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Abstract

In this work, hybrid block method of higher step-number, for the solution of
initial value problems of first-order ordinary differential equation has been developed
by collocation and interpolation technique. For this purpose we constructed a set of
orthogonal polynomials valid in the interval [0, 1] with respect to the weight function

21=)( xxw  and which serve as the basis function. The derived schemes were
implemented on some problems of interest and numerical evidences show that they
are effective and accurate.
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1.0 Introduction
In science and engineering usually mathematical models are developed to help in the understanding of physical phenomena.
These model often yield equations that contain some derivatives of an unknown function of one or several variables such
equations are called differential equations. Differential equations do not only arise in the physical sciences but also in diverse
fields as economics,medicine,psychology, operation research and even in areas such as biology and anthropology.
Interestingly, differential equation arising from the modeling of physical phenomena, often do not have analytic solutions.
Hence,the development of numerical method to obtain approximate solutions become necessary. To that extent,several
numerical methods such as finite difference methods,among others,have been developed based on the differential equation to
be solved.
A differential equation in which the unknown function is a function of two or more independent variable is called a Partial
Differential Equations(PDE). Those in which the unknown function is function of only one independent variable are called
Ordinary Deferential Equations(ODE).

2.0 Orthogonal Polynomial
The orthogonal polynomial of the first kind of degree n over the interval [0,1] with 21=)( xxw 
The polynomial is defined as
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3.0 Review of Existing Methods
Consider the class Initial Value Problem (IVPs) in Ordinary Differential Equation :

0=)(),(=)( yayyxfxy (1)

where a and 0y are given real constants. Numerical techniques for the solution have been extensively reported in the

literature [1-15]. In [8] a continuous five-step block method employing multistep collocation approach which produced a
class of eight discrete scheme was derived, while Ibijola et al [9] worked on formation of hybrid block method of higher step-
size,through the continuous muti-step collocation. This work has led us to the development of higher step size using
orthogonal ploynomial as basis function in our own work.

4.0 Derivation of Method
In this section, we shall be concerned with development of some block methods for the numerical solution of the IVP in
ODE;

0=)(),(=)( yayyxfxy (2)

where a and 0y are real numbers.

For this purpose we shall construct continuous two-step, three-step and four-step methods, each with one off-step point.
These will be used to generate the main method and other methods required to set up the desired block method.
We approximate the analytical solution of the problem by an approximation with orthogonal polynomial as base function.
We shall seek a k-step multi-step collocation polynomial )(xy of the form
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where j and j are continuous coefficients.

In order to obtain equation (2), we proceed by seeking approximation of the exact solution )(xy of the continuous form:
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such that ],[ 0 bxx , ia are unknown coefficients and )(xn are polynomial basis function of degree 1 qp , where

the number of interpolation point P and the number of distinct collocation point q are respectively chosen to satisfy number
kp 1 and 0>q . The integer 1k denotes the step number of the method.

5.0 Two-Step Method with One Off-Step Point
To derive this, one off-step point is introduce. This off-step point carefully chosen to guarantee zero stability condition. For

the method, the off-step point
2

3
=v using (3) with p=1, q=4,

We have a polynomial of degree 1 qp as follows.
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where
h

xx
t n= .

with the orthogonal polynomial earlier obtained in section2, equation(3) now becomes
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Differentiating (5) we have
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Interpolating (5) at nx collocating (6) at
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Solving (7) by Gaussian elimination method, with the aid of Maple yields
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Substituting (8) into (5) yields
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where )(0 x and )(xi are continuous coefficients. Equation (9) yields the parameter i and i as the following
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We evaluate (10) at
2
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n xx and 2nx in order to derive the block method
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which is in Block form.
6.0 Three-Step Method With One Off-Step Point

Following the same procedure for the off-step point
2

5
=v using (2) with p=1, q=5 with the orthogonal polynomial earlier

determined in section2, and finding the first derivative of the polynomial, we obtain the Block as
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System (12b) is hybrid block method.

7.0 Four- Step Method With One Off-Step Point

Following the same procedure for the off-Step point
2

7
=v , we set p=1, q=6 in (2). Together with the orthogonal

polynomial and finding the first derivative of the polynomial we obtain the block method.
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System(13) is a hybrid block method.

8.0 Analysis of The Methods
9.0 Order of the Methods
The Linear Multistep Methods, with the associate operator L defined by:

)]()([=]:)([
0=

jhxyhjhxyhxyL njnj

k

j

  (14)
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The differential operator in (15) and the associated Linear Multistep Method are said to be of order p if :
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The term 1pC is called error constant and it implies that the local truncation error is given by

)0()(= 211
1


  p

n
pp

pkn hxyhCE (17)

10.0 Consistency and zero-Stability
Definition 4.3 The linear Multistep Method is said to be consistent if it has order 1p .

Definition 4.4 The linear Multistep Method is said to be zero-stable if no root of the first characteristic polynomial has
modulus greater than one and if every root with modulus 1 is simple.

Definition 4.5 The hybrid block method is said to be zero stable if the roots R of the characteristic polynomial )(Rp ,

defined by:
][=)( ARAdetR 

satisfy 1|| R and every root with 1|=| 0R has multiplicity not exceeding two in the limit as 0n .

11.0 Convergence
The convergence of the continuous hybrid two step method is considered in the light of the basic properties discussed earlier
in conjunction with the fundamental theorem of Dahlquist[10]  for linear multistep method. We state Dahlquist theorem
without proof.
Theorem 4.1

The necessary and sufficient condition for a multistep method to be convergent is for it to be consistent and zero stable.
Table 1: Features of Two-Step Method
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Table 2: Features of Three-Step Method
k =3 Evaluating Point order Error Constant
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Table3: Features of Four-Step Method
k =4 Evaluating Point order Error Constant
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12.0 Stability of Block Method
13.0 Stability Analysis for Method (9)
The equation (9) When put together formed the block as
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Normalizing this by multiplying with the inverse of 0A we obtain
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The first given characteristic polynomial of the hybrid block method is given as
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Since {1,2,3}1||  jR j then the method as a block is zero stable on its own. The hybrid block method is also

consistent as its order 1>p .

From [10], we can safely assert the convergence of the block method.

14.0 Stability Analysis for Method (10)
The equation (10) when put together formed the block as
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Proceeding in a similar manner as in the case of method(9)above yields the values:

{1,2,3,4},1,||Since1=0,=0,=0,= 4321  jRRRRR j the method as a block is zero stable on its own.

15.0 Stability Analysis for Method (11)
The equation (11) when put together formed the block as further analysis give the values the R’s in the case as:

},{1,2,3,4,51,||Since1=,0==== 54321  jRRRRRR j then the method as a block is zero stable on its

own.

16.0 Numerical Examples
The following notation are adopted in the tables of numerical results of this section.
2S1HBM Two step one hybrid method
3S1HBM Three step one hybrid method
4S1HBM Four step one hybrid method
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Example 5.1
A constant-coefficient non-homogeneous problem

100.1=0=(0)=)()(  xhyxxyxy

Analytical solution: 1=)(   xexxy
Example 5.2
A constant-coefficient homogenous problem

100.1=1=(0)0=)()( 2  xhyxyxy

Analytical solution: y(x) =
1

1

x
Example 5.3
Constant coefficient non-homogeneous problem.

200.2,=1,=(0),=4 2  xhyxyy .

Block method are implemented on all the examples using Maple.
Results generated are as presented in Tables 4 - 9.
Table 4: Numerical Results for Example 5.1
x Exact 2S1HBM 3S1HBM 4S1HBM
0.1 0.004837418 0.004837327 0.004837409 0.004837417
0.2 0.018730753 0.018730667 0.018730747 0.018374173
0.3 0.040818220 0.040818068 0.040818216 0.040818220
0.4 0.070320046 0.070319905 0.070315622 0.070320045
0.5 0.106530659 0.106530472 0.010652928 0.106530658
0.6 0.148811636 0.148811463 0.148805738 0.148811635
0.7 0.196585303 0.196850981 0.196572279 0.196585303
0.8 0.249328964 0.249328776 0.249321748 0.249328963
0.9 0.306569659 0.306569448 0.306550329 0.367879440
1.0 0.367879441 0.367879248 0.367856097 0.367879440
Table 5: Error of the Methods for Example 5.1
x 2S1HBM 3S1HBM 4S1HBM

0.1 08109.09  09108.64  10107.23 
0.2 08108.55  09105.32  10103.57 
0.3 07101.51  09103.94  10101.90 
0.4 07101.40  06104.42  10104.50 
0.5 07101.87  06101.38  10102.00 
0.6 07101.72  06101.38  10106.00 
0.7 07102.05  06105.90  10103.00 
0.8 07101.88  06101.30  10106.00 
0.9 07102.10  06101.93  10102.00 
1.0 07101.97  05102.33  10105.00 
Table 6: Numerical Results for Example 5.2
x Exact 2S1HBM 3S1HBM 4S1HBM

0.1 0.904837418 0.9048373271 0.9048544369 0.9048374176
0.2 0.818730753 0.8187306675 0.8187360313 0.8187307529
0.3 0.740818221 0.7408080688 0.7408409447 0.7408182205
0.4 0.670320046 0.6703199059 0.6703532159 0.6703200455
0.5 0.606530659 0.6065304720 0.6065531749 0.6065306589
0.6 0.548811636 0.5488114642 0.5488453053 0.548116355
0.7 0.496585303 0.4965850982 0.4966251096 0.496583032
0.8 0.449328964 0.4493287763 0.4493594271 0.4493289635
0.9 0.406569659 0.4065694490 0.4066070744 0.4065696590
1.0 0.367879441 0.3678792489 0.3678792412 0.3698784407
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Table 7: Error of Methods for Example 5.2
X 2S1HBM 3S1HBM 4S1HBM
0.1 08109.09  09101.70  10104.00 
0.2 08108.55  09105.28  10101.00 
0.3 07101.51  09102.27  10105.00 
0.4 07101.40  06101.40  10105.00 
0.5 07101.87  06101.87  10101.00 
0.6 07101.72  06103.37  10105.00 
0.7 07102.05  06103.98  10102.50 
0.8 07101.88  06103.05  10105.00 
0.9 07102.10  06103.75  10100.00 

1
1.0

07101.97  05103.70  10102.00 

Table 8: Numerical Results for Example 5.3
x Exact 2S1HBM 3S1HBM 4S1HBM

0.1 0.451537434 0.4505943450 0.4516128504 0.4513030279
0.2 0.216837251 0.2163416043 0.2166022719 0.2167967912
0.3 0.134330170 0.1337203846 0.1349133567 0.1340830071
0.4 0.130738385 0.1305384997 0.1310891337 0.1307070573
0.5 0.173993275 0.1738652131 0.1741365212 0.1739696514
0.6 0.249222567 0.2829076511 0.2493278552 0.2492145946
0.7 0.349832305 0.3649610942 0.3498118578 0.3498274266
0.8 0.472859633 0.4796392211 0.4789732650 0.4728570806
0.9 0.616973225 0.6200181314 0.6168950386 0.6169717190
1.0 0.781574979 0.7829394623 0.7814285410 1.7815743969

Table 9: Errors of Method for Example 5.3
x 2S1HBM 3S1HBM 4S1HBM

0.1 04109.43  05107.54  04102.34 
0.2 04104.96  04102.35  05104.03 
0.3 04106.10  04105.83  04102.47 
0.4 04102.00  04103.31  05103.13 
0.5 04101.28  04101.43  05102.36 
0.6 02103.36  04101.05  06107.97 
0.7 02101.51  02101.51  06104.87 
0.8 03106.77  05103.77  06102.55 
0.9 03103.04  05107.82  06101.54 
1.0 03101.36  04101.46  07105.82 

17.0 Summary and Conclusion
A class of hybrid collocation methods for direct solution of initial value problems of general first order differential equations
have been developed in this research. The collocation technique yielded very consistent and zero stable implicit hybrid
methods. The methods are implemented without the need for development of predictor nor requiring any other method to
generate starting values. The derived integration scheme were applied to some selected problem of varied peculiarities and
numerical evidences show that the methods are accurate and effective.

Journal of the Nigerian Association of Mathematical Physics Volume 29, (March, 2015), 467 – 476



476

Higher-Step Hybrid Block Methods… Adeniyi and Taiwo J of NAMP

18.0 References
[1] Lambert, J.D.(1973). Computational methods in ordinary differential equations, John Wiley and Sons,New York.
[2] Lambert, J.D.(1991). Numerical methods for ordinary differential system. Wiley and Sons,New York.
[3] Fatunla, S.O. (1988). Numerical Method for initial value problems in Ordinary Differential Equations. Academic

Press, New York.
[4] Awoyemi, D.O(1992) On some continuous linear multistep methods for initial value problems, Unpublished

doctoral thesis, University of Ilorin, Ilorin, Nigeria.
[5] Onumanyi, P. Awoyemi D.O. Jator S.N. and Sirisena U.W. (1994). New linear multistep methodS with continuous

coefficient for first order initial value problems. J.Nig . Math.Soc.1, 37-51.
[6] Adeniyi R.B. , Adeyefa E.O. and Alabi M.O. (2006) . A continuous formulation of some classical initial value

solvers by non-perturbed multistep collocation approach using chebyshev polynomial as basis function . Journal of
the Nigerian Association of Mathematical Physics 10, 261-274 .

[7] Adeniyi, R.B. and Alabi, M.O. (2007). Continuous Formulation Of a class Accurate Implicit Linear Multistep
Methods with Chebyshev Basis Function in a collocaion technique. Journal of Mathematical Association of Nigeria
(ABACUS) 34(2A), 58-77.

[8] Odejide, S.A and Adeniran, A.O. (2012). A hybrid linear collocation multistep scheme for solving first order initial
value problems. Journal of Nigerian Mathematical Society 31, 229-241.

[9] Ibijola E.A. , Skwame Y. and Kumleng G. (2011) . Formulation of hybrid methods of higher step sizes through the
continuous multistep collocation . American Journal of Scientific and Industrial Research 2, 161-173.

[10] Henrici,P. (1962). Discrete Variable Methods for ODEs, John Wiley and Sons,New York, USA.
[11] Dahlquist, G.(1959). Stability and error bound in the numerical integration of ODEs.Transcript/130/,Royal Institude

of Technology, Stockholm.
[12] Dahlquist, G.(1963). A special stability problem for linear multistep methods, BIT 3, 27-43
[13] Ehigie, J.O. Okunuga S.A. and Sofoluwe A.B. (2011) A class of 2-step continuous hybrid implicit linear multistep

methods for IVP’s, Journal of Nigerian Mathematical Society 30, 145-161.
[14] Ehigie, J.O. Okunuga S.A and Sofoluwe.A.B.(2010): Journal of  Institute of Mathematics and Computer Science

21(2), 219-230.
[15] Muhammed, U. Ma’ali A.I., and Badeggi A.Y,(2014). "Derivation of Block Hybrid Method for the solution of first

order initial value problems in ODEs". Pacific Journal of Science and Technology 15(1), 93-98

Journal of the Nigerian Association of Mathematical Physics Volume 29, (March, 2015), 467 – 476


