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Abstract

The solution of laminar fluid flow which results from the stretching of a flat
surface in a nanofluid has been obtained using the Adomian Decomposition Method.
The model used for the nanofluid was presented in its rectangular form and
incorporates both the convective effect, thermal radiative effect and the effect of
Brownian motion and thermomophoresis. A similarity solution is presented which

depends on both thermal and concentration Grashof number TGr
, cGr

, the Prandtl
number Pr, Schmidt number Sc, Radiation Ra, Lewis number Le, Brownian motion
number Nb and thermophoresis number Nt. In the results presented graphically it is
observed that both thermal and concentration Grashof number enhance the velocity,
temperature and concentration profile of the fluid.
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1.0 Introduction
“The flow over a stretching surface is an important problem in many engineering processes with applications in industries
such as extrusion, melt-spinning, the hot rolling, wire drawing, glass fiber production, manufacture of plastic and rubber
sheets, cooling of a large metallic plate in a bath, which may be an electrolyte, etc. In industry, polymer sheets and filaments
are manufactured by continuous extrusion of the polymer from a die to a wind up roller, which is located at a finite distance
away. The thin polymer sheet constitutes a continuously moving surface with anon-uniform velocity through an ambient
fluid. Takhar et al.[1]. Experiments show that the velocity of the stretching surface is approximately proportional to the
distance from the orifice Vleggar[2]. Crane [3] studied the steady two-dimensional incompressible boundary layer flow of a
Newtonian fluid caused by the stretching of an elastic flat sheet which moves in its own plane with a velocity varying linearly
with the distance from a fixed point due to the application of a uniform stress. This problem is particularly interesting since
an exact solution of the two-dimensional Navier–Stokes equations has been obtained by Crane [3]. After this pioneering
work, the flow field over a stretching surface has drawn considerable attention and a good amount of literature has been
generated on this problem ashmisha[4].”
“In the past few years, convective heat transfer in nanofluids has become a topic of major contemporary interest. The word
“nanofluid” coined by Choi [5] describes a liquid suspension containing ultra-fine particles. Masuda et al. [6]. Experimental
studies show that even with small volumetric fraction of nano particles (usually less than 5%), the thermal conductivity ofthe
base liquid is enhanced by 50% with a remarkable improvement in the convective heat transfer coefficient. The literature on
nanofluids has been reviewed by Trisaksri and Wongwises[7], Wang and Mujumdar [8], Eastman et al. [9], and Kakac and
Pramuanjaroenkij [10], among several others. These reviews discuss in detail the work done on convective transport in
nanofluids. In a recent paper, Boungiorno [11] evaluated the different theories explaining the enhanced heat transfer
characteristics of nanofluids. He showed that the high heat transfer coefficients in nanofluids cannot be explained
satisfactorily by thermal dispersion phenomenon or increase in turbulence intensity promoted by the presence of
nanoparticles or nanoparticle rotation as suggested in the literature. He developed an analytical model for convective
transport innanofluids which takes into account the Brownian diffusion and thermophoresis.
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The Boungiorno [11] model has recently been used by Kuznetsov and Nield [12] to study the natural convective flow of a
nanofluid over a vertical plate. Their similarity analysis identified our parameters governing the transport process, namely a
Lewis number Le, a buoyancy-ratio number Nr, a Brownian motion number Nb, and a thermophoresis number Nt. The same
authors later extended the work to a nanofluid saturated porous medium Nield and Kuznetsov[13]”. In a recent paper Khan
and Pop [14] used the model of Kuznetsov and Nield [12] to study the boundary layer flow of a nanofluid past a stretching
sheet with a constant surface temperature. Following the work of Khan and Pop [14], it seemed appropriate to us to introduce
a thermal effect and thermal radiation to their analysis and use the Adomian Decompositon Method (ADM) to obtain the
analytical solution of the model. Aiyesimi et al.[15] have previously used the Adomian Decomposition to obtain the
analytical solution of hydro magnetic boundary layer micropolar fluid flow over a stretching surface embeded in a non
darcian medium with variable permeability. A few examples are the papers by Aiyesimi et al. [16], Jiya and Oyubu[17], Jiya
and Oyubu[18].
This work is a new development in the literature in which an analytical solution of a convective boundary-layer flow of a
nanofluid past a stretching sheet is proposed using the Adomian Decomposition Method.

2.0 Problem Formulation
The work considers the steady two-dimensional boundary layer flow of a nanofluid past a stretching sheet in the presence of

thermal effect and Radiation with the linear velocity u ax , where a is constant, x is the coordinate measured from the

stretching sheet is zero. A steady uniform stress leading to equal and opposite forces is applied so that the sheet is stretched
keeping the origin fixed. It is assumed that at the stretching sheet, the temperature T and the nanoparticle fraction C takes

constant values WT and WC , respectively. The ambient values, attained as y tends to infinity, of T and C are denoted by

T and C , respectively. The Khan and Pop [14] model may be modified for this problem to give the continuity,

momentum, energy and the nanofraction equations as follows:-
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Nanofraction equation:-
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Subject to the boundary conditions:

0 :y u ax  , 0v  , WT T , WC C
: 0,y u   , TT ,C C (6)

Where u and v are the velocity components along the x and y axes respectively, p is the fluid pressure, f is the

density of the base fluid,  is the thermal diffusivity,  is the kinematic viscousity, *k is the thermal conductivity, pC is

the specific heat capacity at constant pressure, a is a positive constant, BD is the Brownian diffusion coefficient, TD is the
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thermopheric diffusion coefficient and
( )

( )
p

f

c

c





 is the ratio between the effective heat capacity of the fluid with  being

the density, c is the volumetric volume expansion coefficient and P is the density of the particles g is the acceleration due

to gravity,  is the volumetric coefficient of thermal expansion, rq is the radiative heat flux.

Following Roseland approximation we have
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, where * and  are the Stefan-Boltzmann constant and

the mean absorption coefficient respectively. The temperature differences within the fluid is assumed sufficiently small such

that 4T may be expressed as a linear function of Temperature. Expanding 4T in Taylor’s series about T and neglecting

higher order terms, we get 4 3 44 3T TT T   (7)
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where  ,  f  ,    ,    are the dimensionless fluid distance, velocity profile, temperature profile, and

nanoparticle concentration.
An order of magnitude analysis of the y direction momentum equation (normal to the sheet) using the usual boundary layer

approximations we have :-> , > , , , ℎ ℎ = 0
Substituting the expressions in (8) into (1)-(5), and (6)  and neglecting the pressure gradient the equations reduces to the
following local similarity solution:-
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number, Lewis number, Brownian motion parameter, thermophoresis parameter, Schmidt number, and the nanoparticle
parameter respectively.

For the momentum equation to have a similarity solution, the parameters TxGr and CxGr most be constant and not functions

of x as in the equation (8). This can be met if volumetric coefficient of thermal expansion  is proportional to x . We

therefore assume

0 x  (14)

where 0 is a constant. Substituting (14) into (13) we have
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 0

2C

g C C
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a
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in which TGr , and CGr defined by (15), the solution  of (9) to (11) yield the similarity solutions.

3.0 Analysis of Method
3.1 Adomian Decomposition Method
For the purpose of illustrating the method of Adomian decomposition we begin with the (deterministic) form ( ) = (t)
where is a nonlinear ordinary differential operator with linear and nonlinear items. We could represent the linear term
where is a linear operator. We write the linear term + where we choose as the highest-ordered derivative. Now -1

is simply -fold integration for an th order. The remainder of the linear operator is (in case where stochastic terms are
present in linear operator, we can include a stochastic operator term ). The nonlinear term is represented by .Thus,+ + = and we write

-1 = -1 g− -1 − -1 for initial value problems we conveniently define -1 = as the n- fold definite integration

operator from 0 to t. For the operator = , for example we have,
-1 = – ( 0)− ′ (0)∴ = ( 0) + -1 g− -1 − -1

For the same operator equation but now considering a boundary value problem, we let -1 be an indefinite integral and write
= + for the first two terms and evaluate , from the given condition the first three terms are identified as in the

assumed decomposition
u=∑∞

Finally, assuming Nu is analytic, we write
Nu=∑∞ ( … )where the are specially generated Adomian polynomials for the specific nonlinearity.

3.2 Implementation of Method
The nonlinear coupled differential equations (9) to (11) with boundary conditions (12) are solved using the ADM methods.
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1 1 1 2 1 1

1 1 1 1 1 1[ ] [ ''] [ ' ] [ ] [ ]T CL L f L ff L f L Gr L Gr         (19)

 ][2
1

2 LL
 

3P

3 4
r

Ra




1 2
2 [( ' ' ' ' )]b tL f N N      (20)

1 1
2 2 2[ ] [ ' '' ]t

e c
b

N
L L L L f KS

N
        (21)

where 1
1 (.)L d d d       and 1

2 (.)L d d    
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The ADM solution is obtained by:
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In other to take care of problems at infinity, we therefore take functions which satisfies the boundary conditions at infinity as
our initial guesses.
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where b, c, and h are all constants to be determined for actual solutions.
The general solutions are:
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for conveniences, we used Maple-18 to compute the integrals.
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Table 1: Comparison between the previously published work with the present work for ' ( )f  at 0TGr  , and 0CGr 

η Crane[3]
Khan and
Pop[14] Present work

0.0 1 1 1

0.5 0.60653066 0.60653066 0.60653066

1.0 0.367879441 0.367879441 0.367879441

1.5 0.22313016 0.22313016 0.22313016

2.0 0.135335283 0.135335283 0.135335283

2.5 0.082084999 0.082084999 0.082084999

3.0 0.049787068 0.049787068 0.049787068

3.5 0.030197383 0.030197383 0.030197383

4.0 0.018315639 0.018315639 0.018315639

4.5 0.011108997 0.011108997 0.011108997

5.0 0.006737947 0.006737947 0.006737947

5.5 0.004086771 0.004086771 0.004086771

6.0 0.002478752 0.002478752 0.002478752

Table 2: Values of , and with bN , 0.01tN  and 1K  .

TGr CGr Pr Sc Ra Le  '' 0f  ' 0  ' 0

0 0 10 0.01 0.01 10 1 0.918406966 0.91307301
1 0 10 0.01 0.01 10 0.980196465 0.514959356 0.355908768

10 0 10 0.01 0.01 10 0.907586914 0.265304341 0.241188888

0 0 10 0.01 0.01 10 1 0.918406966 0.91307301

0 1 10 0.01 0.01 10 0.980196465 0.514959356 0.355908768

0 10 10 0.01 0.01 10 0.907586914 0.265304341 0.241188888

0 0 0.1 0.01 0.01 10 1 0.938486161 0.685002882

0 0 1 0.01 0.01 10 1 0.88965977 0.911533062

0 0 10 0.01 0.01 10 1 0.938486161 0.91307301

0 0 10 0.01 0.01 10 1 0.918406964 0.913073011

0 0 10 10 0.01 10 1 0.918407029 0.965715561

0 0 10 100 0.01 10 1 0.918407033 0.99485203

0 0 10 0.01 0.01 10 1 0.918406966 0.913073011

0 0 10 0.01 10 10 1 0.864504429 0.798848546

0 0 10 0.01 60 10 1 0.97352682 0.646282701

0 0 10 0.01 0.01 0.01 1 0.993832011 0.997939766

0 0 10 0.01 0.01 10 1 0.918406966 0.913073011

0 0 10 0.01 0.01 200 1 0.92089133 0.918699974

4.0 Results and Discussion
The nonlinear coupled differential equations (9) to (11) with boundary conditions (12) are solved using the Adomian

Decomposition Methods. In order to assess the accuracy of the present method, we have compared our solution for  'f 

for different values of  at 0TGr  and 0cGr  with the previously published work as shown in Table 1. It was observed

that the present method is in good agreement with the work of Crane [3] and Khan et al.[14].
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Table 2. shows the Adomian decomposition values for the skin friction (  ''f  )  , reduced Nusselt number (  '  )

and the reduced Shawood number (  '  ).

Figures 1 to 6 show the effect of thermal Grashof number ( )TGr and concentration Grashof number ( )cGr on the velocity

profile, temperature and concentration profile. It is observed that the thermal Grashof number and concentration Grashof
number enhances the fluid velocity, temperature, and concentration profile. This leads to increase in the boundary layers as
shown in the graph.
Figures 7 to 8 display the effect of prandtl number (Pr) on the temperature profile and the concentration profile. The thermal
boundary thickness decreases for both temperature and concentration profile as the Prandtl number increases. The reason is
that smaller values of Prandtl number are equivalent to increase in the thermal conductivity of the fluid and therefore heat is
able to diffuse away from the heated surface more rapidly for higher values of Prandtl number. Hence there is a reduction in
temperature with increase in the Prandtl number.

Fig 1: Effect of TGr on velocity profile

Fig 2: effect of TGr on temperature profile
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Fig 3: effect of TGr on concentration profile

Fig 4: effect of CGr on velocity profile

Fig 5: effect of CGr on temperature profile
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Fig 6: effect of CGr on concentration profile

Fig 7: effect of Pr on temperature profile

Fig 8: effect of Pr on concentration profile
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Fig 9: effect of Ra on temperature profile

Fig 10: effect of Ra on concentration profile

Fig 11: effect of Sc on temperature profile
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Fig 12: effect of Sc on concentration profile

Fig 13: effect of Pr, Le on Temperature profile

Fig 14: effect of Le on concentration profile
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Fig 15: effect of ,b tN N on temperature profile

Fig 16: effect of bN on concentration profile

Figures 9 to 10 show that the fluid temperature and concentration respectively attains their maximum value at the moving
plate surface and decreases monotonically to free stream zero value away from the plate satisfying the boundary conditions. It
is observe that increase in radiation (Ra) causes both the temperature and concentration profiles to increase.
Figures 11 to 12 display the effect of Schmidt number (Sc), and it is observe that, it has no significant effect on the
temperature profile but enhances the concentration profile.
Figures 13 to 14 present the effect of Lewis number (Le) on both the temperature and the concentration profiles respectively.
It is observe that increase in Lewis number causes the both the temperature and concentration profiles to reduce.

Figures 15 to 16 show the Brownian motion ( bN ) causes both temperature and concentration profiles to increase

insignificantly.

5.0 Conclusion
The solution to the problem of laminar fluid flow resulting from the stretching of a flat surface in a nanofluid with thermal
convection and radiatiuon has been obtained using the Adomian Decomposition Method for the first time. The model used
for the nanofluidwas presented in its rectangular coordinate system and incorporates the effect of Brownian motion, and

thermophoresis parameter.A similarity solution was presented which depends on the Prandtl number rP , Lewis number Le ,

Brownian motion bN , thermophoresis number tN , and Schimidt number Sc , and Grashof numbers (Grt, Grc) .
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It was found thatsmaller values of Prandtl number are equivalent to increase in the thermal conductivity of the fluid and
therefore heat is able to diffuse away from the heated surface more rapidly for higher values of Prandtl number. Hence there
is a reduction in temperature with increase in the Prandtl number.
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