Predicting Reservoir Permeability Using Core Data From Niger Delta Fields

Giegbefumwen P.U¹, Akwaeke E N.² and Olafuyi O.A.³

¹Department of Petroleum Engineering, University of Benin, Nigeria. ²Department of Petroleum Engineering, University of Port Harcourt, Nigeria. ³Department of Petroleum Engineering, University of Benin, Nigeria.

Abstract

The use of erroneous models can lead to inaccurate predictions of reservoir permeability. Most Niger Delta wells are uncored. Thus, there is need to do more research on how this challenge can be minimized. In this study, two hundred and thirteen core data points comprising of irreducible water saturation, permeability, and porosity sets were obtained from four different fields. Nine Permeability models were used to investigate the reliability of permeability predictions using core data. The laboratory permeability and porosity data were used to determine hydraulic zones using Amaefule et al recommended technique. Permeability predictions were made for each hydraulic unit using the nine existing models. A comparative analysis was carried out and standard errors were computed. Crystal Ball software was employed to find the degree of certainty for the predictions obtained.

In conclusion, Owolabi's model showed a distinctive characteristic within most of the flow zones. It performs better in high perm reservoirs. Tixier and Schlumberger permeability models were seen to predict better in low permeability zones.

Key words: Permeability Model, Certainty level, Hydraulic Units, Flow Zone Indicator, standard error of prediction, Crystalball Software, Monte Carlo Simulation, Model ranking and Prediction.

1.0 Introduction

Knowledge of the prevailing permeability value of a reservoir is a sine qua non to the overall productivity of a well. Over the years attempts have been made by different oil and gas Model developers to adequately derive a representative permeability model of a productive rock for future predictions.

According to Ofonmbuk et al. [1], "the permeability of a rock is one of the most important parameters necessary for effective reservoir characterization and management. Therefore accurate knowledge of its distribution in the reservoir is critical to accurate production performance prediction. During primary depletion, areal variation of permeability influences oil recovery. Permeability measurements from cores are direct measurement of these properties. But a reservoir without core data is often associated with uncertainties as these properties have to be log derived. Several authors have proposed models for permeability determination in an uncored reservoir using well logs. These models are based on correlation between permeability, porosity and irreducible water saturation being a function of the rock characteristics".

From the above excerpt, one can further confirm that determination of permeability models have been championed by diverse scholars. This is so because permeability is one petrophysical property that cannot be measured in situ either via coring or logging operation. Most of the permeability values that are used today are either got from the lab or derived. It is this derivable nature of this property that prompted the design of K-models, just as any other derived models in the field of science.

2.0 **Problem Definition**

This study is borne out of the unavailability of core data in most Niger Delta wells. This insufficiency is largely due to poor capital base. The need to establish the most acceptable reservoir perm/por/water saturation model that can give an approximate solutions become pertinent

Corresponding author: Giegbefumwen P.U, E-mail: peter.giegbefumwen@uniben.edu, Tel.: +2348038700814

3.0 Technical Objective

The objectives of this study include;

- 1. To apply the principle of FZI in the analysis of the data
- 2. To carry out a comparative analysis between the actual k values (from coring techniques) and the predicted k values (from model)
- 3. To recommend with a level of certainty the models that predict better within Niger Delta province
- 4. To carry out model ranking
- 5. To validate our findings using Crystalball software and standard errors calculation

4.0 Literature Review

5.0 Historical Perspective On Permeability Models

Timur [2] established a relationship for estimating permeability and that of water saturation. This he did by testing several possibilities through the laboratory measurement of permeability (K), porosity (ϕ) and irreducible water saturation (S_{wi}) on 155 sandstone samples from three different oil fields in North America.

His empirical equation for permeability is one of those to be considered in this study.

Ofonmbuk et al. [1] used five empirical approaches to model the permeability of a reservoir without a core data in Niger Delta. The aim of their work was to use these equations to analyse their reservoir flow performance using a simulator in order to find out which of them could yield a higher oil recovery. It was eventually investigated that the permeability model generated using correlation from a nearby field core data yielded the highest recovery. The five empirical models they analyzed are Timur [2], Coates [3], Tixier [4], Udegbunam [5] and a model generated using a core data from a nearby field [1]. It is important to state here that all the five models were used in this study.

Amaefule et al. [3] presented a new, practical and theoretical methodology for identifying and characterizing hydraulic units within mappable geological units (facies). The technique is based on a modified Kozeny-Carmen equation and the concept of mean hydraulic radius.

Usman et al. [4] reviewed the commercially available permeability-estimation techniques and discussed the important factors that illustrate their relationship. They stated that detailed and accurate reservoir characterization demands the use of various measurements. Therefore, understanding the various permeability measurement techniques used by the industry is needed. Thus, the three major permeability measurement techniques are wireline-log analysis (including the RFT method), laboratory testing of core samples, and well testing; while the core and log techniques measure absolute permeability, well testing and RFT measured qualitatively permeability. In their work, different existing models were reviewed under each technique. Examples of such models are those of;

a. Modified Kozeny model [5,6]:

$$K = \frac{W^3}{\left[5A_g^2(1-W)^2\right]}....(1)$$

b. With the introduction of the Coates-Dumanoir [7] relationship of the free-fluid model, a new equation was derived that ensured zero permeability at zero porosity and when $S_{wi} = 100\%$. Coates and Denoo [8] accommodated the two conditions with the following relationship:

$$k^{\frac{1}{2}} = 100 W_e^2 \left[\frac{(1 - S_{wi})}{S_{wi}} \right]$$
.....(2)

c. Morris and Biggs [9] observed that it is easier to predict a rock's bulk-volume irreducible water, $V_{bwi} = \phi_t S_{wi}$, than the actual value of S_{wi} . This requires a slight modification of Coates and Denoo equation above, made by multiplying the numerator and denominator by total porosity, ϕ_t :

$$k^{\frac{1}{2}} = 100 W_e^2 \left(\frac{W_t - V_{bwi}}{V_{bwi}} \right)$$
.....(3)

d. Usman et al [3] also presented an arithmetic averaging model relating core and log permeability to well-test permeability:

$$\frac{(\mathbf{y})_{wt}}{k_{rh\bar{h}}S_{h}} = \sum_{i=1}^{N} F_{i}\overline{k}_{i}h_{i}....(4)$$

e. E.t.c

6.0 Basic Concept of Hydraulic Unit (Hu) [10]

Petroleum geologists, engineers, and hydrologists have long recognized the need of defining quasi geological/engineering units to shape the description of reservoir zones as storage containers and reservoir conduits for fluid flow. Several authors have various definitions of flow units, which are resultant of the depositional environment and digenetic process. Bear [11] defined the hydraulic (pore geometrical) units as the representative elementary volume of the total reservoir rock within which the geological and petrophysical properties of the rock volume are the same. Ebanks [12] defined hydraulic flow units as a mappable portion of the reservoir within which the geological and petrophysical properties of the other reservoir rock volume. Hearn et al. [13] defined flow unit as a reservoir zone that is laterally and vertically continuous, and has similar permeability, porosity, and bedding characteristics. Gunter et al. [14] defined flow unit as a stratigraphically continuous interval of similar reservoir process that honors the geologic framework and maintains the characteristics of the rock type.

From these definitions the flow units have the following characteristics:

- A flow unit is a specific volume of reservoir, composed of one or more reservoir quality lithology
- A flow unit is correlative and map able at the interval scale
- A flow unit zonation is recognizable on wire-line log
- A flow unit may be in communication with other flow units

Amaefule et al. [3] defined hydraulic units as distinct zones in a reservoir with similar fluid flow characteristics. They developed a new, practical and theoretically- based technique to identify and characterize units with similar pore throat geometrical attributes (hydraulic units).

7.0 Monte Carlo Simulation Steps [15]

- Building a spreadsheet model to describe an uncertain situation
- > Define assumptions distributions for inputs with uncertainty
- Define a Forecast and Run a Simulation on the model to randomly generate values of uncertain variables over and over to simulate the model outcome or output.
- Analyze the results which show the entire range of all possible outcomes and the likelihood of the occurrence of each of them.

8.0 The Crystal ball Software [15]

9.0 Use of Crystal Ball

- A forecasting tool for the determination of certainty level within a given range
- Sensitivity analysis using spider and tornado chart
- Use generally for risk analysis in decision making involving cost

10.0 Simulation Using Crystal ball [15].

- Set run preferences for your simulation
- Trials , sampling, speed, options, statistics
- > Run the simulation
- Analyze Crystal Ball results
- Assumption charts
- Forecast charts
- Trend, sensitivity, or scatter charts

11.0 Methodology

Figure 1 below shows a flow chart of the steps embarked upon in actualizing the goals of this study. At this point each of the steps shall be briefly discussed and a deeper touch shall be thrown on some of the seemingly new concepts.

12.0 Model Identification & Selection

As previously mentioned, a lot of models were identified. Based on some inherent constraints, nine models were selected from the lot. The selected permeability models are;

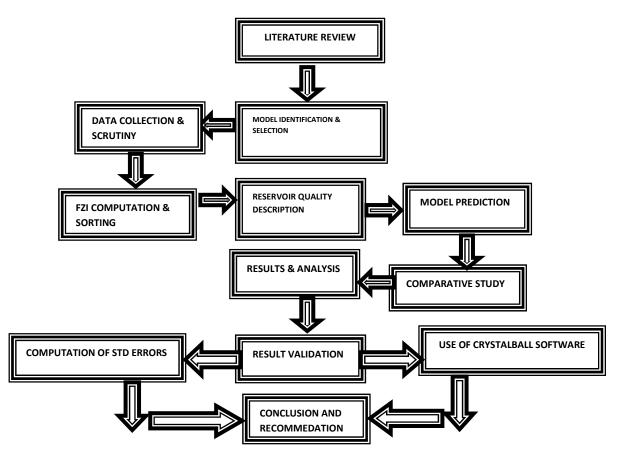


Fig 1: Schematics of Methodology

I. TIXIER K MODEL [16]

 $K^{\frac{1}{2}} = 250 \frac{W^3}{S_{wi}}$(5)

II. SCHLUMBERGER ORGANISATION [17]

- III. TIMUR K MODEL [2] $K = 0.136 \frac{W^{4.4}}{S_{wi}^{2}}$(7)
- IV. COATES and Denoo K MODEL [8] $K^{\frac{1}{2}} = 100 \frac{W_e^2 (1 - S_{wi})}{S_{wi}} \dots \dots \dots (8)$

LogK = -0.83565 + 13.068W.....(9)

- VI. OWOLABI ET AL [17] $K = 307 + 26552w^2 - 34540(w * S_{wi})^2$(10)
- VII. MODIFIED COATES AND DENOO [17]

VIII. ADJUSTED TIMUR K MODEL [17]

$$K = \frac{10^4 W^3}{S_{wi}^{1.4}}....(12)$$

IX. OFONMBUK K MODEL [1] $K = 18044 * W^{3.104}$(13)

13.0 Data Collection And Scrutiny

After the review of the relevant texts and papers, data was sourced for, gathered and a quality check on each data points were carried out.

14.0 Data Description

213 data sets consisting of K, W and S_{wi} were obtained from fields SARI, A-B-O & N-S of company X & Y located in Niger Delta. The table below shows a typical raw core data from a field in Niger Delta (WELL ABO). These data sets were among those used for analysis.

Predicting Reservoir Permeability... Giegbefumwen, Akwaeke and Olafuyi J of NAMP

Table 1: Raw	Core Data from	Well A-B-O	Located In Niger Delta	
	• • • • • • • • • • • • • • • • • • • •			

		COMPANY X	WELL: A-B-0		
S/N	DEPTH (m)	Horiz. Perm. (mD)	Horiz. Klink K (mD)	Swi (%)	Porosity(%)
	2230	Shale- No Plug	Taken		
1	2230.25	3490	3380	6.40	30.20
2	2230.5	4240	4120	18.20	28.90
3	2230.8	2320	2240	12.30	30.10
4	2231.25	4630	4500	2.50	34.50
5	2231.5	4340	4210	4.00	32.00
6	2231.75	4670	4540	3.60	28.70
7	2232	1680	1610	16.50	28.10
8	2232.6	6800	6640	3.00	31.90
9	2232.82	3920	3800	8.80	34.10
10	2233	4450	4320	7.20	35.10
11	2233.25	4180	4060	8.30	35.40
12	2233.5	5240	5100	7.10	35.50
13	2233.75	2870	2770	13.00	32.00
14	2234	4300	4180	6.60	35.10
15	2234.25	4980	4850	3.80	35.10
16	2234.5	5310	5170	1.60	34.80
17	2234.73	5040	4900	2.70	35.20
18	2235	5040	4910	4.90	34.70
10 19	2235.25	4520	4400	7.90	33.60
20	2235.5	4870	4740	3.60	34.10
	2235.75	4450	4330	5.60	34.10
21					
22	2236.1	3890	3780	3.90	35.00
23	2236.25	5160	5020	3.80	34.50
24	2236.5	3270	3160	2.90	34.10
25 26	2236.65 2237	4570	4450 3890	4.60	34.40
26 27	2237	4010 281	259	7.60 36.10	35.10 25.20
28 20	2238	4550	4420	2.10	35.00
29	2238.3	3110	3010	5.20	34.20
30	2238.5	1990	1920	16.30	33.50
31	2238.75	3470	3360	7.10	35.50
32	2239	3800	3680	14.70	35.00
33	2239.25	2500	2410	6.30	35.10
34	2239.5	4260	4140	3.10	35.10
35	2239.75	4210	4090	4.10	35.20
36	2240	3640	3530	6.90	35.50
37	2240.25	2990	2890	10.80	34.80
38	2240.5	2590	2500	14.00	34.40
39	2240.75	2590	2500	11.20	33.80
40	2241.08	368	342	19.40	29.20
41	2241.93	0.293	0.201	93.50	14.50
42	2242	0.255	0.177	82.20	14.10
43	2242.45	0.196	0.141	89.50	14.80
44 45	2242.75	0.092 0.222	0.066	83.50	14.90
45 46	2242.95		0.161 0.02	93.30 83.40	13.40
46 47	2243 2244.45	0.03 0.053	0.02	55.30	13.00 13.10
47 48	2244.45 2246.95	5790	0.036 5640	4.80	33.70
48 49	2240.93	0.733	0.543	4.80	14.10
49 50	2247.95	0.733	0.28	96.10	13.60

14.0 FZI Computation

As earlier explained and summarized in the chart below, the flow zone indicators were identified following the recommendation of Jude Amaefule [3]. This action became necessary in order for us to adequately analyze our findings. The big question that prompted the incorporation of this technique into this work was "could it be that some models will predict better in certain zones than others?" In this work, we however excluded the identification of hydraulic units (HU).

After the computation of FZI, the data points were sorted and then zoned according to the computed FZI values.

The table below shows a permeability quality description for each data set according to their mean FZI values. This is a modified version of Tiab et al. [10] and Hassan et al. [19] descriptions.

Table 2: Reservoir Quality Description In Terms Of FZI

MEAN FZI VALUES	QUALITATIVE NAME
>8.00	EXTRAORDINARY QUALITY RESERVOIR (EQR)
7.00 – 7.99	EXTRA EXTRA GOOD QUALITY RESERVOIR (EEGQR)
6.00 - 6.99	EXTRA GOOD QUALITY RESERVOIR (EGQR)
5.00 - 5.99	VERY GOOD QUALITY RESERVOIR (VGQR)
4.00 – 4.99	GOOD QUALITY RESERVOIR (GQR)
3.00 - 3.99	MEDIUM QUALITY RESERVOIR(MQR)
2.00 - 2.99	LOW QUALITY RESERVOIR(LQR)
1.00 – 1.99	VERY LOW QUALITY RESERVOIR(VLQR)
<0.99	EXTREMELY LOW QUALITY RESERVOIR(ELQR)

15.0 Model Prediction and Comparative Study

Each of the models was used for permeability prediction using the 213 core data points obtained for each hydraulic unit. Using the **ARITHMETIC AVERAGE** statistical concept, the mean of the predicted K- value for each FZI zone was compared to the actual field data and the degree of variation/ standard error was computed.

16.0 Analysis Of Result And Validation

With the surprising and wonderful results obtained, critical analyses were carried out. As stated earlier, standard error of predictions associated in the use of each model was calculated. This approach became pertinent in order to find out the model that has the lowest error/variation; since the closer the predicted values are to the actual, the lower the error/variation. The model below was used for the standard error of prediction computation:

$$S_{ep} = \sqrt{\frac{(Y_I - Y_{pred})^2}{N}}....(14)$$

Furthermore, the CRYSTALBALL software was used to validate our result by checking the degree of CERTAINTY LEVEL of each model's prediction. The model that shows the highest certainty level should output the lowest error of prediction. If this is true our result is validated

Predicting Reservoir Permeability...

17.0 Results and Discussion Table 3: FZI Computation

		COMPAN	Y: X		WELL:AB	0			
S/N	DEPTH (m)	HorKair	Hor Klink K	Swi(%)	Por (%)	Por frac	NPI	RQI	FZI
1	2230.25	3490	3380	6.40	30.20	0.3020	0.4327	3.3219	7.6777
2	2230.5	4240	4120	18.20	28.90	0.2890	0.4065	3.7491	9.2236
3	2230.8	2320	2240	12.30	30.10	0.3010	0.4306	2.7088	6.2904
4	2231.25	4630	4500	2.50	34.50	0.3450	0.5267	3.5861	6.8085
5	2231.23	4340	4210	4.00	32.00	0.3430	0.3207	3.6016	7.6534
6	2231.75	4670	4540	3.60	28.70	0.2870	0.4025	3.9493	9.8112
7	2232	1680	1610	16.50	28.10	0.2810	0.3908	2.3768	6.0815
8	2232.6	6800	6640	3.00	31.90	0.3190	0.4684	4.5302	9.6711
9	2232.82	3920	3800	8.80	34.10	0.3410	0.5175	3.3147	6.4058
10	2233	4450	4320	7.20	35.10	0.3510	0.5408	3.4835	6.4410
11	2233.25	4180	4060	8.30	35.40	0.3540	0.5480	3.3627	6.1365
12	2233.5	5240	5100	7.10	35.50	0.3550	0.5504	3.7636	6.8380
13	2233.75	2870	2770	13.00	32.00	0.3200	0.4706	2.9214	6.2080
14	2234	4300	4180	6.60	35.10	0.3510	0.5408	3.4266	6.3358
15	2234.25	4980	4850	3.80	35.10	0.3510	0.5408	3.6910	6.8247
16	2234.5	5310	5170	1.60	34.80	0.3480	0.5337	3.8272	7.1706
17	2234.73	5040	4900	2.70	35.20	0.3520	0.5432	3.7047	6.8201
18	2235	5040	4910	4.90	34.70	0.3470	0.5314	3.7351	7.0289
19 20	2235.25 2235.5	4520 4870	4400 4740	7.90	33.60 34.10	0.3360	0.5060 0.5175	3.5932 3.7020	7.1009 7.1544
20	2235.5	4870	4330	5.60	34.10	0.3410	0.5175	3.5383	6.8380
21	2235.75	3890	3780	3.90	35.00	0.3410	0.5385	3.2632	6.0602
22	2236.25	5160	5020	3.80	34.50	0.3450	0.5365	3.7877	0.0002 7.1911
23	2236.5	3270	3160	2.90	34.10	0.3410	0.5175	3.0227	5.8415
25	2236.65	4570	4450	4.60	34.40	0.3440	0.5244	3.5713	6.8105
26	2237	4010	3890	7.60	35.10	0.3510	0.5408	3.3056	6.1121
27	2237.25	281	259	36.10	25.20	0.2520	0.3369	1.0067	2.9880
28	2238	4550	4420	2.10	35.00	0.3500	0.5385	3.5286	6.5532
29	2238.3	3110	3010	5.20	34.20	0.3420	0.5198	2.9458	5.6676
30	2238.5	1990	1920	16.30	33.50	0.3350	0.5038	2.3772	4.7188
31	2238.75	3470	3360	7.10	35.50	0.3550	0.5504	3.0548	5.5503
32	2239	3800	3680	14.70	35.00	0.3500	0.5385	3.2197	5.9795
33	2239.25	2500	2410	6.30	35.10	0.3510	0.5408	2.6019	4.8109
34 35	2239.5 2239.75	4260 4210	4140 4090	3.10	35.10 35.20	0.3510	0.5408 0.5432	3.4102 3.3847	6.3054 6.2309
36	2239.73	3640	3530	6.90	35.50	0.3550	0.5452		0.2309 5.6890
	1		Î	10.80					
37	2240.25	2990	2890		34.80	0.3480	0.5337	2.8615	5.3611
38	2240.5	2590	2500	14.00	34.40	0.3440	0.5244	2.6768	5.1046
39	2240.75	2590	2500	11.20	33.80	0.3380	0.5106	2.7005	5.2891
40	2241.08	368	342	19.40	29.20	0.2920	0.4124	1.0746	2.6056
41	2241.93	0.293	0.201	93.50	14.50	0.1450	0.1696	0.0370	0.2180
42	2242	0.255	0.177	82.20	14.10	0.1410	0.1641	0.0352	0.2143
43	2242.45	0.196	0.141	89.50	14.80	0.1480	0.1737	0.0306	0.1764
44	2242.75	0.092	0.066	83.50	14.90	0.1490	0.1751	0.0209	0.1194
45	2242.95	0.222	0.161	93.30	13.40	0.1340	0.1731	0.0344	0.2224
	İ.								
46	2243	0.03	0.02	83.40	13.00	0.1300	0.1494	0.0123	0.0824
47	2244.45	0.053	0.036	55.30	13.10	0.1310	0.1507	0.0165	0.1092
48	2246.95	5790	5640	4.80	33.70	0.3370	0.5083	4.0621	7.9917
49	2247.75	0.733	0.543	80.00	14.10	0.1410	0.1641	0.0616	0.3754
50	2247.95	0.392	0.28	96.10	13.60	0.1360	0.1574	0.0451	0.2862

Table 4: Oualita	tive Description	n Of The Data	Set After Sorting
Table 4. Quant	inve Deseription	I OI IIIC Data	bet miter bor ting

FLOW ZONE INDICATOR/UNITIZATION DATA S/N DEPTH (meters) Kair (mD) Hor Klink K (mD) Swi (%) Por (%) Por frac NPI RQI 46 2243.00 0.03 0.02 83.40 13.00 0.1300 0.1494 0.0123 47 2244.45 0.092 0.066 83.50 14.90 0.1737 10.0306 43 2242.45 0.196 0.141 89.50 14.80 0.1440 0.1737 0.0306 42 2242.00 0.255 0.177 82.20 14.10 0.1410 0.1640 0.0374 45 2247.95 0.392 0.28 96.10 13.60 0.1374 0.0344 50 2247.75 0.733 0.543 80.00 14.10 0.1410 0.1641 0.0364 14 2241.08 368 342 19.40 29.20 0.2920 0.4124 1.0746 21 2237.25 281 259 36.10 25.20 0.3350	14	COMPANY: X		<u>he Data Set After Sor</u> WELL:	A-B-0					
SYN DEPTH (meters) Kair (mD) Hor Klink K (mD) Swi (%) Por (%) Por frac NPI RQI ELQR 47 2244.45 0.03 0.036 55.30 13.00 0.1300 0.1494 0.0157 0.0066 44 2242.75 0.092 0.066 83.50 14.90 0.1400 0.1737 0.0306 42 2242.45 0.196 0.141 89.50 14.80 0.1440 0.1737 0.0306 42 2242.95 0.293 0.201 93.30 13.40 0.1440 0.1547 0.0341 50 2247.95 0.392 0.28 96.10 13.60 0.1547 0.0341 50 2247.75 0.733 0.543 80.00 14.10 0.1410 0.1641 0.0616 CQR	FLO		OR/UNITIZA							
					Swi (%)	Por(%)	Por frac	NPI	ROI	FZI
46 2243.00 0.03 0.02 83.40 13.00 0.1300 0.1494 0.0123 47 2244.45 0.053 0.036 55.30 13.10 0.1310 0.1507 0.0123 42 2242.75 0.092 0.066 83.50 14.490 0.1490 0.1751 0.0209 42 2242.00 0.255 0.177 82.20 14.10 0.1410 0.1640 0.0352 41 2241.93 0.293 0.201 93.50 14.50 0.1450 0.1640 0.0352 50 2247.75 0.733 0.543 80.00 14.10 0.1410 0.1641 0.0616 CQR	DIT		Huir (III2)		5(70)	101(70)	I of flue		il y i	121
47 2244,45 0.033 0.036 55.30 13.10 0.1310 0.1570 0.0165 44 2242,75 0.092 0.066 83.50 14.90 0.1490 0.1751 0.020 42 2242,45 0.196 0.141 89,50 14.80 0.1480 0.1410 0.0165 41 241,93 0.293 0.201 93,50 14.50 0.1410 0.1647 0.0304 50 2247,95 0.392 0.28 96,10 13.60 0.1547 0.044 40 2247,75 0.733 0.543 80,00 14.10 0.1641 0.066 7 2237,25 281 259 36,10 2.520 0.5350 0.5388 2.3767 32239,25 2500 2410 6.30 35,10 0.3350 0.5438 2.6768 32240,57 2590 2500 14.00 34.40 0.3440 0.5444 2.6768 32240,57 2590 2500 11	16	2243.00	0.03	-	83.40	13.00	0.1300	0 1/0/	0.0123	0.0824
44 2242.75 0.092 0.066 83.50 14.90 0.1490 0.1751 0.0206 43 2242.45 0.196 0.141 89.50 14.80 0.1480 0.1751 0.0306 42 2242.00 0.255 0.177 82.20 14.10 0.1450 0.1696 0.0352 41 2241.93 0.293 0.201 93.50 13.40 0.1360 0.1547 0.0344 50 2247.95 0.392 0.28 96.10 13.60 0.1360 0.1574 0.0451 49 2241.08 368 342 19.40 29.20 0.2920 0.4124 1.0746 27 2237.25 281 259 36.10 0.3510 0.5408 2.6019 38 2240.75 2590 2500 14.00 34.40 0.3440 0.5244 2.6768 39 2240.75 2590 2500 14.00 34.80 0.3380 0.5104 3.548 24236.50										0.1092
43 2242.45 0.196 0.141 89.50 14.80 0.1480 0.1477 0.0305 42 2242.00 0.255 0.177 82.20 14.10 0.1410 0.1640 0.0352 41 2241.93 0.293 0.201 93.50 14.60 0.1340 0.1547 0.0351 50 2247.75 0.733 0.543 80.00 14.10 0.1410 0.1641 0.0362 40 2241.08 368 342 19.40 29.20 0.2230 0.3369 1.0067 31 239.25 280 2500 14.00 33.50 0.3350 0.5038 2.3772 32 239.25 2500 2410 6.30 35.10 0.3100 0.5408 2.6019 33 2240.50 2590 2500 14.00 34.40 0.3440 0.5244 2.6768 39 2240.51 2590 2500 11.20 33.80 0.3380 0.5106 2.7005										0.1192
42 2242.00 0.255 0.177 82.20 14.10 0.1410 0.1641 0.0370 41 2241.93 0.293 0.201 93.50 14.50 0.1450 0.1640 0.0340 50 2247.95 0.392 0.28 96.10 13.60 0.1540 0.0544 49 2247.75 0.733 0.543 80.00 14.10 0.1641 0.0616 40 2241.08 368 342 19.40 29.20 0.4124 1.0746 72 237.25 281 259 36.10 25.20 0.220 0.3369 1.0067 318 2240.50 2590 24010 6.30 35.10 0.3440 0.5444 2.6019 32 2240.50 2590 2500 11.20 33.80 0.3380 0.5106 2.7005 312 238.75 3470 3360 7.10 35.50 0.5504 3.504 32 2424.50 3270 3160										0.1764
41 2241.93 0.293 0.201 93.50 14.50 0.1450 0.1696 0.0370 45 2242.95 0.222 0.161 93.30 13.40 0.1340 0.1547 0.0341 49 2247.75 0.733 0.543 80.00 14.10 0.1410 0.1641 0.0616 COR 40 2241.08 368 342 19.40 29.20 0.2220 0.3369 1.0067 30 2238.50 1990 1920 16.30 33.50 0.3510 0.5438 2.3772 33 2239.25 2500 2410 6.30 35.10 0.5108 2.6768 39 2240.75 2590 2500 11.20 33.80 0.3180 0.5106 2.7005 31 2238.75 3470 3366 7.10 35.50 0.3550 0.5504 3.0548 2240.75 2990 2890 10.80 4.80 0.3340 0.5148 3.131										0.2143
45 2242.95 0.222 0.161 93.30 13.40 0.1340 0.1547 0.0344 50 2247.95 0.392 0.28 96.10 13.60 0.1574 0.0441 49 2247.75 0.733 0.543 80.00 14.10 0.1641 0.0616 40 2241.08 368 342 19.40 29.20 0.2220 0.3309 1.0067 30 2238.50 1990 1920 16.30 33.50 0.350 0.5038 2.3772 33 2240.50 2590 2500 14.00 34.40 0.3444 0.5444 2.6768 39 2240.50 2590 2500 11.20 33.80 0.3380 0.5106 2.7005 31 238.75 3470 3360 7.10 35.50 0.5554 3.554 36 2240.03 3400 35.50 0.5554 3.1311 312 238.75 3470 3660 7.10 35.50 <										0.2143
50 2247.95 0.392 0.28 96.10 13.60 0.1360 0.1574 0.0441 49 2247.75 0.733 0.543 80.00 14.10 0.1410 0.1641 0.0616 40 2241.08 368 342 19.40 29.20 0.2920 0.4124 1.0746 27 2237.25 281 259 36.10 25.20 0.2530 0.2350 0.2350 0.2350 0.2350 0.2350 0.2350 0.2350 0.2410 6.30 35.10 0.3510 0.5408 2.6019 38 2240.50 2590 2500 14.00 34.40 0.3480 0.5337 2.8615 31 2238.75 3470 3360 7.10 35.50 0.3550 0.5504 3.0548 29 238.30 3110 3010 5.20 34.20 0.3420 0.5198 3.2217 22 2236.50 3270 3160 2.90 34.10 0.3510 0.5385 3.										0.2224
49 2247.75 0.733 0.543 80.00 14.10 0.1410 0.1641 0.0616 GQR 40 2231.25 281 259 36.10 25.20 0.2920 0.4124 1.0746 30 2238.50 1990 1920 16.30 33.50 0.3350 0.5038 2.3772 31 2239.25 2500 2410 6.30 35.10 0.3440 0.5244 2.6768 39 2240.50 2590 2500 11.20 33.80 0.3380 0.5106 2.7005 31 2238.75 3470 3360 7.10 35.50 0.3550 0.5504 3.0548 2240.52 2990 2890 10.80 34.80 0.3420 0.5198 2.9458 36 2240.00 3640 3530 6.90 35.50 0.3550 0.504 3.1311 3010 5.20 34.10 0.3410 0.5178 3.0227 32 2236.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.2862</td>										0.2862
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										0.3754
40 2241.08 368 342 19.40 29.20 0.2120 0.1241 1.0746 27 2237.25 281 259 36.10 25.20 0.2520 0.3369 1.0067 30 2238.50 1990 1920 16.30 33.50 0.3510 0.5038 2.3772 33 2239.25 2500 2410 6.30 35.10 0.3510 0.5408 2.6019 38 2240.50 2590 2500 11.400 34.40 0.3480 0.5337 2.8615 37 2240.25 2990 2890 10.80 34.80 0.3480 0.5337 2.8615 31 2238.75 3470 3360 7.10 35.50 0.3550 0.5504 3.1054 24 2236.50 3270 3160 2.90 34.10 0.3410 0.5175 3.0227 32 2230.00 3800 3680 14.70 35.00 0.3500 0.5385 3.2197 32 2236.10 3890 3780 3.90 35.00 0.5408 3.36	.,		0.100		00100	1.1110	011110	011011	010010	01070
27 2237.25 281 259 36.10 25.20 0.2520 0.3369 1.0067 30 2238.50 1990 1920 16.30 33.50 0.3350 0.5038 2.3772 33 2239.25 2500 2410 6.30 35.10 0.3404 0.5408 2.6019 38 2240.75 2590 2500 11.20 33.80 0.3380 0.5106 2.7005 37 2240.25 2990 2890 10.80 34.80 0.3480 0.5357 2.8615 31 2238.75 3470 3360 7.10 35.50 0.5504 3.0548 29 2238.30 3110 3010 5.20 34.20 0.3420 0.5198 2.9458 36 2240.00 3640 3530 6.90 35.00 0.3550 0.5044 3.1311 24 2236.50 3270 3160 2.90 38.00 3680 14.70 35.00 0.3500 0.5385 3.2632 7 2232.00 1680 1610 16.50 28.10 <td>40</td> <td>2241.08</td> <td>368</td> <td></td> <td>19 40</td> <td>29 20</td> <td>0 2920</td> <td>0 4124</td> <td>1 0746</td> <td>2.6056</td>	40	2241.08	368		19 40	29 20	0 2920	0 4124	1 0746	2.6056
30 2238.50 1990 1920 16.30 33.50 0.3350 0.5038 2.3772 33 2239.25 2500 2410 6.30 35.10 0.3510 0.5408 2.6019 38 2240.75 2590 2500 11.20 33.80 0.3340 0.5244 2.6768 39 2240.75 2590 2500 11.20 33.80 0.3380 0.5106 2.7005 31 2238.75 3470 3360 7.10 35.50 0.3550 0.5504 3.0548 29 2238.30 3110 3010 5.20 34.20 0.5198 2.9458 36 2240.00 3640 3530 6.90 35.50 0.3550 0.5504 3.1311 24 2236.50 3270 3160 2.90 34.10 0.3410 0.5175 3.0227 32 2239.00 3800 3780 3.90 35.00 0.3500 0.5385 3.2632 7 232.00 1680 1610 16.50 28.10 0.2810 0.34480 3.305										2.9880
33 2239.25 2500 2410 6.30 35.10 0.3510 0.5408 2.6019 38 2240.50 2590 2500 14.00 33.40 0.3440 0.5244 2.6768 39 2240.75 2590 2890 10.80 34.80 0.3380 0.5106 2.7005 37 2240.25 2990 2890 10.80 34.80 0.3480 0.5337 2.8615 31 2238.75 3470 3360 7.10 35.50 0.3550 0.5504 3.1311 24 2236.50 3270 3160 2.90 34.10 0.3410 0.5175 3.027 32 2239.00 3800 3680 14.70 35.00 0.3500 0.5385 3.2197 C EGQR C C 22232.00 1680 1610 16.50 28.10 0.3540 0.5488 3.3661 11 2233.75 2870 2770 13.00 32.00 0.3540										4.7188
38 2240.50 2590 2500 14.00 34.40 0.3440 0.5244 2.6768 39 2240.75 2590 2500 11.20 33.80 0.3380 0.5106 2.7005 37 2240.25 2990 2890 10.80 34.80 0.3480 0.5337 2.8615 31 2238.75 3470 3360 7.10 35.50 0.5504 3.0548 29 2238.30 3110 3010 5.20 34.20 0.3420 0.5198 2.9458 36 2240.00 3640 3530 6.90 35.00 0.3500 0.5385 3.2197 32 2239.00 3800 3680 14.70 35.00 0.3500 0.5385 3.2632 7 2232.00 1680 1610 16.50 28.10 0.2810 0.3548 3.3056 11 2233.25 4180 4060 8.30 35.40 0.3540 0.5488 3.3056 12 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4.8109</td></t<>										4.8109
39 2240.75 2590 2500 11.20 33.80 0.3380 0.5106 2.7005 37 2240.25 2990 2890 10.80 34.80 0.3480 0.5337 2.8615 31 2238.75 3470 3360 7.10 35.50 0.3550 0.5504 3.0548 36 2240.00 3640 3530 6.90 35.50 0.3550 0.5504 3.1311 24 2236.50 3270 3160 2.90 34.10 0.3410 0.5175 3.0227 32 2239.00 3800 3680 14.70 35.00 0.3500 0.5385 3.2632 7 2232.00 1680 1610 16.50 28.10 0.2810 0.3908 2.3768 26 2237.00 4010 3890 7.60 35.10 0.3510 0.5408 3.3056 11 2233.75 2870 2770 13.00 32.00 0.3200 0.4706 2.9214 35 2239.75 4210 4090 4.10 35.20 0.5320 0.54										5.1046
37 2240.25 2990 2890 10.80 34.80 0.3480 0.5337 2.8615 31 2238.75 3470 3360 7.10 35.50 0.3550 0.5504 3.0548 29 2238.30 3110 3010 5.20 34.20 0.3420 0.5198 2.9458 36 2240.00 3640 3530 6.90 35.50 0.3550 0.5504 3.1311 24 2236.50 3270 3160 2.90 34.10 0.3410 0.5175 3.0227 32 2239.00 3800 3680 14.70 35.00 0.3500 0.5385 3.2632 7 2232.00 1680 1610 16.50 28.10 0.2810 0.3908 2.3768 26 2237.00 4010 3890 7.60 35.10 0.3510 0.5408 3.3627 13 2233.75 2870 2770 13.00 32.00 0.4400 5.401 0.3540 0.5408 3.4626 14 2239.75 4210 4090 4.10 35.20										5.2891
31 2238.75 3470 3360 7.10 35.50 0.3550 0.5504 3.0548 29 2238.30 3110 3010 5.20 34.20 0.3420 0.5198 2.9458 36 2240.00 3640 3530 6.90 35.50 0.3550 0.5504 3.1311 24 2236.50 3270 3160 2.90 34.10 0.3410 0.5175 3.0227 32 2239.00 3800 3680 14.70 35.00 0.3500 0.5385 3.2197 EGQR 22 2236.10 3890 3780 3.90 35.00 0.3500 0.5385 3.2632 7 2232.00 1680 1610 16.50 28.10 0.2810 0.3908 2.3768 26 2237.00 4010 3890 7.60 35.10 0.3510 0.5408 3.3627 13 2233.75 2870 2770 13.00 32.00 0.4706 2.9214 35 2239.75 4210 4090 4.10 35.20 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5.3611</td></td<>										5.3611
29 2238.30 3110 3010 5.20 34.20 0.3420 0.5198 2.9458 36 2240.00 3640 3530 6.90 35.50 0.3550 0.5504 3.1311 24 2236.50 3270 3160 2.90 34.10 0.3410 0.5175 3.0217 32 2239.00 3800 3680 14.70 35.00 0.3500 0.5385 3.2197 22 2236.10 3890 3780 3.90 35.00 0.3500 0.5385 3.2632 7 2232.00 1680 1610 16.50 28.10 0.2810 0.3908 2.3768 26 2237.00 4010 3890 7.60 35.10 0.3540 0.5408 3.3627 13 2233.75 2870 2770 13.00 32.00 0.4706 2.9214 35 2239.75 4210 4090 4.10 35.10 0.3510 0.5408 3.4102 14										5.5503
36 2240.00 3640 3530 6.90 35.50 0.3550 0.5504 3.1311 24 2236.50 3270 3160 2.90 34.10 0.3410 0.5175 3.0227 32 2239.00 3800 3680 14.70 35.00 0.3500 0.5385 3.2197 22 2236.10 3890 3780 3.90 35.00 0.3500 0.5385 3.2632 7 2232.00 1680 1610 16.50 28.10 0.2810 0.3908 2.3768 26 2237.00 4010 3890 7.60 35.10 0.3540 0.5408 3.3627 13 2233.75 2870 2770 13.00 32.00 0.3200 0.4706 2.9214 35 2239.75 4210 4090 4.10 35.20 0.3520 0.5432 3.847 3 2230.80 2320 2240 12.30 30.10 0.4306 2.7088 34 2										5.6676
24 2236.50 3270 3160 2.90 34.10 0.3410 0.5175 3.0227 32 2239.00 3800 3680 14.70 35.00 0.3500 0.5385 3.2197 22 2236.10 3890 3780 3.90 35.00 0.3500 0.5385 3.2632 7 2232.00 1680 1610 16.50 28.10 0.2810 0.3908 2.3768 26 2237.00 4010 3890 7.60 35.10 0.3510 0.5408 3.3056 11 2233.75 2870 2770 13.00 32.00 0.4706 2.9214 35 2239.75 4210 4090 4.10 35.20 0.3510 0.4306 2.7088 34 2239.50 4260 4140 3.10 35.10 0.3510 0.4408 3.4102 14 2234.00 4300 4180 6.60 35.10 0.3510 0.5408 3.4266 9 2										5.6890
32 2239.00 3800 3680 14.70 35.00 0.3500 0.5385 3.2197 22 2236.10 3890 3780 3.90 35.00 0.3500 0.5385 3.2632 7 2232.00 1680 1610 16.50 28.10 0.2810 0.3908 2.3768 26 2237.00 4010 3890 7.60 35.10 0.3510 0.5408 3.3056 11 2233.25 4180 4060 8.30 35.40 0.3540 0.5480 3.3627 13 2233.75 2870 2770 13.00 32.00 0.3200 0.4706 2.9214 35 2239.75 4210 4090 4.10 35.20 0.3510 0.5408 3.4102 14 2230.80 2320 2240 12.30 30.10 0.3010 0.4306 2.7088 34 2239.50 4260 4140 3.10 35.10 0.3510 0.5408 3.4102										5.8415
EGQR222236.1038903780 3.90 35.00 0.3500 0.5385 3.2632 72232.001680161016.5028.10 0.2810 0.3908 2.3768262237.00401038907.6035.10 0.3510 0.5408 3.3056 112233.2541804060 8.30 35.40 0.3540 0.5408 3.3627 132233.752870277013.0032.00 0.3200 0.4706 2.9214352239.75421040904.1035.20 0.3520 0.5432 3.847 32230.802320224012.30 30.10 0.3010 0.4306 2.7088 342239.5042604140 3.10 35.10 0.3510 0.5408 3.4102 142234.0043004180 6.60 35.10 0.3510 0.5408 3.4266 92232.8239203800 8.80 34.10 0.3410 0.5175 3.3147 102233.0044504320 7.20 35.10 0.3510 0.5267 3.5861 252236.65457044504.60 34.40 0.3440 0.5244 3.7131 172234.7350404900 2.70 35.20 0.3520 0.5408 3.6910 212235.7544504330 5.60 34.10 0.3410 0.5144 3.7913 17 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5.9795</td>										5.9795
22 2236.10 3890 3780 3.90 35.00 0.3500 0.5385 3.2632 7 2232.00 1680 1610 16.50 28.10 0.2810 0.3908 2.3768 26 2237.00 4010 3890 7.60 35.10 0.3510 0.5408 3.3056 11 2233.25 4180 4060 8.30 35.40 0.3540 0.5480 3.3627 13 2233.75 2870 2770 13.00 32.00 0.3200 0.4706 2.9214 35 2239.75 4210 4090 4.10 35.20 0.3520 0.5432 3.3847 3 2230.80 2320 2240 12.30 30.10 0.3010 0.4306 2.7088 34 2239.50 4260 4140 3.10 35.10 0.3510 0.5408 3.4102 14 2234.00 4300 4180 6.60 35.10 0.3510 0.5408 3.4266 9 2232.82 3920 3800 8.80 34.10 0.3410 0.5175 </td <td></td>										
7 2232.00 1680 1610 16.50 28.10 0.2810 0.3908 2.3768 26 2237.00 4010 3890 7.60 35.10 0.3510 0.5408 3.3056 11 2233.25 4180 4060 8.30 35.40 0.3540 0.5408 3.3627 13 2233.75 2870 2770 13.00 32.00 0.3200 0.4706 2.9214 35 2239.75 4210 4090 4.10 35.20 0.3520 0.5432 3.3847 3 2230.80 2320 2240 12.30 30.10 0.3010 0.4306 2.7088 34 2239.50 4260 4140 3.10 35.10 0.3510 0.5408 3.4102 14 2234.00 4300 4180 6.60 35.10 0.3510 0.5408 3.4266 9 2232.82 3920 3800 8.80 34.10 0.3410 0.5175 3.3147 10 2233.00 4450 4320 7.20 35.10 0.3500 0.5385 </td <td>22</td> <td>2236.10</td> <td>3890</td> <td></td> <td>3 90</td> <td>35.00</td> <td>0.3500</td> <td>0 5385</td> <td>3 2632</td> <td>6.0602</td>	22	2236.10	3890		3 90	35.00	0.3500	0 5385	3 2632	6.0602
26 2237.00 4010 3890 7.60 35.10 0.3510 0.5408 3.3056 11 2233.25 4180 4060 8.30 35.40 0.3540 0.5480 3.3627 13 2233.75 2870 2770 13.00 32.00 0.3200 0.4706 2.9214 35 2239.75 4210 4090 4.10 35.20 0.3520 0.5432 3.3847 3 2230.80 2320 2240 12.30 30.10 0.3010 0.4306 2.7088 34 2239.50 4260 4140 3.10 35.10 0.3510 0.5408 3.4102 14 2234.00 4300 4180 6.60 35.10 0.3510 0.5408 3.4266 9 2232.82 3920 3800 8.80 34.10 0.3410 0.5175 3.3147 10 2233.00 4450 4320 7.20 35.10 0.3510 0.5408 3.4835 28 2238.00 4550 4420 2.10 35.00 0.3520 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>6.0815</td>										6.0815
112233.25418040608.3035.40 0.3540 0.5480 3.3627 132233.752870277013.0032.00 0.3200 0.4706 2.9214352239.75421040904.1035.20 0.3520 0.5432 3.3847 32230.802320224012.30 30.10 0.3010 0.4306 2.7088 342239.5042604140 3.10 35.10 0.3510 0.5408 3.4102 142234.0043004180 6.60 35.10 0.3510 0.5408 3.4266 92232.8239203800 8.80 34.10 0.3410 0.5175 3.3147 102233.0044504320 7.20 35.10 0.3510 0.5408 3.4835 282238.0045504420 2.10 35.00 0.3500 0.5385 3.5286 42231.2546304500 2.50 34.50 0.3450 0.5267 3.5861 252236.6545704450 4.60 34.40 0.3440 0.5244 3.5713 172234.7350404900 2.70 35.20 0.3510 0.5408 3.6910 212235.7544504330 5.60 34.10 0.3410 0.5175 3.5383 122233.5052405100 7.10 35.50 0.3570 0.5504 3.7636 EEGQR <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>6.1121</td></tr<>										6.1121
132233.752870277013.0032.00 0.3200 0.4706 2.9214352239.75421040904.1035.20 0.3520 0.5432 3.3847 32230.802320224012.30 30.10 0.3010 0.4306 2.7088 342239.5042604140 3.10 35.10 0.3510 0.5408 3.4102 142234.0043004180 6.60 35.10 0.3510 0.5408 3.4266 92232.8239203800 8.80 34.10 0.3410 0.5175 3.3147 102233.0044504320 7.20 35.10 0.3510 0.5408 3.4835 282238.0045504420 2.10 35.00 0.3500 0.5385 3.5286 42231.2546304500 2.50 34.50 0.3450 0.5267 3.5861 252236.6545704450 4.60 34.40 0.3440 0.5244 3.5713 172234.7350404900 2.70 35.20 0.3510 0.5408 3.6910 212235.7544504330 5.60 34.10 0.3410 0.5175 3.5383 122233.5052405100 7.10 35.50 0.3550 0.5504 3.7636 EEGQR182235.00 5040 4910 4.90 34.70 0.3470 0.5314 3.7351										6.1365
352239.75421040904.1035.200.35200.54323.384732230.802320224012.3030.100.30100.43062.7088342239.50426041403.1035.100.35100.54083.4102142234.00430041806.6035.100.35100.54083.426692232.82392038008.8034.100.34100.51753.3147102233.00445043207.2035.100.35100.54083.4835282238.00455044202.1035.000.35000.53853.528642231.25463045002.5034.500.34400.52673.5861252236.65457044504.6034.400.34400.52443.5713172234.73504049002.7035.200.35200.54323.7047152236.55445043305.6034.100.34100.51753.5383122235.75445043305.6034.100.34100.51753.5383122233.50524051007.1035.500.35500.55043.7636182235.00504049104.9034.700.34700.53143.7351										6.2080
3 2230.80 2320 2240 12.30 30.10 0.3010 0.4306 2.7088 34 2239.50 4260 4140 3.10 35.10 0.3510 0.5408 3.4102 14 2234.00 4300 4180 6.60 35.10 0.3510 0.5408 3.4266 9 2232.82 3920 3800 8.80 34.10 0.3410 0.5175 3.3147 10 2233.00 4450 4320 7.20 35.10 0.3510 0.5408 3.4835 28 2238.00 4550 4420 2.10 35.00 0.5408 3.4835 25 2236.65 4570 4450 2.50 34.40 0.3440 0.5267 3.5861 25 2236.65 4570 4450 4.60 34.40 0.3440 0.5244 3.5713 17 2234.73 5040 4900 2.70 35.20 0.3520 0.5408 3.6910 21 2235.75 4450 4330 5.60 34.10 0.3410 0.5175 3.5383 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>6.2309</td>										6.2309
342239.50426041403.1035.100.35100.54083.4102142234.00430041806.6035.100.35100.54083.426692232.82392038008.8034.100.34100.51753.3147102233.00445043207.2035.100.35100.54083.4835282238.00455044202.1035.000.35000.53853.528642231.25463045002.5034.500.34500.52673.5861252236.65457044504.6034.400.34400.52443.5713172234.73504049002.7035.200.35100.54083.6910212235.75445043305.6034.100.34100.51753.5383122235.00524051007.1035.500.35500.55043.7636EEGQR182235.00504049104.9034.700.34700.53143.7351										6.2904
14 2234.00 4300 4180 6.60 35.10 0.3510 0.5408 3.4266 9 2232.82 3920 3800 8.80 34.10 0.3410 0.5175 3.3147 10 2233.00 4450 4320 7.20 35.10 0.3510 0.5408 3.4835 28 2238.00 4550 4420 2.10 35.00 0.3500 0.5408 3.4835 4 2231.25 4630 4500 2.50 34.50 0.3450 0.5267 3.5861 25 2236.65 4570 4450 4.60 34.40 0.3440 0.5244 3.5713 17 2234.73 5040 4900 2.70 35.20 0.3510 0.5408 3.6910 21 2235.75 4450 4330 5.60 34.10 0.3410 0.5175 3.5383 12 2233.50 5240 5100 7.10 35.50 0.3550 0.5504 3.7636 EEGQR 18 2235.00 5040 4910 4.90 3										6.3054
9 2232.82 3920 3800 8.80 34.10 0.3410 0.5175 3.3147 10 2233.00 4450 4320 7.20 35.10 0.3510 0.5408 3.4835 28 2238.00 4550 4420 2.10 35.00 0.3500 0.5385 3.5286 4 2231.25 4630 4500 2.50 34.50 0.3440 0.5267 3.5861 25 2236.65 4570 4450 4.60 34.40 0.3440 0.5244 3.5713 17 2234.73 5040 4900 2.70 35.20 0.3520 0.5432 3.7047 15 2234.25 4980 4850 3.80 35.10 0.3510 0.5408 3.6910 21 2235.75 4450 4330 5.60 34.10 0.3410 0.5175 3.5383 12 2233.50 5240 5100 7.10 35.50 0.3550 0.5504 3.7636 18 2235.00 5040 4910 4.90 34.70 0.3470 0.5314 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>6.3358</td>										6.3358
10 2233.00 4450 4320 7.20 35.10 0.3510 0.5408 3.4835 28 2238.00 4550 4420 2.10 35.00 0.3500 0.5385 3.5286 4 2231.25 4630 4500 2.50 34.50 0.3450 0.5267 3.5861 25 2236.65 4570 4450 4.60 34.40 0.3440 0.5244 3.5713 17 2234.73 5040 4900 2.70 35.20 0.3510 0.5408 3.6910 21 2235.75 4450 4330 5.60 34.10 0.3410 0.5408 3.6910 21 2235.75 4450 4330 5.60 34.10 0.3410 0.5175 3.5383 12 2233.50 5240 5100 7.10 35.50 0.3550 0.5504 3.7636 EEGQR 18 2235.00 5040 4910 4.90 34.70 0.3470 0.5314 3.7351										6.4058
28 2238.00 4550 4420 2.10 35.00 0.3500 0.5385 3.5286 4 2231.25 4630 4500 2.50 34.50 0.3450 0.5267 3.5861 25 2236.65 4570 4450 4.60 34.40 0.3440 0.5244 3.5713 17 2234.73 5040 4900 2.70 35.20 0.3520 0.5432 3.7047 15 2234.25 4980 4850 3.80 35.10 0.3510 0.5408 3.6910 21 2235.75 4450 4330 5.60 34.10 0.3410 0.5175 3.5383 12 2233.50 5240 5100 7.10 35.50 0.3550 0.5504 3.7636 EEGQR 18 2235.00 5040 4910 4.90 34.70 0.3470 0.5314 3.7351										6.4410
4 2231.25 4630 4500 2.50 34.50 0.3450 0.5267 3.5861 25 2236.65 4570 4450 4.60 34.40 0.3440 0.5244 3.5713 17 2234.73 5040 4900 2.70 35.20 0.3520 0.5432 3.7047 15 2234.25 4980 4850 3.80 35.10 0.3510 0.5408 3.6910 21 2235.75 4450 4330 5.60 34.10 0.3410 0.5175 3.5383 12 2233.50 5240 5100 7.10 35.50 0.3550 0.5504 3.7636 EEGQR 18 2235.00 5040 4910 4.90 34.70 0.3470 0.5314 3.7351										6.5532
252236.65457044504.6034.400.34400.52443.5713172234.73504049002.7035.200.35200.54323.7047152234.25498048503.8035.100.35100.54083.6910212235.75445043305.6034.100.34100.51753.5383122233.50524051007.1035.500.35500.55043.7636EEGQR182235.00504049104.9034.700.34700.53143.7351										6.8085
17 2234.73 5040 4900 2.70 35.20 0.3520 0.5432 3.7047 15 2234.25 4980 4850 3.80 35.10 0.3510 0.5408 3.6910 21 2235.75 4450 4330 5.60 34.10 0.3410 0.5175 3.5383 12 2233.50 5240 5100 7.10 35.50 0.3550 0.5504 3.7636 EEGQR 18 2235.00 5040 4910 4.90 34.70 0.3470 0.5314 3.7351										6.8105
15 2234.25 4980 4850 3.80 35.10 0.3510 0.5408 3.6910 21 2235.75 4450 4330 5.60 34.10 0.3410 0.5175 3.5383 12 2233.50 5240 5100 7.10 35.50 0.3550 0.5504 3.7636 EEGQR 18 2235.00 5040 4910 4.90 34.70 0.3470 0.5314 3.7351										6.8201
21 2235.75 4450 4330 5.60 34.10 0.3410 0.5175 3.5383 12 2233.50 5240 5100 7.10 35.50 0.3550 0.5504 3.7636 EEGQR 18 2235.00 5040 4910 4.90 34.70 0.3470 0.5314 3.7351										6.8247
12 2233.50 5240 5100 7.10 35.50 0.3550 0.5504 3.7636 EEGQR 18 2235.00 5040 4910 4.90 34.70 0.3470 0.5314 3.7351										6.8380
EEGQR 4.90 34.70 0.3470 0.5314 3.7351									3.7636	6.8380
18 2235.00 5040 4910 4.90 34.70 0.3470 0.5314 3.7351										
	18	2235.00	5040		4.90	34.70	0.3470	0.5314	3.7351	7.0289
	19	2235.25	4520	4400	7.90	33.60	0.3360	0.5060	3.5932	7.1009
20 2235.50 4870 4740 3.60 34.10 0.3410 0.5175 3.7020										7.1544
16 2234.50 5310 5170 1.60 34.80 0.3480 0.5337 3.8272										7.1706
23 2236.25 5160 5020 3.80 34.50 0.3450 0.5267 3.7877										7.1911
5 2231.50 4340 4210 4.00 32.00 0.3200 0.4706 3.6016										7.6534
1 2230.25 3490 3380 6.40 30.20 0.3020 0.4327 3.3219										7.6777
48 2246.95 5790 5640 4.80 33.70 0.3370 0.5083 4.0621										7.9917

Predicting Reservoir Permeability... Giegbefumwen, Akwaeke and Olafuyi J of NAMP

			EQR						
2	2230.50	4240	4120	18.20	28.90	0.2890	0.4065	3.7491	9.2236
8	2232.60	6800	6640	3.00	31.90	0.3190	0.4684	4.5302	9.6711
6	2231.75	4670	4540	3.60	28.70	0.2870	0.4025	3.9493	9.8112

18.0 Results of Permeability Predictions from the Nine Existing Models for Each FZI Zones (Well ABO)

Table 5: Permeability Predictions For ELQR

						ELQR					
RAW CORE DATA SE	Т			PERM	EABIL	TY PRI	EDICTIC	ONS FROM	A EXIST	ING MO	DDELS
Horiz. Klink K (mD)	Swi (%)	Por (%)	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)
0.02	83.40	13.00	0.43	0.43	1.56	0.11	7.30	349.71	6.15	28.33	32.06
0.04	55.30	13.10	1.03	1.03	3.67	1.92	7.52	581.39	46.99	51.52	32.84
0.07	83.50	14.90	0.98	0.98	2.83	0.19	12.93	361.83	9.17	42.58	48.97
0.14	89.50	14.80	0.82	0.82	2.39	0.07	12.54	282.57	4.55	37.86	47.95
0.18	82.20	14.10	0.73	0.73	2.29	0.19	10.16	370.90	8.78	36.88	41.26
0.20	93.50	14.50	0.66	0.66	2.00	0.02	11.46	230.39	2.20	33.49	45.00
0.16	93.30	13.40	0.42	0.42	1.42	0.02	8.23	243.89	1.81	26.51	35.23
0.28	96.10	13.60	0.43	0.43	1.43	0.01	8.74	208.11	0.93	26.60	36.88
0.54	80.00	14.10	0.77	0.77	2.42	0.25	10.16	395.40	10.67	38.31	41.26

LEGENDS

(a) TIXIER K MODEL [16] (b) SCHLUMBEGER K MODEL [17] (c) TIMUR K MODEL [2] (d) COATES & DENOO K MODEL [8] (e) UDEGBUNAM K MODEL [18] (f) OWOLABI K MODEL [17] (g) MODIFIED COATES & DENOO K MODEL [17] (h) MODIFIED TIMUR K MODEL [17] (i) OFONMBUK K MODEL [1]

				EGQR							
RAW CO	RE DATA S	ET		PERMEAB	BILITY PRED	ICTIONS FI	ROM EXIS	TING MO	DELS		
Klink											
K _H (mD)	Swi (%)	Por (%)	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)
3780	3.90	35.00	75536.88	75536.88	55630.00	91114.97	5472.05	3553.18	451494.29	40245.16	693.62
1610	16.50	28.10	1130.19	1130.19	1182.71	1596.73	686.21	2329.32	11027.68	2764.66	350.85
3890	7.60	35.10	20234.64	20234.64	14834.16	22435.99	5639.21	3553.65	114395.73	15950.79	699.79
4060	8.30	35.40	17854.32	17854.32	12912.11	19168.83	6171.94	3604.57	97500.33	14464.40	718.52
2770	13.00	32.00	3970.94	3970.94	3375.30	4696.26	2218.76	2966.15	27561.04	5700.71	525.19
4090	4.10	35.20	70724.24	70724.24	51612.98	83992.43	5811.47	3589.70	414526.11	38170.74	705.99
2240	12.30	30.10	3072.34	3072.34	2880.19	4173.06	1252.62	2665.29	25870.10	5126.63	434.31
4140	3.10	35.10	121618.41	121618.41	89159.34	148303.92	5639.21	3574.14	727940.32	55977.69	699.79
4180	6.60	35.10	26830.88	26830.88	19669.91	30397.25	5639.21	3559.70	153659.36	19433.89	699.79
3800	8.80	34.10	12689.40	12689.40	9743.00	14522.52	4173.86	3363.39	77019.53	11912.07	639.74
4320	7.20	35.10	22545.39	22545.39	16528.19	25215.03	5639.21	3556.17	128121.85	17205.05	699.79
4420	2.10	35.00	260525.17	260525.17	191866.75	326136.17	5472.05	3557.75	1592260.26	95740.82	693.62
4500	2.5	34.5	168622.1	168622.1	127075.817	215479.3	4707.71	3464.8	1070759.9	71835.9	663.3
4450	4.6	34.4	48945.75	48945.75	37057.8648	60230.28	4568.17	3440.4	305440.76	30325.9	657.4
4900	2.7	35.2	163082.9	163082.9	119014.287	199374.1	5811.47	3593.8	972624.38	68504.4	706
4850	3.8	35.1	80938.57	80938.57	59336.6506	97277.28	5639.21	3572.1	480256.8	42094.4	699.8
4330	5.6	34.1	31335.04	31335.04	24059.252	38422.49	4173.86	3381.9	198226.98	22428.5	639.7
5100	7.1	35.5	24816.09	24816.09	17865.985	27191.19	6360.48	3631.3	136488.64	18152	724.8

Table 6: Permeability Predictions For EGQR

Predicting Reservoir Permeability...

1

RAW SET	CORE	DATA	EEGQR PERMEABILITY PREDICTIONS FROM EXISTING MODELS									
Klink K _H (mD)	Swi (%)	Por (%)	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	
4910	4.90	34.70	45442.76	45442.76	33930.98	54611.84	4999.72	3494.11	275246.73	28491.41	675.33	
4400	7.90	33.60	14409.92	14409.92	11328.63	17322.96	3590.86	3280.28	92509.11	13253.78	611.07	
4740	3.60	34.10	75823.06	75823.06	58217.45	96954.19	4173.86	3389.29	491880.79	41633.18	639.74	
5170	1.60	34.80	433626.20	433626.20	322290.58	554711.55	5152.45	3521.48	2712696.25	137711.36	681.39	
5020	3.80	34.50	72983.96	72983.96	55001.65	90794.46	4707.71	3461.42	456046.85	39972.40	663.32	
4210	4.00	32.00	41943.04	41943.04	35651.58	60397.98	2218.76	3020.27	327615.71	29686.98	525.19	
3380	6.40	30.20	11576.09	11576.09	10794.67	17791.78	1290.88	2715.75	104352.10	12923.16	438.81	
5640	4.80	33.70	39735.34	39735.34	31090.52	50735.39	3700.55	3313.45	263075.77	26862.84	616.73	

Table 7: Permeability Predictions for EEGQR

Table 8: Permeability Predictions for EQR

			EQR											
RAW SET	CORE	DATA		PERMEABILITY PREDICTIONS FROM EXISTING MODELS										
Klink K _H (mD)	Swi (%)	Por (%)	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)			
4120	18.20	28.90	1099.32	1099.32	1099.88	1409.14	872.98	2429.09	9619.75	2621.76	382.79			
6640	3.00	31.90	73178.18	73178.18	62513.73	108258.92	2152.99	3005.79	584204.51	43994.90	520.11			
4540	3.60	28.70	26950.47	26950.47	27265.55	48649.31	821.99	2490.37	293252.96	24821.17	374.63			

19.0 Analysis of Result

The tables below show a comparative study of all the models at a glance. Table 9 shows the average predictions of each model as compared to the actual horizontal klinkenberg corrected core permeability values while Table 10 summarizes the standard error of prediction.

 Table 9:
 Summary of Results showing the Comparative Study of Average Permeability Predictions between the Nine Models

PERMEA	PERMEABILITY MODELS													
	CORE KLINK PERM	TIXIER [16]	SCHLUM [17]	TIMUR [2]	COATES & DENOO [8]	UDEGBU NAM [18]	OWOLABI [17]	MODIFI ED COATES & DENOO [17]	MODIFI ED TIMUR [17]	OFON MBUK [1]				
ELQR	0.18	0.70	0.70	2.22	0.31	9.89	336.02	10.14	35.79	40.16				
GQR	2463.42	22199.46	22199.46	16743.14	26665.41	4214.02	3214.25	135983.07	14798.98	611.71				
EGQR	3968.33	64137.41	64137.41	47433.58	78318.21	4726.48	3386.51	388065.22	32001.87	647.34				
EEGQR	4683.75	91942.54	91942.54	69788.26	117915.02	3729.35	3274.50	590427.91	41316.89	606.45				
EQR	5100.00	33742.66	33742.66	30293.05	52772.46	1282.65	2641.75	295692.41	23812.61	425.84				

Table 10: Results of Standard Error of Prediction For The Nine Existing Models For Each FZI Zones (WELL ABO)

 From the results obtained above, one can affirm the following:

- For extremely low quality reservoir zone (low permeability zones), Owolabi's model had the highest error of prediction while Tixier and Schlumberger's models, two distinct models that are outputting exactly the same predictions, gave the lowest permeability variations.
- For good quality reservoir zone, modified Coates and Denoo's model has the highest error of prediction while Owolabi's model gave the lowest variation.
- For extra good quality reservoir zone, modified Coates and Denoo's model has the highest error of prediction while Owolabi's model, gave the lowest variation.
- ➢ For extra extra good quality reservoir zone, modified Coates and Denoo's model has the highest error of prediction while Owolabi's model gave the lowest variation.
- For extraordinary quality reservoir zone, modified Coates and Denoo's model gave the highest error of prediction while Owolabi's model gave the lowest.
- Ofonmbuk et al. [1] permeability model has the highest predictive limitation in that it cannot predict more than 1802md (assuming a cubic packing configuration for the field). From Table 9, one can see that it has the lowest range of permeability predictions.
- Furthermore, from their average values of prediction (Table 9) Tixier [16], Schlumberger [17], Timur [2], Coates et al. [8], modified Coates et al. [17] and modified Timur [17] models are all over predictive. Owolabi [17], Udegbunam [18] and Ofonmbuk's [1] models are under predictive.

20.0 Result Validation

213 data points from three Niger delta fields own by two companies were keyed into THE CRYSTALLBALL SOFTWARE. A permeability range typical of most Niger Delta reservoir was chosen (**1800MD - 3000MD**). The charts below display our findings.

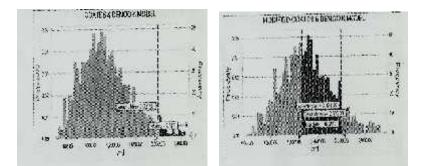


Figure 2: Certainty Level for Coates and Denoo [8] And Modified Coates & Denoo K model [17] Predictions within A Permeability Range Of 1800md & 3000md

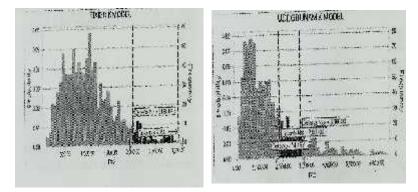
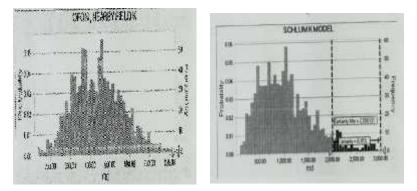



Figure 3: Certainty Level for Tixier [16] And Udegbunam K model [18] Predictions within A Permeability Range Of 1800md & 3000md

Figure 4: Certainty Level for Ofonmbuk [1] and Schlumberger K model [17] Predictions Within A Permeability Range Of 1800md & 3000md

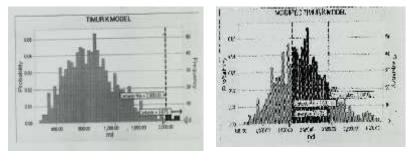


Figure 5: Certainty Level For Timur[2]and Modified Timur K model [17] Predictions Within A Permeability Range Of 1800md & 3000md

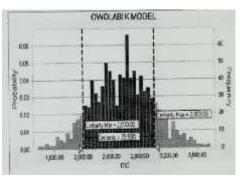


Figure 6: Certainty Level For Owolabi K Predictions Within A Permeability Range Of 1800md & 3000md

From the charts above, one could see that Owolabi's model gave the highest **CERTAINTY LEVEL**. This is in conformity with our previous findings. Thus, our results are valid

21.0 Conclusion

Our analytical investigation of this study gave rise the following conclusions:

- Owolabi's model showed a general distinctive characteristic within most of the permeability flow zones. It performs better in high perm reservoirs
- Tixier and Schlumberger permeability models were seen to predict better in very low flow zones
- There is no existing analytical permeability model that varies only with porosity and water saturation that exactly predicts the reservoir permeabilities. Hence caution should be taken when using them; especially the ones covered in this study.
- Permeabilities were calculated using existing correlations with limited success. Hence new modifications are needed to refine the existing permeability prediction model.

22.0 References

- [1] Ofonmbuk Ekpoudom, Obe Akin, Chike Ikechukwu and Onyekonwu Michael, "A Case Study of Permeability Modelling and Reservoir Performance in the absence of core data", SPE 88964, 28th Annual SPE International Technical Conference and Exhibition, Nigeria(August 2-4, 2004)
- [2] Timur, A, "An investigation of Permeability, Porosity, and Residual Saturation Relationship for Sandstone reservoirs" The Log Analyst, Vol 9, No. 4, pp 8, (July-August 1968)
- [3] Jude .O. Amaefule, Altunbay, Mehmet, Tiab Djebbaret, Kersey, David G. and Keelan, Dare K, "Enhanced Reservoir Description: Using Core and Log Data to Identify Hydraulic (Flow) Units and Predict Permeability in Uncored Intervals/Wells" SPE 26436, 68th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, Houston, Texas, Vol 43, Issue 05, pp 578-587, (October 3-6 1993)
- [4] Usman Ahmed, Crary S.F, and Coates G.R. "Permeability Estimation: The Various Sources and Their Interrelationships," Journal of Petroleum Techology, (May 1991)
- [5] Carman, P.C.: "Fluid Flow Through Granular Beds," Trans., Inst. Chemical Engineers (1937) 15, 150-66
- [6] Carman, P.C.: "Fundamental Principles of Industrial Filtration (A Critical Review of Present Knowledge)," Trans., Inst. Chemical Engineers (1938) 16, 168-88
- [7] Coates, G.R. and Dumanoir, J.L.: "A New Approach to Improved Log Derived Permeability," Proc., SPWLA 14ht Annual Logging Symposium, Lafayette (May 6-9, 1973)
- [8] Coates, G. and Denoo, S.: "The producibility Answer product," The Technical Review, Schlumberger, Houston (June 1981) 29, No. ", 55-63
- [9] Morris, R.L. and Biggs, W.P.: "Using Log-Derived Values of Water Saturation and Porosity," Proc., SPWLA Eighth Annual Logging Symposium, Denver (June 12 14, 1967) Paper X
- [10] Djebbar Tiab and Erle Donaldson .C.: "Petrophysics : Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties" Chapter 3, Page 112-113, Gulf Professional Publishing
- [11] Bear, J.: "Dynamics of Fluids in Porous Media," Elsevier, New York, 1972
- [12] Ebanks, W.J. : "The Flow Unit Concept- An Integrated Approach to Reservoir Description for Engineering Projects," Am Assoc. Geol. Annual Convention, 1987
- [13] Hearn, C. L., Ebanks, W.J., Tye, R.S and Ranganatha, V.: "Geological Factors Influencing Reservoir Performance of the Hartzog Draw Field, Wyoming," J. of Petro. Tech, Vol 36, Issue 08, pp. 1335-1344, Aug 1984.
- [14] Gunter, G.W., Finneran, J.M., Hartman, D. J. and Miller, J.D.: "Early Determination of Reservoir Flow Units Using an Integrated Petrophysical Method," SPE Annual technical Conference and Exhibition, San Antonio, TX, 5-8 October 1997.
- [15] Wumi Iledare "Advanced Petroleum Economics," Msc Lecture manual, August 8-12, 2011.
- [16] Tixier, M.P.: "Evaluation of Permeability from Electric Log Resistivity Gradients," Oil & Gas Journal, (June 16, 1949) Vol 48, No. 6, pp 113 -122.
- [17] Private communication with Ubani C. E, University of Port Harcourt, Nigeria.
- [18] Udegbunam, E O. and Ndukwe, L. C. "Rock Property Correlation for Hydrocarbon Producing Sands of the Niger Delta," Oil & Gas Journal (Feb. 1988).
- [19] Hassan N et al: "Field Application of a modified Kozeny-Carmen Correlation to Characterize Hydraulic Flow Units," SPE 149047, prepared for presentation at the SPE/DGS Saudi Arabia Section Technical Symposium and exhibition, Al-Khobar, (May 15-18 2011).