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Abstract

Production functions have been widely used in modeling aggregated inputs and
output in various organizations. Cobb-Douglasaggregate model has found
prominence among these functions. Lack of specificity has however limited the
application of the aggregate production function as an effective management tool. In
this paper, a disaggregated six-input structure has been used to model inputs/output
of a local oil production company. The output elasticities obtained from the analysis
have been statistically tested and found to be valid and dependable within the 95%
confidence interval. Thus the six-factor disaggregated Cobb-Douglas production
function has been presented as a veritable management tool for productivity
improvement through optimal utilisation of input resources.
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1.0 Introduction
Every organization, be it producer of goods or provider of services is characterized by the use of a group of inputs (resources)
which are transformed vide one form of transformation system or the other into desired outputs.  These inputs which are
largely materials, capital, labour, plant and machinery must be well proportioned in the transformation process. In other
words, we must have a means of specifying the output of the organization for all combinations of inputs. A production
function serves this purpose by relating inputs to outputs in an orderly manner. Production functions are generally classified
as fixed or flexible production functions.  They can also be classified according to the type of returns to scale, elasticity of
substitution; and whether or not it is constant across output levels.
Several production functions have been developed and applied over time.  Klacek et al.[1] employed a three-factor translog
production function to model the gross output and input relationship for the Czech national economy, using 40 quarterly time
series data for the period 1995 - 2004.  Arrow et al. [2] developed the constant elasticity of substitution (CES) production
function.  Berndt and Khaled [3] employed the generalized Leontiff (GL), Translog and Square-root quadratic production
functions in modeling the producer behavior for the United States of America manufacturing sector for the 1947 – 1971
period.  They identified the need for caution in assuming little technological progress in modeling the production function.
Cobb-Douglas is perhaps the most widely used of all production functions for modeling the relationship of an output to
inputs.  It was pioneered by Knut Wicksel (1857 – 1976) and statistically tested by Charles Cobb and Paul Douglas in 1928
in modeling the growth of the American economy during the period 1899 – 1922 [4].  The Cobb-Douglas production function
has the functional form:

( , )  =P L K AL K 
(1)

where P = total production (the monetary value of goods produced in a year)
L = Labour input (the total number of man – hour used for production in a year)
K = Capital input (the monetary worth of all machinery, equipment and buildings).
A = Total factor productivity; and β are the output elasticities of labour and capital respectively. These values are

constant and determined by available technology [5].

The total factor productivity A, represents the aspect of total output not caused by stated inputs.  Due to its empirical
flexibility, complex production functions often converge to the Cobb-Douglas function.  For example the constant marginal
share (CMS) function.
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V =  K L1- - mL (2)
reduces to the Cobb-Douglas production function when m = 0 [6].
Similarly, Zellner – Revanker production function,

(1 )exp( ) =  : 0< 1:  >0 : >0V V K L        (3)

reduces to the Cobb-Douglas function when  = 0 [7].
The production function, particularly the Cobb-Douglas function, is universally applicable whenever inputs give rise to an
output, even in domestic affairs.  For example, Graham  and Green [8] employed the Cobb-Douglas principle to develop a
house-hold production model as an activity function to relate effective leisure of husband and wife to family output in the
form
U = U(CL ML LL . Mw Lw) (4)
where C = goods obtained in the market or produced at home, and
ML LL and Mw Lw are effective leisure of husband and wife respectively
C = Xm + Z (5)
where Xm represents goods purchased in the market and Z represents goods produced at home (and measured in the same
units as market – purchased goods).

2.0 Constraints of the Cobb-Doudglas Production Function
The Cobb-Douglas production function is a linear – homogenous function that lends itself to regression analysis.  However it
has the disadvantage of not allowing identification of the nature of the technological progress.  Furthermore and like all
previous functions, aggregates all inputs in its computation. This results in non-specificity of outcome.
We need to find some means of relaxing these constraints and still derive the benefit of this important function.
Welfens [9] used a quassi – Cobb-Douglas model to decompose the output function in an ICT environment into elemental
variables of capital labour and a residual variable.  He disaggregated the capital input into ICT – capital and non – ICT capital
to come up with a linear – homogenous production function.
Y = [ B (K1/K) K1]β1 [K11]β11 [AL](1- β1- β11) (6)
where A and B represent progress parameters.
Omoregie[10], developed a six-factor disaggregated Cobb-Douglas function, which he found to be a superior management
control tool, when compared with the traditional two-factor aggregate model.
This paper therefore seeks to throw new light on the disaggregated Cobb-Douglas function and statistically establish its
validity.

3.0 Method
Ten-year historical data were obtained from a local producer of oil and adapted to fit into the proposed model.  From these
data, nine other sets of data were simulated using the Bootstrap method (random sampling with replacement) with the aid of a
suitably selected urn.  On the basis of these data, a six-factor Cobb-Douglas production function has been formulated in the
form:

 
 

1 2 1 2

1 2 1 2

, , , , ,

   .                            7

Q f K K L L M E

AK K L L M E     




where
A = total factor productivity, K1 = Fixed Capital, K2= Working Capital, L1 = Direct Labour,     L2 = Indirect Labour, M  =
Machinery Cost (Annual depreciation charge or depletion charges) E = energy cost (public power and in-house power
source)
It is expected that the inherent variabilities of input elements in the input/output equation  will become more explicit, with the
new disaggregated input structure. Thus aspects of the inputs contributing positively to productivity growth can be
emphasized while those responsible for declining performance become visible for management consideration for necessary
remedial action.

4.0 Equation Formulation and Computation
The input and output data obtained are presented in Table 1. Q is the total monetary value of annual production, while K1, K2,
L1, L2, M and E are annual monetary values of input resources of Fixed Capital, Working Capital, Direct Labour, Indirect
Labour, Machinery Cost and Energy Cost expended in the course of producing Q.  Least Square Regression method was used
to evaluate the data. Table 2 contains the computations in the regression process. y is the logarithmic transformation of the
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total output, while x1, ……, x6 are logarithmic transformations of various disaggregated inputs of capital, labour, machinery
and energy earlier described.
Table1: Total Output and Input data (Ten-year period).

Q K1 K2 L1 L2 M E
Period x106(N) x106(N) x106(N) x106(N) x106(N) x106(N) x106(N)
1 150.4 12.98 8.179 2.726 1.2 2.982 1.238
2 183.6 7.862 8.693 4.914 1.31 2.965 1.982
3 107.1 1.095 6.482 5.094 1.227 1.055 1.844
4 179.3 9.46 9.054 5.294 1.362 1.093 1.353
5 133.5 7.038 9.838 5.294 1.389 1.072 1.677
6 134.2 1.451 11.110 5.294 1.025 1.089 1.237
7 192.8 21.82 1.732 5.294 1.221 1.048 1.119
8 187.4 14.57 13.214 5.294 1.197 1.067 1.119
9 108.8 3.782 6.127 5.294 1.218 1.216 1.342
10 106.2 21.5 8.934 5.294 1.142 1.096 1.092

Total 1483 101.6 83.362 49.79 12.29 14.68 14
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Table 2 : Regression Computation table

Y x1 x2 x3 x4 x5 x6 x1
2 x2

2 x3
2 x4

2 x5
2 x6

2 x1.x2 x1.x3 x1.x4 x1.x5 x1.x6

x106 x106 x106 x106 x106 x106 x106 x106 x106 x106 x106 x106 x106 x106 x106 x106 x106 x106

2.1772 1.1132 0.9127 0.4355 0.0792 0.4745 0.0927 1.2392 0.833 0.1897 0.0063 0.2252 0.0086 1.016 0.4848 0.0881 0.5282 0.1032
2.2639 0.8955 0.9392 0.6914 0.1173 0.472 0.2971 0.802 0.882 0.4781 0.0138 0.2228 0.0883 0.841 0.6192 0.105 0.4227 0.2661
2.0299 0.0394 0.8117 0.7071 0.0888 0.0233 0.2658 0.0016 0.6588 0.4999 0.0079 0.0005 0.0706 0.032 0.0279 0.0035 0.0009 0.0105
2.2535 0.9759 0.9568 0.7238 0.1342 0.0386 0.1313 0.9524 0.9155 0.5239 0.018 0.0015 0.0172 0.9338 0.7063 0.1309 0.0377 0.1281
2.1255 0.8474 0.9929 0.7238 0.1427 0.0302 0.2245 0.7182 0.9858 0.5239 0.0204 0.0009 0.0504 0.8414 0.6134 0.1209 0.0256 0.1903
2.1277 0.1617 1.0457 0.7238 0.0107 0.037 0.0924 0.0261 1.0935 0.5239 0.0001 0.0014 0.0085 0.1691 0.117 0.0017 0.006 0.0149
2.2852 1.3389 0.2385 0.7238 0.0867 0.0204 0.0489 1.7927 0.0569 0.5239 0.0075 0.0004 0.0024 0.3194 0.9691 0.1161 0.0273 0.0655
2.2727 1.1635 1.121 0.7238 0.0781 0.0282 0.0489 1.3536 1.2567 0.5239 0.0061 0.0008 0.0024 1.3043 0.8421 0.0909 0.0328 0.0569
2.0367 0.5777 0.7872 0.7238 0.0856 0.0851 0.1276 0.3338 0.6197 0.5239 0.0073 0.0072 0.0163 0.4548 0.4181 0.0495 0.0492 0.0737
2.0262 1.3325 0.9511 0.7238 0.0577 0.0397 0.0382 1.7756 0.9045 0.5239 0.0033 0.0016 0.0015 1.2673 0.9644 0.0768 0.0529 0.0509
21.598 8.4458 8.7569 6.9004 0.881 1.249 1.3674 8.9951 8.2066 4.8346 0.0907 0.4623 0.2662 7.1791 5.7623 0.7836 1.1832 0.9601

Table2 continued
x2.x3 x2.x4 x 2.x5 x2.x6 x 3.x4 x 3.x5 x 3.x6 x 4.x5 x 4.x6 x 5.x6

y.x1 y.x2 y.x3 y.x4 y.x5 y.x6

x106 x106 x106 x106 x106 x106 x106 x106 x106 x106 x106 x106 x106 x106 x106 x106

0.3975 0.0723 0.4331 0.0846 0.0345 0.2066 0.0404 0.0376 0.0073 0.044 2.4236 1.9871 0.9481 0.1724 1.0331 0.2019
0.6494 0.1101 0.4433 0.279 0.0811 0.3264 0.2054 0.0554 0.0348 0.1402 2.0274 2.1261 1.5653 0.2655 1.0686 0.6726
0.5739 0.0721 0.0189 0.2157 0.0628 0.0164 0.1879 0.0021 0.0236 0.0062 0.08 1.6476 1.4352 0.1803 0.0472 0.5395
0.6925 0.1284 0.037 0.1256 0.0971 0.028 0.095 0.0052 0.0176 0.0051 2.1991 2.1562 1.631 0.3024 0.087 0.2958
0.7186 0.1417 0.03 0.2229 0.1033 0.0219 0.1625 0.0043 0.032 0.0068 1.8013 2.1104 1.5384 0.3033 0.0642 0.4772
0.7569 0.0112 0.0387 0.0966 0.0078 0.0268 0.0669 0.0004 0.001 0.0034 0.344 2.225 1.54 0.0228 0.0788 0.1965
0.1727 0.0207 0.0049 0.0117 0.0628 0.0147 0.0354 0.0018 0.0042 0.001 3.0597 0.5451 1.654 0.1982 0.0465 0.1118
0.8114 0.0875 0.0316 0.0548 0.0565 0.0204 0.0354 0.0022 0.0038 0.0014 2.6442 2.5477 1.6449 0.1775 0.064 0.1112
0.5698 0.0674 0.067 0.1004 0.062 0.0616 0.0923 0.0073 0.0109 0.0109 1.1767 1.6033 1.4741 0.1744 0.1733 0.2599
0.6884 0.0548 0.0378 0.0364 0.0417 0.0288 0.0277 0.0023 0.0022 0.0015 2.7 1.9271 1.4665 0.1168 0.0805 0.0774
6.0309 0.7663 1.1421 1.2278 0.6096 0.7515 0.9489 0.1184 0.1376 0.2204 18.456 18.876 14.898 1.9136 2.7432 2.9438
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Applying the Cobb-Douglas function, we have:

1 2 1 2. . . . .Q AK K L L M E     
(8)

Taking logarithms

1 2 1 2log  log log log log log log logQ A K K L L M E           
(9)

This is of the form

50 1 2 3 4 6y x x x x x x            
(10)

where 50 1 1 1 2 2 3 1 4 2 6log log , log , log , log , log , loglog , A x K x K x L x L x M x Ey Q        
From multivariate linear regression, we have the following seven normal equations

2
51 0 1 1 1 2 1 3 1 4 1 1 6

2
52 0 2 1 2 2 2 3 2 4 2 2 6

3

50 1 2 3 4 6                         (11)

            (12)

        (13)

x y x x x x x x x x x x x x

x y x x x x x x x x x x x x

x y

y x x x x x x

      

      

      
              

              



              

2
50 3 1 3 2 3 3 3 4 3 3 6

2
54 0 4 1 4 2 4 3 4 4 4 4 6

2
5 5 5 5 5 5 5 50 1 0 2 3 4 6

6 0 6 1

        (14)

        (15)

       (16)

x x x x x x x x x x x x

x y x x x x x x x x x x x x

x y x x x x x x x x x x x x

x y x x

      

      

      

 

             

              

              

     2
56 2 6 3 6 4 6 6 6         (17)x x x x x x x x x x             

We solve the seven equations by relating them to the data in Table 2 thus,

0

0

0

11.59847 10 1.60463 8.756854 6.701888 6.48107 8.303434 .60705                (18)

1.64025 1.60463 2.202966 1.61869 1.19621 0.943024 2.1112134 .09278        (19)

10.11892 8.756854 1.61869

     

     

 

      

      

  

0

0

8.206625 5.849747 5.68453 7.24008 0.14787   (20)

7.763548 6.701888 1.19621 5.84974 4.701102 4.40791 5.715934 .47919        (21)

7.47297 6.48107 .943024 5.68453 4.40791 4.525079 5.1920464

    

     

    

   

      

     

0

0

.355108        (22)

9.73289 8.30343 2.111213 7.24008 5.71593 5.192046 8.356794 .629417        (23)

0.81961 .60705 .09278 .14787 .47919 .355108 .629417 .51157                       (24)



     

      



      

      
From the above equations we have the matrix:

0

10          -  1.60463   8.756854   6.701888  - 6.48107   - 8.303434  - 60705  : 11.59847

1.60463  - 2.202966  1.61869     1.19621   - 0.943024  - 2.111213  0.99278  :  1.64025

8.756854 - 1.61869

M 
 8.206625   5.849747 - 5.68453   - 7.24008  -  .14787   :  10.11892

6.701888  -  1.19621  5.84974   4.701102  -  4.40791  -  5.71593   .47919   :  7.763548

6.48107  -  .943024   5.68453  4.40791 -  4.525079  - 5.192046  - 0.355108  :  7.47297

8.30343  -  2.111213  7.24008  5.71593 -  5.192046  -  8.35679  -  .629417  : 9.73289

   0.60705  .09278         .14787  .47919          .355108  -  .629417 -  .51157  :  0.81961

 
 
 
 
 
 
 
 
 
 
 

We will use MATLAB to solve the matrix M0 to obtain the values of A and input exponents thus:

0

6

1.2831

    log

       19.19111 10

0.1653;  0.0457

0.0864;  0.3136

0.0403;  0.3843

A

A



 
 
 





  
 
  
 

5.0 Statistical Validation
With the aid of the bootstrap resampling technique and using the ten-year data of input and output presented in Table 1, thirty
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sets of input and output data were generated with the use of a suitably selected urn(A vessel capable of concealing its
contents from the sampler in order to eliminate bias in the different resamples). This is a process of resampling with
replacement. Thereafter, the input exponents (output elasticities) were computed. The results presented in Table3 are output
elasticities of the two capital and two labour input components, machinery input and energy input. These are values obtained
in the thirty different iterations in the bootstrapping analysis.
Table3: Output Elasticities obtained from Bootstrapping Analysis

Data Set Α β    ω
1 1.1216 0.6046 1.1787 2.9129 1.3643 -5.7248

2 -0.0889 -0.1616 0.3645 -0.3629 0.0921 0.5872

3 0.905 0.8366 0.3612 1.4672 0.7868 -3.5744

4 0.8245 0.1556 -2.0992 0.5487 -0.3305 0.8271

5 3.339 0.274 -2.5273 1.9826 0.4984 -4.7686

6 -0.4279 0.4867 0.9042 -1.6514 -0.1105 1.4552

7 0.02 -1.6998 2.9014 0.3169 0.1325 1.1453

8 0.4522 0.2187 -0.7566 -0.3672 -0.1468 0.7957

9 2.9903 1.2619 -0.0025 2.0792 1.3564 -7.8114

10 -0.2907 -0.3479 0.5346 -0.2201 0.1451 0.5928

11 1.5294 1.3211 -0.4913 1.7297 0.6774 -4.0814

12 1.8189 1.4546 -0.6167 2.2776 0.8377 -5.07

13 0.4341 0.1884 -0.7102 -0.3345 -0.1253 0.7608

14 0.3986 0.2826 -0.5725 -0.4489 -0.2156 0.8756

15 -1.2236 1.3062 1.7025 -2.1198 -0.4521 1.9491

16 0.0694 -0.0608 -0.508 -0.1161 0.2448 0.1749

17 0.2218 1.8177 -1.8857 2.3911 -1.1945 -0.3272

18 0.6117 0.0598 -1.1146 0.5784 -0.1083 0.1892

19 1.8941 1.0524 1.6516 -1.9567 0.1418 -2.6724

20 -0.2316 0.2014 0.1746 -1.0633 -0.0987 1.4057

21 -1.4923 -0.6628 0.987 -0.0192 -0.1212 2.3385

22 1.7844 1.9553 0.8056 2.3036 1.361 -7.0419

23 0.8343 -0.3449 -2.6078 1.8807 0.2991 -0.577

24 -1.4929 -0.6628 0.987 -0.0192 2.3385 2.3385

25 0.1649 0.0456 0.0826 -0.3155 0.039 0.3907

26 1.2273 0.5297 0.3689 -0.3689 0.3231 -1.7354

27 1.5012 0.6205 0.6113 -0.9838 0.233 -2.0624

28 -1.4923 -0.6628 0.987 -0.0192 -0.1212 2.3365

29 -1.4923 -0.6628 0.987 -0.0192 -0.1212 2.3385

30 1.5294 0.5142 0.2877 -0.661 0.3998 -2.3163

Mean 0.514653 0.330713 0.066167 0.314057 0.27083 -0.90873

In order to validate the parameters, they were statistically tested to establish the confidence limit for 95% confidence interval
Using the relationship:
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1.96                              (25)

1.96

UCL x
n

and

LCL x
n





 

    (26)

where UCL is the Upper 95% Confidence Limit and LCL is the Lower 95% Confidence Limit,
x = Sample mean of each output elasticity of the Cobb-Douglas model using the thirty sets of data.

 = population standard deviation which was estimated from the sample standard deviation; valid for n  30 [11].
The population standard deviation σ, computed from the relationship

  2
  =

x x

n



(27)

where x =parameter value,
x = sample mean
n =  sample size
Using Microsoft Excel package, we obtained means and standard deviations for each of the six output elasticities of the
production function. Using these values in Equations (25) and (26), UCL and LCL values were computed. These values are
presented in Table 4.
Table 4: Result of statistical Validation

α β γ µ φ ω
σ 1.236383 0.807686 1.24528 1.340056 0.665538 2.8945

0.5147 0.3307 0.0662 0.3141 0.2708 -0.909

UCL 0.9571 0.6197 0.5118 0.7936 0.509 0.1271

LCL 0.0722 0.0417 -0.379 -0.165 0.0327 -1.945

6.0 Discussion of Results
The normal equations derived from the data set were solved using Matlab software, to obtain values of the input exponents
as presented in Table3. As shown in Table 4, estimates of the mean values of the six input exponents were found to be within
acceptable limits.The strength of this new approach is derived from the disaggregated input structure which is a positive
departure from the traditional method of lumping inputs as two aggregate resources of capital and labour respectively.

7.0 Conclusion
A novel approach has been introduced in input/output modeling in the application of the Cobb-Douglas production function.
The output elasticities obtained have been statistically validated and shown to be dependable; thus a veritable management
tool has been introduced in organizational management.

8.0 References
[1] Klacek J., Miloslav, V. and Stefan, S. (2007) “KLE Translog Production Function and Total Factor Productivity”

Statistical, 4/2007, pp.281-294.
[2] Arrow, K. J., Chenery B. H., Minhas B. S. and Solow R. M. (1961) “Capital-Labour Substitution and Economics

Efficiency, “ The Review of Economics and Statistics, 43(3) pp.225-250.
[3] Berndt, E. R. and Khaled M. (1979) “Parametric Productivity Measurement and Choice among Flexible Functional

Forms”, Journal of Political Economy, vol. 87, No 6, pp1220-1245.
[4] Border, K. C.  (2004) “On the Cobb-Douglas Production Function”, Publication of the Division of the Humanities

and Social Sciences, Califonian Institute of Technology. Available at http://www.hss.caltech.edu~k.cobb  ( Accessed
20th March 2010)

[5] Bao Hong, T. (2008) “Cobb-Douglas Production Function”, Available at. http://docentes.fe.unl.pt/~/amador/macro.
( Accessed 6th Nov. 2011)

[6] Revanker N. S. (1971) “A Class of Substitution Production Functions”. Econometrica, vol.39, Issue 1, pp.61-71.

Journal of the Nigerian Association of Mathematical Physics Volume 29, (March, 2015), 223 – 230

x



230

Statistical Validation of the… Omoregie J of NAMP

[7] Mishra, S. K. (2007) ‘Estimation of Zellner - Revankar Production Function Revisited’ Economics Bulletin, Vol. 3,
No 14, pp 1 – 7.

[8] Graham, J. W. and Green, C. (1984) “ Estimating the Parameters of a Household Production Function with Joint
Products” The Review of Economics and Statistics, vol. 66, No 2, pp.277-282.

[9] Welfens, P.J.J (2005) “A Quasi-Cobb-Douglas Production Function with Sectoral Progress: Theory and Application
to the New Economy”. Discussion Paper No.132, European Economy and International Economic Relations
Conference. Available at https://ideas.repec.org/p/bwu/eiiwdp/disbei132.html(Accessed 17th June 2012)

[10] Omoregie, M. J. (2014) “Comparative Analysis of Aggregate and Disaggregated Cobb-Douglas Production
Functions’, Journal of the Nigerian Association of Mathematical Physics, Vol.28, No. 2, pp

[11] Mendenhall, W. and Reinmuth, J. E. (1982) “Point Estimate of a Population Mean”; Statistics for Management and
Economics, pp.257-261, Duxbury Press, Boston, Massachusetts.

Journal of the Nigerian Association of Mathematical Physics Volume 29, (March, 2015), 223 – 230


