On Some New Extensions and Generalizations of Eneström-Kakeya Theorem

Nurudeen T. Azeez and Adesanmi A. Mogbademu

Research Group in Mathematics and Applications (RGMA) Department of Mathematics, University of Lagos, Akoka Lagos.

Abstract
\section*{In this paper we obtain some new extensions and generalizations of the wellknown classical theorem of Eneström and Kakeya.}

Keywords and Phrases: Complex number, Polynomial, Zeros, Eneström-Kakeya theorem, Bounds, Modulii, Disk.

1.0 Introduction

The following important result due to Eneström and Kakeya [1] is well known in the theory of the location and distribution of the zeros of polynomials:
Theorem 1.1: Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n whose coefficients a_{j} satisfy

$$
a_{n} \geq a_{n-1} \geq \ldots \geq a_{1} \geq a_{0}>0
$$

Then all the zeros of $P(z)$ lie in the closed unit disk $|z| \leq 1$.
In the literature, there exist some extensions and generalization of Theorem 1.1.
Joyal et al. [2] extended Theorem 1.1 to polynomials whose coefficients are monotonic but not necessarily non-negative by proving the following results:
Theorem 1.2: Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n such that
$a_{n} \geq a_{n-1} \geq \ldots \geq a_{1} \geq a_{0}>0$.
Then all the zeros of $P(z)$ lie in
$|\mathrm{z}| \leq \frac{a_{n}+\left|a_{0}\right|-a_{0}}{\left|a_{n}\right|}$.
Recently, Aziz and Zagar [3] relaxed the hypothesis of Theorem 1.1 in several ways and they proved the following results:
Theorem1.3: Let $P(z)=\sum_{j=0}^{n} a_{j} \mathrm{z}^{j}$ be a polynomial of degree n such that for some $\mathrm{k} \geq 1$,
$\mathrm{k} a_{n} \geq a_{n-1} \geq \ldots \geq a_{1} \geq a_{0}>0$.
Then all the zeros of $P(z)$ lie in
$|\mathrm{z}+\mathrm{k}-1| \leq \mathrm{k}$.
Theorem 1.4: Let $P(z)=\sum_{j=0}^{n} a_{j} \mathrm{z}^{j}$ be a polynomial of degree n such that for some $\mathrm{k} \geq 1$
$\mathrm{k} a_{n} \geq a_{n-1} \geq \ldots \geq a_{1} \geq a_{0}$.
Then all the zeros of $P(z)$ lie in
$|\mathrm{z}+k-1| \leq \frac{k a_{n}+\left|a_{0}\right|-a_{0}}{\left|a_{n}\right|}$.
Theorem 1. 5: Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n, If for some positive number k and ρ with $k \geq$ 1 and $0<\rho \leq 1$,
$\mathrm{k} a_{n} \geq a_{n-1} \geq \ldots \geq a_{1} \geq a_{0}>0$.
Then all the zeros of $P(z)$ lie in the closed disk
$|\mathrm{z}+\mathrm{k}-1| \leq \mathrm{k}+\frac{2 a_{0}}{a_{n}}(1-\rho)$.
More recently, Gulzar [4] generalized these results to the class of polynomials with complex coefficients by proving the following result.
Theorem 1. 6: Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n with complex coefficients such that $\operatorname{Re} a_{j}=\alpha_{j}, \operatorname{Im} a_{j}$ $=\boldsymbol{\beta}_{\mathrm{j}}, \mathrm{j}=0,1, \ldots, \mathrm{n}$ and for some real number $\rho \geq 0$
$\rho+\alpha_{n} \geq \alpha_{n-1} \geq \ldots \geq \alpha_{1} \geq \alpha_{0}$.

Corresponding author: Nurudeen T. Azeez, E-mail: nurudeenazeez99@gmail.com, Tel.: +23408087660550
Journal of the Nigerian Association of Mathematical Physics Volume 30, (May, 2015), 1 - 4

On Some New Extensions and...

Then $P(z)$ has all its zeros in
$\left|z+\frac{\rho}{\alpha_{n}}\right| \leq \frac{\rho+\alpha_{n}+\left|\alpha_{0}\right|+2 \sum_{j=o}^{n}\left|\beta_{j}\right|}{\left|\alpha_{n}\right|}$.
In this paper, we state and prove some new extensions and generalizations of Eneström - Kakeya theorem.

2.0 Main Results

Theorem 2.1: Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n with complex coefficients, whose coefficients satisfies \geq $0,0 \leq \tau<0$ and $0 \leq \lambda \leq n-1$ such that
$(+1) a_{n} \leq a_{n-1} \leq \ldots \leq a_{\lambda} \geq \ldots \geq a_{1} \geq(1-\tau) a_{0}>0$.
Then $P(z)$ has all its zeros in
$|\mathrm{z}+1| \leq \frac{2 a_{\lambda}}{a_{n}}-\mu-1+\frac{2 a_{0}}{a_{n}} \tau$.
Observe that in Theorem 2. I, If we choose μ and τ such that $=k-1$ and $\tau=1-\rho$, we have the following corollary.
Corollary 2.1: Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n , where coefficients satisfies

$$
\mathrm{k} a_{n} \leq a_{n-1} \leq \ldots \leq a_{\lambda} \geq \ldots \geq a_{1} \geq \rho a_{0}>0
$$

For $\mathrm{k} \geq 1,0<\Omega \leq 1$ and $0 \leq \lambda \leq \mathrm{n}-1$, then $P(z)$ has all its zeros in

$$
|\mathrm{z}: \mathrm{k}-1| \leq \frac{2 a_{\lambda}}{a_{n}}-k+\frac{2 a_{0}}{a_{n}}(1-\rho) .
$$

Remark 2.1. If we set $a_{n-1}=\mathrm{k} a_{n}$ in corollary 2.1 , such that $\mathrm{k}=1, \lambda=\mathrm{n}-1$ and then $\rho=1$, we recapture the result of Theorem 1.1 of Eneström-Kakeya [1]
Theorem 2. 2: Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n with
complex coefficients. If $\operatorname{Re} a_{j}=\alpha_{j}, \operatorname{Im} a_{j}=\boldsymbol{\beta}_{j}, j=0,1, \ldots, n$ such that for some real number
$k \geq 1$ and $\rho \geq 0$
$\rho+\alpha_{n} \geq \alpha_{n-1} \geq \ldots \geq \alpha_{1} \geq k \alpha_{0}$.
Then all the zeros of $P(z)$ lie in the closed disk
$\left|z+\frac{\rho}{\alpha_{n}}\right| \leq \frac{\rho+\alpha_{n}+\left|\alpha_{0}\right|-k \alpha_{0}+2 \sum_{j=0}^{n}\left|\beta_{j}\right|}{i \alpha_{n} \mid}$.
Remark 2.2.In Theorem 2.2, if $\mathrm{k}=1$, we recapture the result of Theorem 1.6 of Gulzar[4]

3.0 Proofs of Theorem

Proof of Theorem 2.1.

Consider $\mathrm{F}(\mathrm{z})=(1-\mathrm{z}) P(\mathrm{z})$
$=(1-z)\left(a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots+a_{\lambda} z^{\lambda}+a_{1} z+a_{0}\right)$
$=a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots+a_{\lambda+1} z^{\lambda+1}+a_{\lambda} z^{\lambda}+\ldots+a_{\lambda-1} z^{\lambda-1}+\ldots+$
$a_{1} z+a_{0}-a_{n} z^{n+1}-a_{n-1} z^{n}-\ldots-a_{\lambda+1} z^{\lambda^{+2}}-a_{\lambda} z^{\lambda^{+1}}-a_{\lambda-1} z^{\lambda}-\ldots .-a_{1} z^{2}-a_{0} z$
$=-a_{n} \mathrm{z}^{\mathrm{n}+1}+a_{n} \mathrm{z}^{\mathrm{n}}-(\mu+1) a_{n} \mathrm{z}^{\mathrm{n}}+(\mu+1) a_{n} \mathrm{z}^{\mathrm{n}}-a_{n-1} \mathrm{z}^{\mathrm{n}}+\ldots+\left(a_{\lambda+1}-a_{\lambda}\right){z^{\lambda^{+1}}}+\ldots+$
$\left(a_{\lambda}-a_{\lambda-1}\right) \mathrm{z}^{\lambda}+\ldots+\ldots+a_{1} \mathrm{z}-(1-\tau) a_{0} \mathrm{z}+(1-\tau) a_{0} \mathrm{z}-a_{0} \mathrm{z}+a_{0}$
$=-a_{n} z^{n+1}+a_{n} z^{n}-(\mu+1) a_{n} z^{n}+\left((\mu+1) a_{n}-a_{n-1}\right) z^{n}+\cdots+\left(a_{\lambda+1}-a_{\lambda}\right) z^{\lambda}+\ldots+$
$\left(a_{1}-(1-\tau) a_{0}\right) \mathrm{z}+((1-\tau)-1) a_{0} \mathrm{z}+a_{0}$.
Therefore, for $|\mathrm{z}| \geq 1,0 \leq \lambda \leq \mathrm{n}-1,0 \leq \tau<1$ and $\mu \geq 0$, we have
$|\mathrm{F}(\mathrm{z})|=\mid-a_{n} \mathrm{z}^{\mathrm{n}+1}+a_{n} \mathrm{z}^{\mathrm{n}}-(\mu+1) a_{n} \mathrm{z}^{n}+\left(\mathrm{k}(\mu+1)-a_{n-1}\right) \mathrm{z}^{\mathrm{n}}+\ldots$
$+\left(a_{\lambda-1}-a_{\lambda}\right) \mathrm{z}^{\lambda^{+1}}+\left(a_{\lambda}-a_{\lambda-1}\right) \mathrm{z}^{\lambda}+\ldots+\ldots+\left(a_{1}-(1-\tau) a_{0}\right) \mathrm{z}+$
$((1-\tau)-1) a_{0} z+a_{0} \mid$
$:\left|a_{n} \mathrm{z}^{\mathrm{n}+1}-a_{n} \mathrm{z}^{\mathrm{n}}+(\mu+1) a_{n} \mathrm{z}^{\mathrm{n}}\right|-\mid\left((\mu+1) a_{n}-a_{n-1}\right) \mathrm{z}^{\mathrm{n}}+\ldots+$
$\left(a_{\lambda+1}-a_{\lambda}\right) \mathrm{z}^{\lambda^{+1}}+\left(a_{\lambda}-a_{\lambda-1}\right) \mathrm{z}^{\lambda}+\ldots+\ldots+\left(a_{1}-(1-\tau) a_{0}\right) \mathrm{z}+$
$((1-\tau)-1) a_{0} \mathrm{z}+a_{0} \mid$
$\geq\left|a_{n} \| \mathrm{z}\right|^{\mathrm{n}}|\mathrm{z}+(\mu+1)-1|-|\mathrm{z}|^{\mathrm{n}}\left\{\left((\mu+1) a_{n}-a_{n-1}\right)+\left(a_{n-1}-a_{n-2}\right) 1 / \mathrm{z}\right.$
$+\ldots+\left|a_{\lambda+1}-a_{\lambda}\right| \frac{1}{|z|^{n-\lambda-1}}+\left|a_{\lambda-1}-a_{\lambda}\right| \frac{1}{|z|^{n-\lambda}}+\ldots+\left|a_{1}-(1-\tau) a_{0}\right| \frac{1}{|z|^{n-1}}+$
$|\tau|\left|a_{0}\right|\left|\frac{1}{|z|^{n-1}}\right|+\left|a_{0}\right| \frac{1}{|z|^{n}}$.
Now let $|z| \geq 1$, so that $\frac{1}{|z|^{n-j}} \leq 1,0 \leq j \leq n$. Then we get
$\mathrm{F}(\mathrm{z}) \geq\left|a_{n}\right||\mathrm{z}|^{\mathrm{n}}\left(|\mathrm{z}+\mu|-\frac{1}{\left|a_{n}\right|}\left(a_{n-1}-(\mu+1) a_{n}\right)+\left(a_{n-2}-a_{n-1}\right)+\ldots+\right.$
$\left.\left(a_{\lambda}-a_{\lambda+1}\right)+\left(a_{\lambda}-a_{\lambda-1}\right)+\ldots+\left(a_{1}-(\mathbf{1}-\tau) a_{0}\right)+\tau\left|a_{0}\right|+\left|a_{0}\right|\right)$

If $\left\lvert\, \mathrm{z}+1>\frac{1}{a_{n}}\left\{2 a_{\lambda}-(\mu+1) a_{n}+2 \tau a_{0}\right\}\right.$, Then all the zeros of $\mathrm{F}(\mathrm{z})$ whose modulus is less than 1
lie in the closed disk
$|\mathrm{z}+| \leq \frac{1}{a_{n}}\left\{2 a_{\lambda}-(\mu+1) a_{n}+2 \tau a_{0}\right\}$.
This completes the proof.
Proof of Theorem 2.2.
Consider $\mathrm{F}(\mathrm{z})=(1-\mathrm{z}) P(\mathrm{z})$
$=(1-z)\left(a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots+a_{1} z+a_{0}\right)$
$=-a_{n} z^{n+1}+\left(a_{n}-a_{n-1}\right) z^{n}+\ldots+\left(a_{1}-a_{0}\right) z+a_{0}$
$=-\alpha_{n} z^{n+1}+\left(\alpha_{n}-\alpha_{n-1}\right) z^{n}+\ldots+\left(\alpha_{1}-\alpha_{0}\right) z+\alpha_{0}-1 \beta_{n} z^{n+1}+$
$\mathrm{i}\left(\beta_{n}-\beta_{n-1}\right) z^{n}+\ldots+i\left(\beta_{1}-\beta_{0}\right) \mathrm{z}+\mathrm{i} \beta_{0}$
$=-\alpha_{n} z^{n+1}-\rho z^{n}+\left(\rho+\alpha_{n}-\alpha_{n-1}\right) z^{n}+\left(\alpha_{n-1}-\alpha_{n-2}\right) z^{n-1}+\ldots+$
$\left(\alpha_{1}-\alpha_{0}\right) z-\rho \alpha_{0} z+\rho \alpha_{0} z+\alpha_{0}-\mathrm{i} \beta_{n} z^{n+1}+\mathrm{i}\left(\beta_{n}-\beta_{n-1}\right) z^{n}+\ldots+i\left(\beta_{1}-\beta_{0}\right) \mathrm{z}+\mathrm{i} \beta_{0}$
$=-\alpha_{n} z^{n+1}-\rho z^{n}+\left(\rho+\alpha_{n}-\alpha_{n-1}\right) z^{n}+\left(\alpha_{n-1}-\alpha_{n-2}\right) z^{n-1}+\ldots+$
$\left(\alpha_{1}-k \alpha_{0}\right) z-(k-1) \alpha_{0} z+\alpha_{0}+\alpha_{0}-\mathrm{i} \beta_{n} z^{n+1}+\mathrm{i}\left(\beta_{n}-\beta_{n-1}\right) z^{n}+\ldots+$
$i\left(\beta_{1}-\beta_{0}\right) \mathrm{z}+\mathrm{i} \beta_{0}$
$=-\alpha_{n} z^{n+1}-\rho z^{n}+\left(\rho+\alpha_{n}-\alpha_{n-1}\right) z^{n}+\left(\alpha_{n-1}-\alpha_{n-2}\right) z^{n-1}+\ldots+$
$\left(\alpha_{1}-k \alpha_{0}\right) z-(k-1) \alpha_{0} z+\alpha_{0}+\alpha_{0}-\mathrm{i}\left\{\beta_{n} z^{n+1}+\left(\beta_{n}-\beta_{n-1}\right) z^{n}+\ldots+\right.$
$\left.\left(\beta_{1}-\beta_{0}\right) z+\beta_{0}\right\}$.
We have
$|\mathrm{F}(\mathrm{z})|=\mid-\alpha_{n} z^{n+1}-\rho z^{n}+\left(\rho+\alpha_{n}-\alpha_{n-1}\right) z^{n}+\left(\alpha_{n-1}-\alpha_{n-2}\right) z^{n-1}+\ldots+\left(\alpha_{1}-k \alpha_{0}\right) z-(k-1) \alpha_{0} z+\alpha_{0}+\alpha_{0}-$ $\mathrm{i}\left[\beta_{n} z^{n+1}+\left(\beta_{n}-\beta_{n-1}\right) z^{n}+\ldots+\right.$ $\left.\left(\beta_{1}-\beta_{0}\right) z+\beta_{0} \mid\right]$.
$\geq \quad\left|z^{n}\right|\left\{\left|\alpha_{n} z+\rho\right|-\left|\rho+\alpha_{n}-\alpha_{n-1}\right|-\left|\alpha_{0} \quad\right| \quad \frac{1}{|z|^{n}}-\quad\left|\quad \alpha_{n-1}-\alpha_{n-2} \quad\right| \quad \frac{1}{|z|^{n}}-\quad+\quad \ldots\right.$
$\left|\alpha_{1}-k \alpha_{0}\right|_{\left.|z|\right|^{n-1}}^{\mid i} k-1| | \alpha_{0} \left\lvert\, \frac{1}{|z|^{n-1}}-\left[-\beta_{n} z^{n+1}+\left|\beta_{n}-\beta_{n-1}\right|^{n}+\ldots+\right.\right.$
$\left.\left.\left|\beta_{1}-\beta_{0}\right| z+\beta_{0} \mid\right]\right\}$.
Now, let $|z| \geq 1$, to have $\frac{1}{|z|^{n-j}} \leq 1,0 \leq j \leq \mathrm{n}$. Thus, we get
$|\mathrm{F}(\mathrm{z})| \geq|z|^{n}\left\{\left|\alpha_{n} z+\rho\right|-\left(\rho+\alpha_{n}-\alpha_{n-1}\right)-\left|\alpha_{0}\right|-\left(\alpha_{n-1}-\alpha_{n-2}\right)+\ldots+\right.$
$\left|\alpha_{1}-k \alpha_{0}\right|-\left|k-1 \| \alpha_{0}\right|-\left[\left|\beta_{n}\right|-\left|\left|\beta_{0}\right|+\sum_{j=1}^{n}\left(\left|\beta_{j}\right|+\left|\beta_{j-1}\right|\right)\right]\right\}$
$=\left|z^{n}\right|\left\{\left|\alpha_{n} z+\rho!-\left(\rho-\alpha_{n}+2\left|\alpha_{0}\right|-2 \alpha_{0} k\right)-2 \sum_{j=1}^{n}\right| \beta_{j} \mid\right\}>0$
The above inequality holds if
$\left|\alpha_{n} z+\rho\right|>\left(\rho+\alpha_{n}+2\left|\alpha_{0}\right|-2 \alpha_{0} k\right)+2 \sum_{j=1}^{n}\left|\beta_{j}\right|$
$>\left(\rho+\alpha_{n}+\left|\alpha_{0}\right|-\alpha_{0} k\right)+2 \sum_{j=1}^{n}\left|\beta_{j}\right|$,
i.e.
$\left|z+\frac{\rho}{\alpha_{n}}\right| \leq \frac{\rho+\alpha_{n}+\left|\alpha_{0}\right|-k \alpha_{0}+2 \sum_{j=0}^{n} \underline{\left|\beta_{j}\right|}}{\left|\alpha_{n}\right|}$.
This shows that all the zeros of $\mathrm{F}(\mathrm{z})$ whose modulus is greater than or equal to 1 lie in the disk.
$\left|z+\frac{\rho}{\alpha_{n}}\right| \leq \frac{\rho+a_{n}+\left|\alpha_{0}\right|-k \alpha_{0}+2 \sum_{i=0}^{n}}{\left|\alpha_{n}\right|} \underline{\left|\beta_{j}\right|}$.
Since all the zeros of $F(z)$ are also zeros of $P(z)$, it follows that all the zeros of $P(z)$ lie in the disk
$\left|z+\frac{\rho}{\alpha_{n}}\right| \leq \frac{\rho+\alpha_{n}+\left|\alpha_{0}\right|-k \alpha_{0}+2 \sum_{j=0}^{n}\left|\beta_{j}\right|}{i \alpha_{n} \mid}$.
This completes the proof.

4.0 Conclusion

We stated and proved some new extensions and generalizations of Eneström - Kakeya theorem.

On Some New Extensions and... Azeez and Mogbademu J of NAMP

4.0 References

[1] Marden M., Geometry of polynomials, Math. Surveys, No. 3; Amer, Math Soc. (R.I.: providence) (1966).
[2] Joyal A., Labelle G., Rahman Q. I., One the Location of Zeros of Polynomials, Canadian Math. Bull., 12(1967), 5563.
[3] Aziz A. and Zargar B.A., Bounds for the zeros of a polynomial with Restricted Coefficients, Applied Mathematics, Scientific Research Publications, 3 (2012), 30-33.
[4] Gulzar M.H, On The Location of zeros of a polynomial, Anal. Theory. Appl., Vol 28, No. 3 (2012). 14 - 21.

