On Some New Extensions and Generalizations of Eneström-Kakeya Theorem

Nurudeen T. Azeez and Adesanmi A. Mogbademu

Research Group in Mathematics and Applications (RGMA) Department of Mathematics, University of Lagos, Akoka Lagos.

Abstract

In this paper we obtain some new extensions and generalizations of the wellknown classical theorem of Eneström and Kakeya.

Keywords and Phrases: Complex number, Polynomial, Zeros, Eneström-Kakeya theorem, Bounds, Modulii, Disk.

1.0 Introduction

The following important result due to Eneström and Kakeya [1] is well known in the theory of the location and distribution of the zeros of polynomials:

Theorem 1.1: Let $P(z) = \sum_{j=0}^{n} a_j z^j$ be a polynomial of degree n whose coefficients a_j satisfy

 $a_n \ge a_{n-1} \ge \dots > a_1 \ge a_0 > 0$

Then all the zeros of P(z) lie in the closed unit disk |z| = 1.

In the literature, there exist some extensions and generalization of Theorem 1.1.

Joyal et al. [2] extended Theorem 1.1 to polynomials whose coefficients are monotonic but not necessarily non-negative by proving the following results:

Theorem 1.2: Let $P(z) = \sum_{i=0}^{n} a_i z^i$ be a polynomial of degree n such that

 $a_n \ge a_{n-1} \ge \dots \ge a_1 \ge a_0 > 0.$ Then all the zeros of P(z) lie in $|z| = \frac{a_n + |a_0| - a_0}{|a_n|}.$

Recently, Aziz and Zagar [3] relaxed the hypothesis of Theorem 1.1 in several ways and they proved the following results: **Theorem1.3:** Let $P(z) = \sum_{j=0}^{n} a_j z^j$ be a polynomial of degree n such that for some k 1,

 $ka_n \ge a_{n-1} \ge \dots = a_1 \ge a_0 \ge 0$. Then all the zeros of P(z) lie in $|z+k-1| \le k$.

Theorem 1.4: Let $P(z) = \sum_{i=0}^{n} a_i z^i$ be a polynomial of degree n such that for some k 1

 $\begin{aligned} ka_n \ge a_{n-1} \ge \dots \le a_1 \ge a_0. \\ \text{Then all the zeros of } P(z) \text{ lie in} \\ |z+k-1| \le \frac{ka_n + |a_0| - a_0}{|a_n|}. \end{aligned}$

Theorem 1.5: Let $P(z) = \sum_{j=0}^{n} a_j z^j$ be a polynomial of degree n. If for some positive number k and ρ with $k \ge 1$ and $0 < \rho \le 1$,

 $ka_n \ge a_{n-1} \ge \ldots \ge a_1 \ge a_0 > 0.$

Then all the zeros of P(z) lie in the closed disk

 $|z + k - 1| \ge k + \frac{2a_0}{a_n} (1 - \rho).$

More recently, Gulzar [4] generalized these results to the class of polynomials with complex coefficients by proving the following result.

Theorem 1.6: Let $P(z) = \sum_{j=0}^{n} a_j z^j$ be a polynomial of degree nwith complex coefficients such that $\operatorname{Re} a_j = \alpha_j$, $\operatorname{Im} a_j = \beta_j$, j = 0, 1, ..., n and for some real number $\rho > 0$ $\rho + \alpha_n \ge \alpha_{n-1} \ge ... \ge \alpha_1 \ge \alpha_0$.

Journal of the Nigerian Association of Mathematical Physics Volume 30, (May, 2015), 1 - 4

Corresponding author: Nurudeen T. Azeez, E-mail: nurudeenazeez99@gmail.com, Tel.: +23408087660550

Then P(z) has all its zeros in

 $\left|z + \frac{\rho}{o_n}\right| \leq \frac{\rho + \alpha_n + |\alpha_0| + 2\sum_{j=0}^n |\beta_j|}{|\alpha_n|}.$

In this paper, we state and prove some new extensions and generalizations of Eneström – Kakeya theorem.

2.0 **Main Results**

Theorem 2.1: Let $P(z) = \sum_{i=0}^{n} a_i z^i$ be a polynomial of degree n with complex coefficients, whose coefficients satisfies μ 0, 0 $\tau < 0$ and $0 \le \lambda < n - 1$ such that

 $(\mu + 1)a_n \le a_{n-1} \le \dots \ge a_\lambda \ge \dots \ge a_1 \ge (1 - \tau) a_0 > 0.$ Then P(z) has all its zeros in $|z+\mu| < \frac{2a_{\lambda}}{a_n} - \mu - 1 + \frac{2a_0}{a_n}\tau.$

Observe that in Theorem 2.1, If we choose μ and such that $\mu = k - 1$ and $= 1 - \rho$, we have the following corollary.

Corollary 2.1: Let $P(z) = \sum_{j=0}^{n} a_j z^j$ be a polynomial of degree n, where coefficients satisfies

 $ka_n \leq a_{n-1} \leq \ldots \leq a_{\lambda} \geq \ldots \geq a_1 \geq \rho a_0 > 0.$

For $k \ge 1$, $0 < \rho < 1$ and $0 \le \lambda \le n - 1$, then P(z) has all its zeros in 2a2 1. 2a0 Z

$$||\mathbf{x} + \mathbf{k} - 1|| \ge \frac{2a_n}{a_n} - k + \frac{2a_n}{a_n}(1 - \rho).$$

Remark 2.1. If we set $a_{n-1} = ka_n$ in corollary 2.1, such that $k = 1, \lambda = n - 1$ and then $\rho = 1$, we recapture the result of Theorem 1.1 of Eneström-Kakeya [1]

Theorem 2.2: Let $P(z) = \sum_{i=0}^{n} a_i z^i$ be a polynomial of degree n with

complex coefficients. If $\operatorname{Re} a_i = \alpha_i$, $\operatorname{Im} a_i = \beta_i$, $j = 0, 1, \dots, n$ such that for some real number

k = 1 and $\rho = 0$

 $\rho + \alpha_n \ge \alpha_{n-1} \ge \ldots \ge \alpha_1 \ge k\alpha_0.$ Then all the zeros of P(z) lie in the closed disk

 $\left|z + \frac{\rho}{\alpha_n}\right| \leq \frac{\rho + \alpha_n + |\alpha_0| - k\alpha_0 + 2\sum_{j=0}^n |\beta_j|}{|\alpha_n|}.$

Remark 2.2. In Theorem 2.2, if k = 1, we recapture the result of Theorem 1.6 of Gulzar[4]

3.0 **Proofs of Theorem**

Proof of Theorem 2.1. Consider F (z) = (1 - z) P(z)= $(1 - z) (a_n z^n + a_{n-1} z^{n-1} + ... + a_{\lambda} z^{\lambda} + a_1 z + a_0)$ $= a_n z^{n+} a_{n-1} z^{n-1} + \dots + a_{\lambda+1} z^{\lambda+1} + a_{\lambda} z^{\lambda} + \dots + a_{\lambda-1} z^{\lambda-1} - a_{\lambda-1} z^{\lambda} - \dots - a_{\lambda-1} z^{\lambda-1} - a_{\lambda-1} z^{\lambda} - \dots - a_{\lambda-1} z^{\lambda-1} - a_{\lambda-1} z^{\lambda-1} - a_{\lambda-1} z^{\lambda-1} + \dots + a_{\lambda-1} z^{\lambda (a_{\lambda} - a_{\lambda-1}) z^{\lambda} + \ldots + a_1 z - (1-\tau)a_0 z + (1-\tau)a_0 z - a_0 z + a_0$ $= -a_n z^{n+1} + a_n z^n - (\mu + 1)a_n z^n + ((\mu + 1)a_n - a_{n-1})z^n + \dots + (a_{\lambda+1} - a_{\lambda})z^{\lambda} + \dots + (a_{\lambda+1} - a_{\lambda+1})z^{\lambda} +$ $(a_1 - (1 - \tau)a_0)z + ((1 - \tau) - 1)a_0z + a_0.$ Therefore, for $|z| \ge 1$, $0 \le \lambda \le n - 1$, $0 \le \tau \le 1$ and $\mu \ge 0$, we have $|\mathbf{F}(\mathbf{z})| = |-a_n \mathbf{z}^{n+1} + a_n \mathbf{z}^n - (\mu + 1)a_n \mathbf{z}^n + (\mathbf{k}(\mu + 1) - a_{n-1})\mathbf{z}^n + \dots$ + $(a_{\lambda-1} - a_{\lambda}) z^{\lambda+1} + (a_{\lambda} - a_{\lambda-1}) z^{\lambda} + \dots + \dots + (a_1 - (1 - \tau)a_0) z +$ $((1-\tau)-1) a_0 z + a_0$ $|a_n z^{n+1} - a_n z^n + (\mu + 1)a_n z^n| - |((\mu + 1)a_n - a_{n-1})z^n + \dots + (\mu + 1)a_n - a_{n-1})z^n + \dots + (\mu + 1)a_n z^n + \dots + (\mu +$ $(a_{\lambda+1} - a_{\lambda}) z^{\lambda+1} + (a_{\lambda} - a_{\lambda-1}) z^{\lambda} + \dots + (a_1 - (1-\tau)a_0) z +$ $((1-\tau) - 1) a_0 z + a_0$ $\geq |a_n|| |z|^n |z + (\mu + 1) - 1| - |z|^n \{ ((\mu + 1)a_n - a_{n-1}) + (a_{n-1} - a_{n-2}) |1/z + ... + |a_{\lambda+1} - a_{\lambda}| \frac{1}{|z|^{n-\lambda-1}} + |a_{\lambda-1} - a_{\lambda}| \frac{1}{|z|^{n-\lambda}} + ... + |a_1 - (1-\tau)a_0| \frac{1}{|z|^{n-1}} + ... + |a_{\lambda+1} - a_{\lambda}| \frac{1}{|z|^{n-1}} + ...$ $|\tau| |a_0||_{\frac{1}{|z|^{n-1}}} |+|a_0||_{\frac{1}{|z|^n}}$ Now let |z| = 1, so that $\frac{1}{|z|^{n-j}} \le 1, 0 \quad j \le n$. Then we get

Journal of the Nigerian Association of Mathematical Physics Volume 30, (May, 2015), 1 - 4

 $F(z) \ge |a_n||z|^{\mathfrak{h}}(|z+\mu| - \frac{1}{|a_n|}(a_{n-1} - (\mu+1)a_n) + (a_{n-2} - a_{n-1}) + \dots + (a_{n-2} - a_{n-2}) + \dots + (a_$ $(a_{\lambda} - a_{\lambda+1}) + (a_{\lambda} - a_{\lambda-1}) + \ldots + (a_1 - (1 - \tau)a_0) + \tau |a_0| + |a_0|)$ $= |a_n| |z|^n \{ |z + \mu| - \frac{1}{|a_n|} \{ 2a_{\lambda} - (\mu + 1)a_n + 2\tau a_0 \} \} > 0.$ If $|z + \mu| > \frac{1}{a_n} \{2a_{\lambda} - (\mu + 1)a_n + 2\tau a_0\}$, Then all the zeros of F (z) whose modulus is less than 1 lie in the closed disk $|z + \mu| = \frac{1}{a_n} \{ 2a_\lambda - (\mu + 1)a_n + 2\tau a_0 \}.$ This completes the proof. Proof of Theorem 2.2. Consider F (z) = (1 - z) P(z) $= (1-z) (a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0)$ $= -a_n z^{n+1} + (a_n - a_{n-1}) z^n + \ldots + (a_1 - a_0) z + c_0$ $= -\alpha_n z^{n+1} + (\alpha_n - \alpha_{n-1}) z^n + \dots + (\alpha_1 - \alpha_0) z + \alpha_0 - i\beta_n z^{n+1} + \dots$ $i (\beta_n - \beta_{n-1})z^n + \dots + i(\beta_1 - \beta_0)z + i\beta_0$ $= -\alpha_n z^{n+1} - \rho z^n + (\rho + \alpha_n - \alpha_{n-1}) z^n + (\alpha_{n-1} - \alpha_{n-2}) z^{n-1} + \dots +$ $(\alpha_1 - \alpha_0) z - \rho \alpha_0 z + \rho \alpha_0 z + \alpha_0 - i\beta_n z^{n+1} + i(\beta_n - \beta_{n-1}) z^n + \dots + i(\beta_1 - \beta_0) z + i\beta_0$ $= -\alpha_n z^{n+1} - \rho z^n + (\rho + \alpha_n - \alpha_{n-1}) z^n + (\alpha_{n-1} - \alpha_{n-2}) z^{n-1} + \dots +$ $(\alpha_1 - k\alpha_0)z - (k-1)\alpha_0z + \alpha_0 + \alpha_0 - i\beta_n z^{n+1} + i(\beta_n - \beta_{n-1})z^n + \dots + i(\beta_n - \beta_n)z^n + \dots$ $i(\beta_1 - \beta_0)z + i\beta_0$ $= -\alpha_n z^{n+1} - \rho z^n + (\rho + \alpha_n - \alpha_{n-1}) z^n + (\alpha_{n-1} - \alpha_{n-2}) z^{n-1} + \dots +$ $(\alpha_1 - k\alpha_0) z - (k - 1)\alpha_0 z + \alpha_0 + \alpha_0 - i \{\beta_n z^{n+1} + (\beta_n - \beta_{n-1})z^n + \dots + \alpha_n - i \{\beta_n z^{n+1} + (\beta_n - \beta_{n-1})z^n + \dots + \alpha_n - i \{\beta_n z^{n+1} + (\beta_n - \beta_{n-1})z^n + \dots + \alpha_n - i \{\beta_n z^{n+1} + (\beta_n - \beta_{n-1})z^n + \dots + \alpha_n - i \{\beta_n z^{n+1} + (\beta_n - \beta_{n-1})z^n + \dots + \alpha_n - i \{\beta_n z^{n+1} + (\beta_n - \beta_{n-1})z^n + \dots + \alpha_n - i \{\beta_n z^{n+1} + (\beta_n - \beta_{n-1})z^n + \dots + \alpha_n - i \{\beta_n z^{n+1} + (\beta_n - \beta_{n-1})z^n + \dots + \alpha_n - i \{\beta_n z^{n+1} + (\beta_n - \beta_{n-1})z^n + \dots + \alpha_n - i \{\beta_n z^{n+1} + (\beta_n - \beta_{n-1})z^n + \dots + \alpha_n - i \{\beta_n z^{n+1} + (\beta_n - \beta_{n-1})z^n + \dots + \alpha_n - i \{\beta_n z^{n+1} + (\beta_n - \beta_{n-1})z^n + \dots + \alpha_n - i \{\beta_n z^{n+1} + (\beta_n - \beta_{n-1})z^n + \dots + \alpha_n - i \{\beta_n z^{n+1} + (\beta_n - \beta_{n-1})z^n + \dots + \alpha_n - i \{\beta_n z^n + \beta_n z^n + \beta_n z^n + \dots + \beta_n - i \{\beta_n z^n + \beta_n z^n + \beta_n z^n + \dots + \beta_$ $(\beta_1 - \beta_0)z + \beta_0\}.$ We have $|F(z)| = |-\alpha_n z^{n+1} - \rho z^n + (\rho + \alpha_n - \alpha_{n-1})z^n + (\alpha_{n-1} - \alpha_{n-2})z^{n-1} + \dots + (\alpha_1 - k\alpha_0)z - (k-1)\alpha_0 z + \alpha_0 + \alpha_0 - \alpha_{n-1}(k-1)\alpha_0 z + \alpha_0 + \alpha_0 - \alpha_0$ $i \left[\beta_n z^{n+1} + (\beta_n - \beta_{n-1}) z^n + ... + \right]$ $(\beta_1 - \beta_0)z + \beta_0|].$ $|z^{n}|\{|\alpha_{n}z+\rho|-|\rho+\alpha_{n}-\alpha_{n-1}|-|\alpha_{0}| | \frac{1}{|z|^{n}} - | \alpha_{n-1}-\alpha_{n-2}| | \frac{1}{|z|^{n}} - | \alpha_{n-2}-\alpha_{n-2}| | \frac{1}{|z|^{n}} - | \alpha_{n-2}-\alpha_{n-2}| | \frac{1}{|z|^{n}} - | \alpha_{n-2}-\alpha_{n-2}| | \frac{1}{|z|^{n}} - | \alpha_{n-2}-\alpha_{n-2}-\alpha_{n-2}| | \frac{1}{|z|^{n}} - | \alpha_{n-2}-\alpha_{n-2}-\alpha_{n-2}| | \frac{1}{|z|^{n}} - | \alpha_{n-2}-\alpha_{n-2}-\alpha_{n-2}-\alpha_{n-2}| | \frac{1}{|z|^{n}} - | \alpha_{n-2}-\alpha_{n-2}$ $|\beta_1 - \beta_0[z + \beta_0]]\}.$ Now, let $|z| \ge 1$, to have $\frac{1}{|z|^{n-j}} \le 1, 0 \le j \le n$. Thus, we get $|\mathbf{F}(\mathbf{z})| \ge |\mathbf{z}|^n \{ |\alpha_n \mathbf{z} + \rho| - (\rho + \alpha_n - \alpha_{n-1}) - |\alpha_0| - (\alpha_{n-1} - \alpha_{n-2}) + \dots + \alpha_{n-1} \}$ $|\alpha_1 - k\alpha_0| - |k - 1||\alpha_0| - [|\beta_n| - |\beta_0| + \sum_{i=1}^n (|\beta_i| + |\beta_{i-1}|)]$ $= |z^{n}|\{|\alpha_{n}z + \rho| - (\rho - \alpha_{n} + 2|\alpha_{0}| - 2\alpha_{0}k) - 2\sum_{i=1}^{n} |\beta_{i}|\} > 0$ The above inequality holds if $|\alpha_n z + \rho| > (\rho + \alpha_n + 2|\alpha_0| - 2\alpha_0 k) + 2 \prod_{i=1}^n |\beta_i|$ $>(\rho + \alpha_n + |\alpha_0| - \alpha_0 k) + 2\sum_{i=1}^n |\beta_i|,$ i.e. $\left|z + \frac{\rho}{\alpha_n}\right| \le \frac{\rho + \alpha_n + |\alpha_0| - k\alpha_0 + 2\sum_{j=0}^n |\beta_j|}{|\alpha_n|}.$ This shows that all the zeros of F (z) whose modulus is greater than or equal to 1 lie in the disk. $\left|z + \frac{\rho}{\alpha_n}\right| \le \frac{\rho + \alpha_n + |\alpha_0| - k\alpha_0 + 2\sum_{j=0}^n |\beta_j|}{|\alpha_n|}.$ Since all the zeros of F(z) are also zeros of P(z), it follows that all the zeros of P(z) lie in the disk $\left|z + \frac{\rho}{\alpha_n}\right| \leq \frac{\rho + \alpha_n + |\alpha_0| - k\alpha_0 + 2\sum_{j=0}^n |\beta_j|}{|\alpha_n|}.$ This completes the proof.

4.0 Conclusion

We stated and proved some new extensions and generalizations of Eneström - Kakeya theorem.

Journal of the Nigerian Association of Mathematical Physics Volume 30, (May, 2015), 1 - 4

4.0 References

- [1] Marden M., Geometry of polynomials, Math. Surveys, No. 3; Amer, Math Soc. (R.I.: providence) (1966).
- [2] Joyal A., Labelle G., Rahman Q. I., One the Location of Zeros of Polynomials, Canadian Math. Bull., 12(1967), 55-63.
- [3] Aziz A. and Zargar B.A., Bounds for the zeros of a polynomial with Restricted Coefficients, Applied Mathematics, Scientific Research Publications, 3 (2012), 30-33.
- [4] Gulzar M.H, On The Location of zeros of a polynomial, Anal. Theory. Appl., Vol 28, No. 3 (2012). 14 21.