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Abstract

This paper presents a framework to introducing hybrid method using multistep
[0,1]

collocation with an orthogonal polynomial valid in with weight function

— 2

W(X) =X as the basis function. We introduce the hybrid formula as an important
step because of the property of utilizing data at points other than the step points. For
the step considered, we obtained one off-step and two off-step hybrid schemes at
selected grid points for the solution of first order Initial Value Problems (IVPS) in
Ordinary Differential Equations (ODESs). The properties of hybrid viz. order, zero-
stability, consistency, and convergence are investigated. Numerical examples, each
with its own peculiarity, are presented to illustrate the accuracy of the method.
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1.0  Introduction
Several Linear Multistep methods for the solution of initial value problem of the general first order ordinary differential
equation of the form

y(¥)=f(xy(x), y(@=m a<x<b<w (1)
have been developed by many researchers [1-5]. Of these methods, the hybrid predictor-corrector methods entail developing
separate predictors to implement the corrector while Taylor series expansion of appropriate order is adopted to provide the
starting values. Our focus in this paper is the proposition of discrete and continuous hybrid predictor-corrector algorithm with
single and double step length for the solution of (1).

20  Methodology

3.0 Construction of orthogonal polynomial
We shall try to approximate (1) with

y(%) =Y, )
and

X, =X, +nh, h:% ©)
using

Y=Y af, () =y @
The basisfunctior:_? . (X) in (4) isdefined as

f (X)= Zn:cf”) X' (5)
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which is a polynomial of degree n whose coefficients are determined by the requirement that f n(X) is orthogonal on [a,b]
with weight function W(X) > O that is

(f (0., (9) = [ WO ,(9F ,()dx =0, m=n ©)

cb f.(D)=1 )
Using (6) and (7), (5) givesthefirst five orthogonal polynomialsvalid in [0,1] with W(X) =x% as

fo(¥) = 1

f.(x) = 4x-3

£,0 = 15x2 — 20+ 6 ®

fa(x) = 56x° —105x* + 60x—10

f,(x) = 210x*-504x+420x* —140x+15

4.0  Formulation of Explicit Hybrid Methods
We consider a modification of the general linear multistep method with the introduction of f .., for the evaluation at off-
step points (hybrid).

k

k
zakynﬂ = hzbj fn+j + hbv fn+v (9)
j=0 j=0

where V isapositive non-integer.
For the explicit When (b, = 0) implementation of (9), we require the valueof ., using

k-1 =
yn+v + Za'—J yn+j = hzb] fn+j (10)
j=0 j=0
which is the solution evaluated at the off-step point. Equations (9)-(10) form the discrete predictor -corrector algorithm. The

number of predictor schemes formed in (10) depends on the number of off-step points (v) considered in (9).

50 Two-step method
We consider here the transformation X = ax + b which shifts our interval [0,1] to [X., X..,] where

X=X
=x +2h then X=—"
Xn+2 Xn 2h

6.0 Two-step Method with one Off-step Point
Considering (4) with n=3 gives
Y(X) = a, +a,(4X —3)+a,(15X? — 20X +6) + a,(56X * —~105X > + 60X —10)

2
2t 31[4(X2_hxn) _3} %{150;;;“) ~ 20();; X), 6}
Y(x) = : , (1)
+a3{56(x—3xn) _105(x—2xn) +60(x—xn)_10}
8h 4h 2h
Interpolate (11) at X, andcollocateat X, ;, X,,, and X - tohave
n+5
yn+2 = a0 + al + a2 + a3
2nf,,, = 4a -5a,-3a,
hf.., = 2a-+5a,+9, (12)
6hf , = 12a +45a,+13la,
n+§
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Solving (12) gives
3h h 3

= ~ = f L ——f L +—hf
aO yn+2 20 n+1 2 n+2 20 n+%
T
84 42 28 n+l (13)
11 1 3
= —=hf ,+=hf ,———hf
a2 60 n+l 3 n+2 20 n+%
h h 3h
= —f ,——=hf _+—hf
aS 28 n+l 7 n+2 28 m%

Substituting (13) in (11) gives the continuous scheme

3

Y(X) = yn+2 + h|:b1(X) fn+l + b2(x) fn+2 + bZ(X) fn+7
3

— — _ 2 _ 3
b,(x) = 5, 7(x=x) 13(x-x)* | (x-x)
2 2 h 8h h ,
b,(x) = 2_7(x—xn)+7(x—x,,)+5(x—2xn)_(x—;<n) (14)
h h h , h .
3 2 2 h 2 h 8h 4h
At the step-point X, 5, we obtain the discrete scheme
h
Yz = Yni2 +§|: 1:n+l_8fn+2 +15fn+7:| (15)
3

which is of order three with error constant ¢, = £ To determine f , in(15), we interpolate (11) at X,,, and collocate
216 n+g

a X,, X, and X,,, tohave

Yo T Gtata,+a

hf, = 2a —-10a,+30a, (16)
2nf.., = 4a —5a,-3a,

hf,, = 2a+5a,+9a,

which when solved and substituted back into (11) gives
Y(X) = yn+2 + h[bO(X) fn + bl(x) fn+1 + bZ(X) fn-¢—2:|

;1_,’_ (X_Xn) _ 3(X_Xn)2 + (X_Xn)3

b =
o(®) 3 h zzmz 36h3 -
-4 (x=x)° (x=x)) 17
b = — - n
() 3 h? ) 3h® ;
_ ;]-_(X_Xn) (X_Xn)
b,() = 3 ae e

At the off-step point X -, we have
n+—
3

h
Y .=V, +—[11f —40f , +137f ] (18)
3 324
which is of order 3 and error constant ¢, = 49 . The scheme (18) is used as an accurate predictor for the scheme (15).
1944
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7.0  Two Step Method with Two Off-step Points
Now let us consider (4) with n=4 which gives

4(x=x,) _3} a{15(><— X)®  20(x-%,) +6}

2h 4 2h
Y Y _ (19
Y = . a{56(>éh3xn) _105(:h2xn) . 60(); h X) 10}
4 3 2
.\ a{210(x— X)' 504(x-x,)* 420(x-x,)* 140(x-Xx,) +15}

]

16h* 8h’ 4h? 2h

Interpolating (19) at X,,, and collocatingat X,;,X,.,, X g and X 4 tohave
n+— n+=
4

Yni2 = Hhrata,+a;+a,
2nf.,, = 4a,—5a,-3a,+ 73,
hf.., = 2a, +5a, +9a, +14a, (20)
Ohf = 183, +90a, +354a, +127a,
n+é
128hf 4 = 2564, +880a, +2328a, +5593a,
"2

Solve (20) and substitute the values into (19) to have the two-step continuous scheme

n+1 + bz(x) fn+2 + bg(x) fmg + bg(x) fn+9:|
3 3 4 4

Y(X) = Yoo +h b, () T

_ _ _ 2 _ 3 _ 4
by(x) = 244+144(x X,) 19(x 2xn) +83(x ;(n) _3(x )in)
75 25h 5h , 75h 5 25h .
35 36(x- 131(x - 71(x— 3(x—
b0 = B360Cx) 1BUK-x)T TA-X)! 3x-X,)
3 h 4h 6h 2h (21)
B 81 243(x—x) 189(x-x)> 189(x-x)® 27(x-x)’
bg(x) = —- + = s+ 2
3 25 25h 20h 50h 50h
_ 1024 1024(x-x.) 192(x—x)> 1088(x—x ) 48(x—x)*
by(x) = + - 5 + 3 - Z
2 75 25h 5h 75h 25h
And at the step-point X, 5, it gives the discrete scheme
h
Ynes = Yoz + 50| =400 #1255 + 243fn+g —64fn+% (22)
which is of order four with error ¢, :i.
5760
Similarly, to obtain f ; and f 4 in (22), we interpolate (19) at X,,; and X,,, and aso collocate at X, , X,,; and X,
n+—= n+=
3 4
to have
8yn+l = 8a0—831—2a2+6a3+a4
Yoo = Gt +ta,+a+a, (23)
2hf,, = 4a -5a,—-3a,+7a,
hf.., = 2a+5a,+9a,+14a,

Solvefor a,,&,8,,85,8, in (23) and substitute the valuesinto (19) gives
Y(X) = a1yr1+1 +a2yn+2 + h[ bO fn + bl fn+1 + bZ fn+2]

Journal of the Nigerian Association of Mathematical Physics Volume 29, (March, 2015), 491 — 498

494



Formulation of Discrete and Continuous... Adeniyi and Bamgbala J of NAMP

a(x) = Ax=%)" AX-x) | (x=x)"
1 h2 h3 h4
_ CAX=%) AX=x%)* A(x=x,)*
az(x) - 1 hz + h3 h4 (24)
b (X) - _1+(X_Xn)_13(x_xn)2+(X_Xn)3_(x_xn)4
0 3 h 12h? 2h? 12h*
b (X) ;4+11(X_Xn)2 _3(X_Xn)3 + Z(X_Xn)4
! 3 3n? h? 3h*
b (X) - ;l+l7(X—Xn)2 _'3()(_)(n)3 +5(X_Xn)4
2 3 12h? 2h® 12h*
Atthestep points X g and X 4 (24) gives
n+§ n+Z
256 175 h
=— - +——|[-25f_ +380f_ . +575f 25
ymg 81 yn+l 81 yn+2 243[ n n+l n+2] ( )
81 175 h
=— +— +——|-25f +440f . +1325f 26
yn+% 256 yn+1 256 yn+2 3072[ n n+1 n+2] ( )

respectively. We note here that the corrector schemes (15) and (22) are in form of (9) while the predictor schemes (18),(25)
and(26) arein form of (10).

8.0 Analysisof the Propertiesof the Methods
In this section, we shall discuss the consistence, zero-stability and convergence of schemes earlier derived.

9.0 Consistency
A LMM of the form (9) is said to be consistent if it hasorder p >1.

(i) method (15) hasorder p=3>1
(ii) method (22) hasorder p=4>1
Hence,the two schemes are consistent.

10.0 Zero-stability
The LMM of the form (9) is said to be zero-stable if no root of the first characteristic
Polynomial has a modulus greater than one.

(i) method (15) has p(X) =r°—r?
= r®-r?2=0,r=0o0r 1 therefore|r|:0 Or 1

(if) method (22) has p(x) =r®—r*= r®~r?>=0, r =0 or 1 therefore |r|=0 or 1
This shows that the two schemes are zero-stable.

11.0 Convergence
The necessary and sufficient condition for aLMM of the form (9) to be convergent is for it to be consistent and zero-stable.
Consequently, the two schemes are convergent.

12.0 Numerical Examples

We consider here two selected problems, each with its own peculiarity,for experimentation with schemes derived in the
preceding section.

Problem 1 (A nonlinear, variable coefficient, homogeneous D.E)

y +xy?=0: y(0) =1 with y(x) =—;
X“+2
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Problem 2 (A linear, constant coefficient, non-homogeneous D.E)
y —y=x:y(0)=1 with y(x)=2e"-x-1
and the resulting errors compare favorably with [5].

h

Table 1: Errorsfor Problem 4.1 withh=0.1, dx=— and Yy
10

(X) =—1-x+2€e"

Adeniyi and Bamgbala

X Discrete method |Continuous Discrete method |Continuous
method (15) method (14) method (22) method (21)

.01 1.44779E -4 1.13404E -5
.02 1.15247E -4 7.02610E -6
.03 9.18252E -5 3.69770E-6
.04 7.36799E -5 1.19400E -6
.05 6.00383E-5 6.29100E -7
.06 5.01861E-5 1.90100E-6
.07 4.34689E -5 2.73620E -6
.08 3.92894E -5 3.23440E -6
.09 3.71096E -5 3.48080E -6
10 |2.48756E -5 |2.48754E -5 |1.24378E—-6 |1.24376E -6
11 3.68781E -5 3.49850E -6
12 3.80325E -5 3.37840E -6
A3 3.95935E -5 3.22460E -6
14 4.13019E -5 3.06610E -6
15 429486 E -5 2.92180E -6
16 4.43763E -5 2.80240E -6
17 454788E -5 2.71380E-6
18 4.61985E -5 2.65400E -6
19 4.65260E -5 2.61940E -6
20 |4.64986E -5 |4.64983E -5 |[2.60314E-6 |2.60309E -6
21 4.61960E -5 2.59640E -6
22 457458E -5 2.58950E -6
23 453150E -5 2.58290E -6
24 451114E-5 2.56560E - 6
25 453819E -5 2.54410E-6
.26 4.64110E-5 2.53090E -6
.27 485182E -5 2.53510E -6
.28 5.20574E -5 2.58770E -6
.29 5.74143E -5 2.73210E-6
30 |6.50060E -5 |6.50056E -5 |3.01296E -6 |3.01290E -6
31 7.52768E -5 3.49840E -6
32 8.86986E -5 4.28040E -6
33 1.05770E -4 5.45250E -6
34 1.27011E-4 7.14200E -6
35 1.52964E -4 9.49890E -6
.36 1.84191E -4 1.26842E -5
37 2.21273E-4 1.68979E -5
.38 2.64806E -4 2.23627E -5
39 3.15402E -4 2.93350E -5
40 |7.31579E -5 |7.31572E-5 |3.03807E—-6 |3.03806E -6
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h
Table2: Errorsfor Problem 4.2 with h=0.1, dX = 0 and y(X) =€

Adeniyi and Bamgbala J of NAMP

X Discrete method |Continuous Discrete method |Continuous
method (15) method (14) method (22) method (21)

.01 6.01380E -5 2.22000E -6
.02 4.70930E -5 1.42200E-6
.03 3.66880E -5 8.11000E -7
.04 2.85870E -5 3.57000E -7
.05 2.24730E -5 2.80000E -8
.06 1.80500E -5 1.99000E-7
.07 1.50390E -5 3.46000E -7
.08 1.31900E -5 4.36000E -7
.09 1.22660E -5 4.80000E -7
10 8.503151E -6 |8.50310E-6 |1.69151E-7 |4.91000E-7
A1 1.23750E -5 4.86000E -7
12 1.30540E -5 4.68000E -7
A3 1.39440E -5 4.43000E -7
14 1.49280E -5 4.24000E -7
15 1.59030E -5 4,02000E -7
16 1.67930E -5 3.85000E -7
17 1.75450E -5 3.77000E -7
18 1.81300E -5 3.71000E -7
19 1.85420E -5 3.70000E -7
.20 1.87953E-5 [1.87950E -5 |3.74320E-7 [3.74316E-7
21 1.89350E -5 3.78000E -7
22 1.90280E -5 3.68000E -7
.23 1.91620E -5 3.87000E -7
24 1.94550E -5 3.79000E -7
25 2.00500E -5 3.70000E -7
.26 2.11100E -5 3.94000E -7
27 2.28280E -5 3.87000E -7
.28 2.54250E -5 3.88000E -7
.29 2.91420E -5 4.35000E -7
30 3.42531E -5 |3.42530E -5 |4.82152E -7 |4.82148E -7
31 4.10520E -5 5.42000E -7
32 4.98660E -5 6.87000E -7
33 6.10460E -5 8.63000E -7
34 7.49740E -5 1.12400E -6
35 9.20520E -5 1.51500E -6
.36 1.12719E -4 2.00700E -6
37 1.37438E-4 2.65900E -6
.38 1.66699E — 4 3.50600E -6
39 2.01027E-4 4.62200E -6
.40 527233E-5 |5.2730E-5 |6.41282E -7 |6.41282E -7
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Conclusion

A method for the derivation of the discrete and continuous hybrid schemes for the solution of Initial Value Problems in
Ordinary Differential Equations has been presented. For this purpose, an orthogona polynomial has been employed as the
basis function and a collocation approach was adopted. Taylor series of appropriate order were used to obtain the starting
values. The continuous schemes reproduce their corresponding discrete equivalents at grid points. The continuous schemes
produces several output of solutions at the off-step points without additional interpolation and at no extra cost. These
numerical evidences show that the methods (proposed herein) are accurate and effective.
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