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Abstract

This paper deals with the numerical solution of second order linear partial
differential equations with the use of the method of lines coupled with the tau
collocation method. The method of lines is used to convert the partial differential
equation (PDE) to a sequence of ordinary differential equations (ODEs) which is
then solved by the tau collocation method to obtain an approximate continuous
solution in the spatial variable x at a fixed t-level.  The choice of the tau collocation
method over the tau method itself was due to the presence of some transcedental
functions since both methods produce approximate results. Numerical evidences show
that the method performs favourably well.
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1.0 Introduction
Most physical problems are generally described in scientific and engineering terms by partial differential equations. Partial
differential equations provide a mathematical description of physical spacetime and thus are one of the most widely used
form of mathematics.  Since analytical solutions are not always available, we seek for the solution by numerical,
computational or approximation methods.
Some numerical methods by appropriate transformation could be used to reduce the problem of solv- ing PDEs to ODEs. One
such method is the Method of lines (MOL)  [1, 2, 3].
We consider in this work a variant of the MOL which incorporates the tau method into the solution of the resulting ODEs.
The tau method which was originally proposed by Lanczos [4] for the solution of ODEs seeks the solution by solving a
slightly perturbed form of the ODE where the perturbation term is a linear combination of some Chebyshev polynomials.
Various modifications of the tau method have since been published. Ortiz [5] developed a recursive form of generating the
so-called canonical polynomials introduced into the tau method by Lanczos [4] for flexibility.  As the tau method was
originally developed for linear ODEs with polynomial coefficients, the collocation approach was later combined with it so as
to widen its scope of application to non-polynomial coefficient problems.
In this direction, we propose here a procedure which combines the tau method in its recursive formu- lation technique and the
collocation approach for handling partial differential equations.
In what follows and in the next section, we shall briefly review and present some antecedents necessary for our dicussion in
the sequel. Section 3 focusses on the description and/or development of the method. We shall be concerned with the
application of the technique to some examples in section 4. Finally, the paper closes with some concluding remarks in section
5.

2.0 Literature Review
2.1 The Tau Method
The tau method was initially  formulated as a tool for the approximation of special functions of math- ematical physics which
could be expressed in terms of simple differential equations. It developed into a powerful and accurate tool for the numerical
solution of complex differential and functional equations. The main idea in it is to approximate the solution of a given
problem by solving exactly an approximate problem.
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Accurate approximate polynomial solution of linear ODEs can be obtained by the tau method intro- duced by Lanczos [4].
The method is related to the principle of economization of a differential function defined by a linear differential equation with
polynomial coefficients.
To illustrate the tau method, we consider the m-th order linear differential equation.

( ) : = ( ) ( )( ) = ( ) (1)
with the smooth solution y(x), a ≤ x ≤ b , |a| < ∞, |b| < ∞ satisfying a set of multi-point boundary conditions.

∗ ( ) : = ( ) ( )( ) = , = 1(1) (2)
where ark , xrk , αk, r=0(1)(m-1), k=1(1)m are given real numbers (xrk are points belonging to the interval a ≤ x ≤ b at which
the conditions (2) are specified), f (x) and Pr(x), r=1(1)m  in (1) are polynomials or sufficiently close polynomials (such
polynomials can be derived using the tau method itself ). The idea of Lanczos is to approximate the solution of the
differential system (1) and (2) by an n-th degree polynomial function.( ) = , < ∞ (3)
which is the exact solution of a perturbed equation by adding a polynomial perturbation term to the right hand side of (1).
The polynomial yn(x) satisfies, then the differential system. ( ) : = ( ) ( )( ) = ( ) + ( ) (4)

∗ ( ) : = ( ) ( )( ) = , = 1(1) (5)
where the perturbation term is constructed in such a way that (4) and (5) has a polynomial solution of degree n.
Lanczos [4] took Hn(x)  to be a linear combination of powers of x multiplied by the Chebyshev poly- nomials. The choice of
the Chebyshev polynomials stems from the desire to distribute the errors defined by;| ( ) − ( )| (6)
evenly throughout the entire range [a, b].
Comparing the following two types of perturbation. ( )( ) = ( + + +⋯+ ) ( ) (7)

( )( ) = ( ) + ( ) + ⋯+ (8)
where τi,    i = 1(1)m, are τ -parameters to be  determined and Tn(x)  is the n-th  degree  Chebyshev polynomial of the first
kind in [a, b]. Hn

(1)(x)  is more economical from the point  of view of storage of Chebyshev polynomial coefficients whereas
Hn

(2)(x) is in general close to zero (being a finite Chebyshev series representation of zero) than the power series representation
(8).   This comparison explains the superior accuracy of the approximation yn(x) obtained from the use of Hn

(2)(x) to that of
Hn

(1)(x) .
For the purpose of accuracy, the form ( ) = ( ) (9)
is considered in this paper where m is the order of (1) and s, the number of over determination of (1), is defined by= { − : 0 ≤ ≤ }, ≥0, ℎ
where Nr is the degree of Pr(x) and r is the order of the derivative whose coefficient is Pr(x), r = 1(1)m
To determine the coefficients ar, r = 1(1)n in yn(x) from (3), a system of linear algebraic equation
Aτ = B, obtained by equating corresponding  coefficients of like powers of x in (4) and then applying conditions (5), is solved
for τ = (a0, a1, a2, …, an, τ1, τ2, …, τm+s)

T .  The tau method is of order p, in
the sense that if the the exact solution of (1) and (2) is itself a polynomial of degree less or equal to p, the method will
reproduce it [5, 6].
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2.2 The Method of Lines
The method of lines (MOL) is a technique that enables us to convert a partial differential equation into a set of ordinary
differential equations that, in some sense, are equivalent to the former partial differential equation.
Consider the simple heat equation. = (10)
Rather than looking at the solution u(x, t) everywhere in the two dimensional  space spanned by the spatial variable x and the
temporal variable t, we can discretize the spatial variable , and look at the solution ui(t) where the index i denotes a particular
point Xi in space. To this end, we replace the second order partial derivative of u with respect to x by a finite difference  such
as ≈ − 2 +( ) (11)
where δx (here equidistantly chosen) is the distance between two neighbouring discretization points in space, i.e, the so called
gridth-width  of the dicretization.
Inserting (11) into (10), we have ≈ − 2 +( ) (12)
and we have already converted the former PDE in u into a set of ODEs in ui.
In essence, the basic idea of the MOL is to dicretize all but one dimension of the PDE, i.e, discretizing the spatial derivatives
and leaving the time variable continuous. However, in this paper, we shall discretize the temporal variable and leave the
spatial variable undiscretized. With only one remaining independent variable, we have a system of ordinary differential
equations that approximate the PDE which can be solved by any intregation algorithm for initial  value solvers. Thus, one of
the salient features of the MOL is the use of existing and generally well-established numerical methods for ordinary
differential equations.

2.3 The Collocation Method
Basically, a collocation method is a method which involves the determination of an approximate solution in a suitable set of
functions sometimes called the trial or basis functions in which the approximate solution is required to satisfy the equation
and the conditions associated with it at certain points of the domain of definition called the collocation points [7].
The collocation method is not new but dates back to the 1930’s. According to Kantorovich and Akilov [8], the method was
first proposed by Kantorovich.  The method of Kantorovich was actually a method of lines collocation procedure for the
solution of partial differential equations in two variables with the collocation being applied in one variable for each fixed
value of the second. Also, the work of Frazer et al reported the applicability of collocation to the solution of PDEs. Collatz
[9] also dicussed collocation for both ordinary and partial differential equations and provided numerical examples.
The standard collocation method requires equal spacing of collocation points within  specified range of the problem at hand,
i.e. ∈ [ , ], = ℎ, = 1(1)( + 1)

ℎ = −+ 1
3.0 Description of the Method
In the description of the method, we shall consider the three major types of PDEs

3.1 Parabolic Equations
The simplest parabolic equation is given by; = (13)
and has the associated initial condition ( , ) = ( ), ≤ ≤ (14)
and the boundary conditions ( , ) = ( ), ( , ) = ( ), ≥ (15)
This problem is commonly solved by the finite difference scheme. In particular, we might use the Crank- Nicolson’s formula
which approximate (13) by the approximation.
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⇒ [ ( , + ) − ( , )] = ( , + ) + ( , )

where k1 = 2/δt
For r = 0
k1[u(x, t0 + δt) − u(x, t0)] = u"(x, t0 + δt) + u"(x, t0)⇒ u" (x, t0 + δt) − k1u(x, t0 + δt) = −[u" (x, t0) + k1u(x, t0)]
u(a, t0 + δt) = f1(t0 + δt), u(b, t0 + δt) = f2(t0 + δt)

Let v(x) = u(x, t0 + δt), we have
v" (x) − k1v(x) = −[g" (x) + k1g(x)]⇒ v" (x) − k1v(x) = h1(x)

where h1(x) = −[g" (x) + k1g(x)]
Thus, we have the two point boundary value problem

V" (x) − k1v(x) = h1(x) (16)
V(a) = α1 , v(b) = α2 (17)

where α1 = f1(t0 + δt) and α2 = f2(t0 + δt) are constants.
Thus the PDE (13) has been reduced to an equivalent two point boundary value problem. (This is the method of lines). We
therefore have a step by step process in it, the initial  conditions being used at the very first step.
Then, we use the tau collocation method to obtain an approximate continuous solution of (16) and (17) in x at a fixed t-step.

3.2 The Hyperbolic Equation
We consider the hyperbolic equation = (18)
with the conditions
u(x, t0) = g1(x)
ut(x, t0) = g2(x) x ∈ [a, b]
u(a, , t) = f1(t)
u(b, t) = f2(t) t ∈ [t0, c] or t ∈ [t0, ∞)
By using the technique of MOL, (18) reduces to( , + ) − 2 ( , ) + ( , + )( ) = 2 ( , + ) + ( , )

k2 [u(x, tr + δt) − 2 ( , ) + u(x, tr − δt)] = u" (x, tr + δt) + u"(x, tr)
where k2 = 2/c2(δt)2

For r = 0, we have
k2 [u(x, t0 + δt) − 2u(x, t0) + u(x, t0 − δt)] = u" (x, t0 + δt) + u"(x, t0)

The fictitious value u(x, t0 − δt) is eliminated using the central difference formula|( , ) = ( , + ) − ( , − )2( ) = ( )= ( , − ) = ( , + ) − 2( ) ( )
Thus, we have

k2 [u(x, t0 + δt) − 2u(x, t0) + u(x, t0 + δt) − 2(δt)g2(x)] = u" (x, t0 + δt) + u (x, t0)⇒ u" (x, t0 + δt) − 2k2u(x, t0 + δt) = −[u "(x, t0) + 2u(x, t0) + 2(δt)g2(x)]⇒ u" (x, t0 + δt) − 2k2u(x, t0 + δt) = h2(x)
where h2(x) = −[u "(x, t0) + 2u(x, t0) + 2(δt)g2(x)]
By letting v(x) = u(x, t0 + δt), we obtain

v'' (x) − 2k2v(x) = h2(x) (19)
v(a) = α1 , v(b) = α2 (20)

where α1 = f1(t0 + δt) and α2 = f2(t0 + δt) are constants.
We, then, solve the two  point  boundary value problem by the tau collocation method to obtain an approximate continuous
solution of (18) at a fixed t-step.
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9.0 The Elliptic  Equation
We consider the Laplace’s equation in two variables x and t+ = 0 (21)
with the conditions

u(x, t0) = g1(x)
ut(x, t0) = g2(x)
u(a, t) = f1(t)
u(b, t) = f2(t)

Following the same procedure  as in section (2.2), we obtain
v "(x) + 2k3v(x) = h2(x) (22)
v(a) = α1 v(b) = α2 (23)

where k3 = 2/(δt)2 and α1, α2 and h2(x) are as defined  in section (2.2)
We see that the second of the conditions associated with (18) and (21) (i.e ut(x, t0) = g2(x)) is always required to be able to
eliminate the fictitious value u(x, t0 − δt) for both hyperbolic and elliptic equations.
Also, solutions of further t-step can be obtained in a similar manner.

4.0 Numerical Examples
In this section,  we give  numerical examples to illustrate  the accuracy of the  Line-Tau Collocation method . We give the
exact errors (for different values of n) at some selected points calculated as Error
= |u(x, t0 + δt) − un(x, t0 + δt)|.
Example  4.1. We consider the parabolic PDE = 110 (24)
subject to the conditions

u(x, 0) = cos(πx) x ∈ [0, 1]
u(0, t) = exp(−t/10)

ux(1, t) = 0 t ∈ [0, ∞)
whose theoretical solution is u(x, t) = exp(−t/10) cos(πx)

The computational results for this example is given in Table 1.
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Table 1: Exact Errors for Example 4.1
x n = 5 n = 6 n = 7 n = 8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

6.28 × 10−3

4.20 × 10−3

2.01 × 10−3

5.60 × 10−3

4.81 × 10−3

1.05 × 10−3

2.77 × 10−3

3.81 × 10−3

1.18 × 10−3

1.61 × 10−3

2.41 × 10−3

7.90 × 10−4

2.97 × 10−3

1.33 × 10−3

1.41 × 10−3

2.31 × 10−3

7.92 × 10−3

1.17 × 10−3

1.05 × 10−3

4.06 × 10−3

1.86 × 10−3

3.29 × 10−3

1.55 × 10−3

2.46 × 10−3

2.51 × 10−3

6.86 × 10−4

2.35 × 10−3

3.21 × 10−4

1.40 × 10−3

2.73 × 10−4

1.84 × 10−4

1.96 × 10−3

1.42 × 10−3

1.68 × 10−3

1.04 × 10−3

1.59 × 10−3

5.88 × 10−4

1.13 × 10−3

6.63 × 10−4

3.38 × 10−5

Example  4.2. We consider the hyperbolic equation = (25)
with the conditions

u(x, 0) =

ut(x, 0) = 0, x ∈ [0, 1]
u(0, t) = 0
ux(1, t) = 0 t ∈ [0, ∞)

whose theoretical solution is

Table 2: shows the accuracy of our method for Example 4.2
x n = 5 n = 6 n = 7 n = 8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.27 × 10−4

8.61 × 10−5

1.12 × 10−6

5.65 × 10−5

4.85 × 10−5

1.15 × 10−5

8.14 × 10−5

1.12 × 10−4

7.93 × 10−5

3.65 × 10−5

1.39 × 10−6

1.65 × 10−5

2.83 × 10−5

3.28 × 10−5

3.36 × 10−5

3.60 × 10−5

4.22 × 10−5

4.95 × 10−5

5.22 × 10−5

5.04 × 10−5

7.65 × 10−6

1.58 × 10−5

2.30 × 10−5

2.94 × 10−5

3.53 × 10−5

4.07 × 10−5

4.50 × 10−5

4.79 × 10−5

4.96 × 10−5

5.03 × 10−5

7.87 × 10−6

1.55 × 10−5

2.28 × 10−5

2.96 × 10−5

3.56 × 10−5

4.07 × 10−5

4.48 × 10−5

4.78 × 10−5

4.97 × 10−5

5.03 × 10−5
Example  4.3. Lastly, we consider the Laplace’s equation in the rectangle with sides x = 0, t = 0, x = 1
and t = 1 with the associated initial  condition

u(x, 0) = sin(πx) ut(x, 0) = 0, 0 ≤ x ≤ 1
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and the boundary conditions
u(0, t) = 0 u(1, t) = 0, 0 ≤ t ≤ 1

whose analytical solution is sin(πx) cosh(πt)

Table 3: Gives the computational results for Example 4.3.
x n = 5 n = 6 n = 7 n = 8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2.25 × 10−2

2.75 × 10−2

1.24 × 10−2

1.22 × 10−2

3.11 × 10−2

3.11 × 10−2

8.26 × 10−3

2.75 × 10−2

4.73 × 10−2

8.88 × 10−16

2.35 × 10−4

5.18 × 10−4

7.13 × 10−4

7.89 × 10−4

8.02 × 10−4

7.89 × 10−4

7.13 × 10−4

5.18 × 10−4

2.35 × 10−4

0

2.68 × 10−4

3.61 × 10−4

6.56 × 10−4

8.91 × 10−4

9.04 × 10−4

7.62 × 10−4

6.08 × 10−4

4.95 × 10−4

3.27 × 10−4

1.11 × 10−16

2.60 × 10−4

4.94 × 10−4

6.81 × 10−4

8.00 × 10−4

8.40 × 10−4

8.00 × 10−4

6.81 × 10−4

4.94 × 10−4

2.60 × 10−4

7.22 × 10−16

5.0 Conclusion
A method which combines the idea of the MOL, the tau method and the collocation method for the solution of PDEs has
been presented.
The method has been illustrated with some examples and the numerical results show that it is effective and good for handling
PDEs. One advantage of the technique developed here is that the resulting solution is in continuous form, thus allowing for
several output of numerical values at no extra cost when compared to many other numerical schemes which are of the
discrete form.
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