices of size n as $L T R_{n}(F)$.

Journal of the Nigerian Association of Mathematical Physics Volume 30, (May, 2015), 49 - 64

4.7 Proposition

If A_{n} and B_{n} are left triangular rhotrices, then their product $A_{n} \circ B_{n}$, is a left triangular rhotrix.
Proof
Suppose $A_{n}=\left\langle a_{i_{1} j_{1}}, c_{l_{1} k_{1}}\right\rangle$ and $B_{n}=\left\langle b_{i_{2} j_{2}}, d_{l_{2} k_{2}}\right\rangle$ are left triangular rhotrices such that $i<j$ and $l<k$, we will show that $A_{n} \circ B_{n}=O_{n}$ such that O_{n} is the zero rhotrix.
i.e. $a_{i j} \circ b_{i j}=0$ if $i<j$ and $c_{l k} \circ d_{l k}=0$ if $l<k$,

From the multiplication of rhotrices,

$$
\begin{aligned}
& A_{n} \circ B_{n}=\left\langle a_{i_{1} j_{1}}, c_{l_{1} k_{1}}\right\rangle \circ\left\langle b_{i_{2} j_{2}}, d_{l_{2} k_{2}}\right\rangle \\
& =\left\langle\sum_{i_{2} j_{1}}^{t}\left(a_{i_{1} j_{1}} b_{i_{2} j_{2}}\right), \sum_{l_{2} k_{1}}^{t-1}\left(c_{l_{1} k_{1}} d_{l_{2} k_{2}}\right)\right\rangle \\
& =\left\langle\sum_{i_{2} j_{1}=1}^{i-1}\left(a_{i_{1} j_{1}} b_{i_{2} j_{2}}\right), \sum_{l_{2} k_{1}=1}^{l-1}\left(c_{l_{1} k_{1}} d_{l_{2} k_{2}}\right)\right\rangle+\left\langle\sum_{i_{2} j_{1}=i}^{t}\left(a_{i_{1} j_{1}} b_{i_{2} j_{2}}\right), \sum_{l_{2} k_{1}=l}^{t-1}\left(c_{l_{1} k_{1}} d_{l_{2} k_{2}}\right)\right\rangle
\end{aligned}
$$

Observe that for each term of the first sum $i<i_{2} j_{1}, \quad l<l_{2} k_{1}$, so $\left\langle b_{i_{2} j_{2}}, d_{l_{2} k_{2}}\right\rangle=0$ since B_{n} is a left triangular rhotrix.
For each term of the second sum, $i_{2} j_{1}<i, \quad l_{2} k_{1}<l$, so $\left\langle a_{i_{1} j_{1}}, c_{l_{1} k_{1}}\right\rangle=0$ since A_{n} is a left triangular rhotrix.
Therefore each term in the sum is zero so we get $\left(A_{n} \circ B_{n}\right)=O_{n}$ hence the proof.

4.8 Theorem

The pair $\left(L T R_{n}(F), \circ\right)$ is a rhotrix subgroup of $\left(G R_{n}(F), \circ\right)$.
Proof
Since $I_{n}=\left(\begin{array}{ccccccc} & & & 1 & & \\ & & 0 & 1 & 0 & & \\ & & \ldots & \ldots & \ldots & \ldots & \ldots \\ \\ & \ldots & \ldots & 1 & \ldots & \ldots & 0 \\ & \ldots & \ldots & \ldots & \ldots & \ldots & \\ & & 0 & 1 & 0 & \\ \\ & & & 1 & & \end{array}\right) \in \operatorname{LTR}_{n}(F)$, then $\operatorname{LTR}_{n}(F) \neq \varnothing$.
Let
$A_{n}=\left\langle a_{i j}, c_{l k}\right\rangle=\left(\begin{array}{cccccccc} \\ & & & & a_{11} & & & \\ & & & a_{21} & c_{11} & 0 & & \\ & & a_{31} & c_{21} & a_{22} & 0 & 0 & \\ \\ & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \\ a_{t 1} & \ldots \\ & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \\ & & a_{t(t-2)} & c_{(t-1)(t-2)} & a_{(t-1)(t-1)} & 0 & 0 & \\ \\ & & & a_{t(t-1)} & c_{(t-1)(t-1)} & 0 & & \\ & & & & & a_{t t} & & \\ & & & & & & \end{array}\right)$
and $B_{n}=\left\langle b_{i j}, d_{l k}\right\rangle=\left(\begin{array}{ccccccccc} \\ & & & & b_{11} & & & \\ & & & b_{21} & d_{11} & 0 & & & \\ & & b_{31} & d_{21} & b_{22} & 0 & 0 & & \\ & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & & \\ b_{t 1} & \ldots & 0 \\ & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & & \\ & & b_{t(t-2)} & d_{(t-1)(t-2)} & b_{(t-1)(t-1)} & 0 & 0 & & \\ & & & b_{t(t-1)} & d_{(t-1)(t-1)} & 0 & & & \\ & & & & & b_{t t} & & & \\ & & & & & & \end{array}\right)$
be two rhotrices of size n in $\operatorname{LTR}_{n}(F)$, it follows that $\left(A_{n} \circ B_{n}\right) \in L T R_{n}(F)$ from proposition 1.
So the set $L T R_{n}(F)$ is closed under the operation of rhotrix multiplication.
Next, for any $A_{n} \in L T R_{n}(F), A_{n}^{-1} \in L T R_{n}(F)$ since $\operatorname{det}\left(A_{n}\right) \neq 0$
Now we have $\left(A_{n} \circ B_{n}^{-1}\right) \in \operatorname{LTR}_{n}(F) \forall A_{n}, B_{n} \in L T R_{n}(F)$
Hence $\left(L T R_{n}(F), \circ\right)$ is a subgroup of $\left(G R_{n}(F), \circ\right)$

4.9 Theorem

Let $\left(L T R_{n}(F), \circ\right)$ be the left triangular rhotrix subgroup of $\left(G R_{n}(F), \circ\right)$ and let $\left(L T L_{n}(F), \cdot\right)$ be the lower triangular linear subgroup of $\left(G L_{n}(F), \cdot\right)$ then $\left(L T R_{n}(F), \circ\right)$ is embedded in $\left(L T M_{n}(F), \cdot\right)$.
Proof
Let $\left(L T R_{n}(F), \circ\right)$ be a Left triangular rhotrix subgroup and let $\left(L T L_{n}(F), \cdot\right)$ lower triangular linear subgroup,
We define a mapping $\varphi:\left(\operatorname{LTR}_{n}(F), \circ\right) \rightarrow\left(\operatorname{LTM}_{n}(F), \cdot\right)$ by

Where φ maps every left triangular rhotrix to its correspondence filled coupled lower triangular matrix. We observe that φ is an injective homomorphism Hence, the left triangular rhotrix subgroup is embedded in the left triangular matrix group.

Definition Special left triangular rhotrix

A rhotrix R_{n} is called a special left triangular rhotrix if all the elements in the right of the vertical diagonal are all zero and $\operatorname{det}\left(R_{n}\right)=1$.

We denote the set of all special left triangular rhotrices of size n as $L T R_{n}^{*}(F)$.

Journal of the Nigerian Association of Mathematical Physics Volume 30, (May, 2015), 49 - 64

4.10 Theorem

Let $\left(L T R_{n}^{*}(F), \circ\right.$) be the special right triangular rhotrix subgroup of $\left(G R_{n}(F), \circ\right)$ and let $\left(S R_{n}(F), \circ\right)$ be the special rhotrix subgroup of $\left(G R_{n}(F), \circ\right)$, then the pair $\left(L T R_{n}^{*}(F), \circ\right)$ is a rhotrix subgroup of $\left(S R_{n}(F), \circ\right)$.
Proof
Since $I_{n} \in L T R_{n}^{*}(F)$ then $R T R_{n}^{*}(F) \neq \varnothing$.
Now, Let A_{n} and $B_{n} \in L T R_{n}^{*}(F)$,
Then $\operatorname{det}\left(A_{n}\right)=1 \neq 0 \operatorname{det}\left(B_{n}\right)=1 \neq 0$ respectively. This implies that for each $A_{n}, B_{n} \in L T R_{n}^{*}(F) \exists A_{n}^{-1}$ and $B_{n}^{-1} \in L T R_{n}^{*}(F) \ni A_{n} \circ B_{n}^{-1} \in L T R_{n}^{*}(F)$ and $\operatorname{det}\left(A_{n} \circ B_{n}^{-1}\right)=\operatorname{det}\left(A_{n}\right) \cdot \operatorname{det}\left(B_{n}^{-1}\right)=1 \cdot 1^{-1}=1$
Hence $\operatorname{LTR}_{n}^{*}(F)$ is a subgroup of $\left(S R_{n}(F), \circ\right)$

Definition (Right triangular rhotrix)

A rhotrix R_{n} is called a right triangular rhotrix if all the elements in the left of the vertical diagonal are all zero.
We denote the set of all invertible right triangular rhotrices of size n as $R T R_{n}(F)$

4.11 Proposition

If A_{n} and B_{n} are right triangular rhotrices, then their product $A_{n} \circ B_{n}$, is a right triangular rhotrix.
Proof
Suppose $A_{n}=\left\langle a_{i_{1} j_{1}}, c_{l k_{1} k_{1}}\right\rangle$ and $B_{n}=\left\langle b_{i_{2} j_{2}}, d_{l_{2} k_{2}}\right\rangle$ are right triangular rhotrices such that $i>j$ and $l>k$, we will show that $A_{n} \circ B_{n}=O_{n}$ such that O_{n} is the zero rhotrix.
i.e. $a_{i j} \circ b_{i j}=0$ if $i>j$ and $c_{l k} \circ d_{l k}=0$ if $l>k$,

From the multiplication of rhotrices,

$$
\begin{aligned}
& A_{n} \circ B_{n}=\left\langle a_{i_{1} j_{1}}, c_{l_{1} k_{1}}\right\rangle \circ\left\langle b_{i_{2} j_{2}}, d_{l_{2} k_{2}}\right\rangle \\
& =\left\langle\sum_{i_{2} j_{1}}^{t}\left(a_{i j_{1} j_{1}} b_{i_{2} j_{2}}\right), \sum_{l_{2} k_{1}}^{t-1}\left(c_{l_{1} k_{1}} d_{l_{2} k_{2}}\right)\right\rangle \\
& =\left\langle\sum_{i, j_{i}=1}^{i-1}\left(a_{i, j_{1}} b_{i_{2} j_{2}}\right), \sum_{l_{2} k_{1}=1}^{l-1}\left(c_{l k_{1} k_{1}} d_{l_{2} k_{2}}\right)\right\rangle+\left\langle\sum_{i_{2} j_{i}=i}^{t}\left(a_{i, j_{1}} b_{i_{2} j_{2}}\right), \sum_{l_{2} k_{1}=l}^{t-1}\left(c_{l, k_{1}} d_{l_{l} k_{2}}\right)\right\rangle
\end{aligned}
$$

Observe that for each term of the first sum $i>i_{2} j_{1}, \quad l>l_{2} k_{1}$, so $\left\langle b_{i_{2} j_{2}}, d_{l_{2} k_{2}}\right\rangle=0$ since B_{n} is a right triangular rhotrix.
For each term of the second sum, $i_{2} j_{1}>i, \quad l_{2} k_{1}>l$, so $\left\langle a_{i_{1} j_{1}}, c_{l k_{1} k_{1}}\right\rangle=0$ since A_{n} is a left triangular rhotrix.
Therefore each term in the sum is zero so we get $\left(A_{n} \circ B_{n}\right)=O_{n}$ hence the proof.

4.12 Theorem

The pair $\left(R T R_{n}(F), \circ\right)$ is a rhotrix subgroup of $\left(G R_{n}(F), \circ\right)$.
Proof

and

$$
B_{n}=\left\langle b_{i j}, d_{l k}\right\rangle=\left(\begin{array}{ccccccccc}
& & & & b_{11} & & & & \\
& & & 0 & d_{11} & b_{12} & & & \\
& & 0 & 0 & b_{22} & d_{12} & b_{13} & & \\
& \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & & \\
0 & \ldots & b_{1 t} \\
& \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & & \\
& & 0 & 0 & b_{(t-1)(t-1)} & d_{(t-2)(t-1)} & b_{(t-2) t} & & \\
& & & 0 & d_{(t-1)(t-1)} & b_{(t-1) t} & & &
\end{array}\right)
$$

be two rhotrices of size n in $R T R_{n}(F)$, it follows that $\left(A_{n} \circ B_{n}\right) \in R T R_{n}(F)$ from proposition 2.
So the set $R T R_{n}(F)$, is closed under the operation of rhotrix multiplication.
Next, for any $A_{n} \in R T R_{n}(F), A_{n}^{-1} \in R T R_{n}(F)$ since $\operatorname{det}\left(A_{n}\right) \neq 0$
Now we have $\left(A_{n} \circ B_{n}^{-1}\right) \in R T R_{n}(F) \forall A_{n}, B_{n} \in R T R_{n}(F)$.
Hence $\left(R_{n}(F), \circ\right)$ is a subgroup of $\left(G R_{n}(F), \circ\right)$

4.13 Theorem

Let $\left(R T R_{n}(F), \circ\right)$ be the right triangular rhotrix subgroup of $\left(G R_{n}(F), \circ\right)$ and let $\left(U T M_{n}(F), \cdot\right)$ be the upper triangular linear subgroup of $\left(G L_{n}(F), \cdot\right)$, then $\left(R T R_{n}(F), \circ\right)$ is embedded in $\left(U T M_{n}(F), \cdot\right)$
Proof
Let $\left(R T R_{n}(F), \circ\right)$ be a Left triangular rhotrix subgroup and let $\left(U T M_{n}(F), \cdot\right)$ upper triangular matrix group,
We define a mapping $\varphi:\left(R T R_{n}(F), \circ\right) \rightarrow\left(U T M_{n}(F), \cdot\right)$ by

Where φ maps every right triangular rhotrix to its correspondence filled coupled upper triangular matrix. We observe that φ is an injective homomorphism hence the right triangular rhotrix group is embedded in the upper triangular matrix group.

Definition Special right triangular Rhotrix

A rhotrix R_{n} is called a special right triangular rhotrix if all the elements in the left of the vertical diagonal are all zero and $\operatorname{det}\left(R_{n}\right)=1$.

We denote the set of all special right triangular rhotrices of size n as $R T R_{n}^{*}(F)$. Thus,

4.14 Theorem

Let $\left(R T R_{n}^{*}(F), \circ\right)$ be the special right triangular rhotrix subgroup of $\left(G R_{n}(F), \circ\right)$ and let $\left(S R_{n}(F)\right.$, $\left.\circ\right)$ be the special rhotrix subgroup of $\left(G R_{n}(F), \circ\right)$, then the pair $\left(R T R_{n}^{*}(F), \circ\right)$ is a rhotrix subgroup of $\left(S R_{n}(F), \circ\right)$
Proof
Since $I_{n} \in R T R_{n}^{*}(F)$ then $R T R_{n}^{*}(F) \neq \varnothing$.
Now, Let A_{n} and $B_{n} \in \operatorname{RTR}_{n}^{*}(F)$,
Then $\operatorname{det}\left(A_{n}\right)=1 \neq 0 \operatorname{det}\left(B_{n}\right)=1 \neq 0$ respectively. This implies that for each A_{n} an $B_{n} \in R T R_{n}^{*}(F) \exists A_{n}^{-1}$ and $B_{n}^{-1} \in R T R_{n}^{*}(F) \ni A_{n} \circ B_{n}^{-1} \in R T R_{n}^{*}(F)$ and $\operatorname{det}\left(A_{n} \circ B_{n}^{-1}\right)=\operatorname{det}\left(A_{n}\right) \cdot \operatorname{det}\left(B_{n}^{-1}\right)=1 \cdot 1^{-1}=1$
Hence $R T R_{n}^{*}(F)$ is a subgroup of $\left(S R_{n}(F), \circ\right)$.

5.0 Isomorphisms Between some Subgroups of Non-Commutative General rhotrix Group
 5.1 Theorem

Let φ be a mapping from $\left(L T R_{n}(F), \circ\right)$ to $\left(R T R_{n}(F), \circ\right)$ defined by

Journal of the Nigerian Association of Mathematical Physics Volume 30, (May, 2015), 49 - 64

Then the mapping φ is an isomorphism.
Proof
Let $\left(\operatorname{LTR}_{n}(F), \circ\right)$ and $\left(R T R_{n}(F), \circ\right)$ be the group of all left triangular rhotrices of size n and the group of all right triangular rhotrices of size n respectively, we define a mapping

$$
\varphi:\left(\operatorname{LTR}_{n}(F), \circ\right) \rightarrow\left(R T R_{n}(F), \circ\right)
$$

by

$$
\varphi\left(R_{n}\right)=\varphi\left(\left\langle a_{i j}, c_{l k}\right\rangle\right)=\left\langle a_{j i}, c_{k l}\right\rangle
$$

This is a homomorphism since if $R_{n}=\left\langle a_{i_{1} j_{1}}, c_{l_{1} k_{1}}\right\rangle$ and $Q_{n}=\left\langle b_{i_{2} j_{2}}, d_{l_{2} k_{2}}\right\rangle$ then

$$
\begin{aligned}
\varphi\left(R_{n} \circ Q_{n}\right) & =\varphi\left(\left\langle a_{i_{1} j_{1}}, c_{l_{1} k_{1}}\right\rangle \circ\left\langle b_{i_{2} j_{2}}, d_{l_{2} k_{2}}\right\rangle\right) \\
& =\varphi\left(\sum_{i_{2} j_{1}=1}^{t} a_{i_{1} j_{1}} b_{i_{2} j_{2}}, \sum_{l_{2} k_{1}=1}^{t-1} c_{l_{1} k_{1}} d_{l_{2} k_{2}}\right) \\
& =\left(\sum_{i_{2} j_{1}=1}^{t} a_{j_{1} i_{1}} b_{j_{2} i_{2}}, \sum_{l_{2} k_{1}=1}^{t-1} c_{k_{1} l_{1}} d_{k_{2} l_{2}}\right) \\
& =\left\langle a_{j_{1} i_{1}}, c_{k_{1} l_{1}}\right\rangle \circ\left\langle b_{j_{2} i_{2}}, d_{k_{2} l_{2}}\right\rangle \\
& =\varphi\left(\left\langle a_{i_{1} j_{1}}, c_{l_{1} k_{1}}\right\rangle\right) \circ \varphi\left(\left\langle b_{i_{2} j_{2}}, d_{l_{2} k_{2}}\right\rangle\right) \\
& =\varphi\left(R_{n}\right) \circ \varphi\left(Q_{n}\right)
\end{aligned}
$$

Next, φ is a bijectionsince $\operatorname{ker}(\varphi)=\left\{I_{n} \in\left(L T R_{n}(F), \circ\right): \varphi\left(I_{n}\right)=I_{n}^{T} \in\left(R T R_{n}(F), \circ\right)\right\}$.

6.0 Conclusion

We have presented an algebraic study of non-commutative rhotrix groups and their generalizations as $\left(G R_{n}(F), \circ\right)$. We have identified the subgroups of $\left(G R_{n}(F), \circ\right)$ and showed the embedment of its particular subgroupto a particular subgroup of the well known general linear group. Furthermore, we investigated some isomorphic relationship between subgroups of $\left(G R_{n}(F), \circ\right)$. In the future, it may interesting to consider a number of topics on non-commutative rhotrix groups such as computingfinite groups of rhotrices, development of finite cyclic groups, as well as construction of composition series for non-commutative finite group of rhotrices.

7.0 Acknowledgement

We wish to thank Ahmadu Bello University, Zaria, Nigeria for funding this relatively new area of research.

8.0 References

[1]. Ajibade, A. O.: The concept of rhotrix in mathematical enrichment. Int. J. Math. Educ. Sci. Technol.34, 175-179 (2003)
[2]. Atanassov, K. T. and Shannon, A. G.: Matrix-tertions and matrix noitrets: exercises in mathematical enrichment. Int. J. Math. Educ. Sci. Technol. 29, 898-903 (1998)
[3]. Sani, B.: An alternative method for multiplication of rhotrices. Int. J. Math. Educ. Sci. Technol.35, 777-781(2004).
[4]. Sani, B.: The row-column multiplication for high dimensional rhotrices.Int. J. Math. Educ. Sci. Technol. 38, 657662 (2007)
[5]. Mohammed, A.: Enrichment exercises through extension to rhotrices. Int. J. Math. Educ. Sci. Technol.38, 131-136 (2007)
[6] Mohammed, A., Balarabe, M. and Imam, A. T.: On construction of rhotrix semigroup. Journal of the Nigerian Association of Mathematical Physics, 27(3), 69-76 (2014).

Journal of the Nigerian Association of Mathematical Physics Volume 30, (May, 2015), 49 - 64

