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Abstract

We attempt to examine the three categories of premium payment options in life
insurance contract. We will examine the value of these options in conjunction with
participating life insurance contracts which include two standard options namely; an
interest rate guarantee and a guaranteed annual surplus participation. In addition to
these two standard options, life insurance contracts typically embed the right to stop
premium payment during the term of the contract (paid up option),to resume payment
later (resumption option), or to terminate the contract early (surrender option).
Finally benefits adaptation techniques will be analyzed numerically.

1.0 Introduction
Life Insurance contracts often embed various type of implicit options. Due to an improper hedging of provided options, the
British life insurer equitable had to stop taking new business. However it is not wise to consider a product as sufficiently
priced, without analyzing specific options like elements embedded in the contract [1].
For valuation, we shall apply the standard principle of risk neutral evaluation and assume that the policy holder makes the
optimal decision (timing the exercise) based on available information.
Premium payment options are traded in most life insurance contracts especially in the United State, and European Market.
Premium payment are in three categories namely (a) paid – up – option (the right to stop premium payment annually until
maturity of contracts), (b) resumption option (the right to resume payment after exercising paid – up – option ) and (c)
surrender option (the right to terminate the contract early). The benefits of these options when exercised on death, survival
and surrender(if applicable) are adapted as decreased or increased depending on the option and the underlying contract policy
[2].
We shall examine the value of these options in conjunction with life insurance contract which including two standard options;
interest rate guarantee and a surplus participation.

2.0 Basic Contract
Assuming we have a life insurance contract with periodic premium payment featuring the two standard options; an interest
rate guarantee and annual surplus participation.
Let denote Basic contract with ; and let be the age of the insured, we now introduce Mortality statistics for the insured
and assumed that the financial risk and mortality risk are uncorrelated [3].
Premium payment defines as - 1, = 1, …., , are paid annually at the beginning of the policy year given that the
insured remains alive until maturity .
Normally ≡ are constants, and mortality risk can be eliminated by taking sufficiently large numbers of contracts [3].
We derived death and survival probabilities from relevant mortality tables. Let be the probability for an − year- old
policy holder surviving for the next year and = 1 − be the probability that an - year old will die within the next
year. Guarantee considered in the basic contract are on benefits payable upon death and survival. We assumed that the basic
contract are non surrendable and so there is no paid – up – option.
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3.0 Death Benefit
When there is death within the year of the contract, the assigned policy holder’s beneficiary is usually its heirs that
received the death benefit. Let ∝ be the death benefit at the end of the year. For the purpose of this research, ∝ = ∝ and
is constant.∝ imply minimum  benefit the insured will receive in the case of survival until maturity is calculated [4].
Given the annual premium , the starting equation used in computing the death benefit only is∑ (1 + ) = ∝ ∑ (1 + ) + (1 + ) (1.1)
Where is used as the annually compound interest rate for discounting future benefits and premiums. The LHS of (1.1) is the
expected premium payments from the insured, while the RHS is the expected value of the payments to the insured. Also from
(1.1)∝ =

∑ ( )∑ ( ) ( ) (1.2)

4.0 Survival Benefit:
The insurer payout the accumulated policy asset denoted by , this include the guaranteed interest rate in the annual surplus
of the life insure’s investment portfolio. In this case, the annual premium payment are split into a premium for life term
insurance and a saving premium. Let be the partial term life insurance, to cover the available policy assets, which
can be written as;

= (∝ − , 0) (1.3)
Where is the death probability for an + − 1 year old policy holder to die within the next year and the remaining
saving premium.

= − (1.4)
The asset at the beginning of the year, and the premium payment annually earn the greater of the guaranteed

interest rate of a fraction of the annual surplus − 1 of the insurer’s investment portfolio. This follows a geometric
Brownian motion given a complete market.
Suppose , = 0,… . , . is a standard Brownian motion on a probability space ( , , ) and

, = 0, …., bethe filtration generated by the Brownian motion. In this case, we will define as = +
with deterministic asset drift parameter and volatility , under the risk neutral unique equivalent martingale measure , the
drift changes to the risk free interest rate , and the solution of the Stochastic Differential Equation (SDE) with −Brownian
motion is given as= − + ( − ) (1.5)

With the initial condition [2].  The accumulated policy asset are calculated as;= ( + − 1 ) 1 + max , − 1
= + − 1 ( − max(∝ − , 0))

= 1 + max , − 1 (1.6)

With = 0,

5.0 Contract payoff and Fairness Condition:
The accumulated payoff for basic contract denoted by at maturity is evaluated by the payment to the insured minus the
premium payments, compounded with the risk free interest rate . Mathematically it is given as;

= ∑ ∝ ( )+ − ∑ ( ) (1.7)
Equation (1.7) has three terms on the RHS, which represent the expected accumulated death benefit, the expected benefit
payable at maturity in case of survival and the expected premium payment to the insurer, compounded to maturity ,
respectively. If we denote the net present value of at =0, byП and let be the conditional expected value with respect
to the probability measure under the information available in , we have that∏ = ( )(1.8)
If the value of the benefits under the risk neutral martingale measure is equal to the present value premium paid by the policy
holder, then we have a fair contract [5].∏ = 0(1.9)
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If given all other parameters, it is possible to measure the annual surplus participation parameter to obtain fair contract
satisfying (1.9) . This implies that the two options in basic contract are covered by the annual premium payment.

6.0 Paid – Up – Option
an option being a financial derivative, specifies contract between two parties for future transaction on an asset at a
predetermine price called the strike price. When an option is not exercised by the expiration date, it becomes void and
worthless [6].
The paid-up-option is the right to stop premium payment annually until maturity or expiration date of the contract, for
instance if the expiration of a contract is 5years, rather than paying premium at the end of each year, the policy holder can
decide not to pay any premium until 5years, at the end of the 5years,the policy holder paid up all the accrued premium. This
option is an example of a Bermudan-style option.
Let us denote paid-up-option by and let the contract setting be . After exercising at time = , = 1,… , − 1
denoted by ( ),  andgiven that the policy holder is still alive, the terminal benefit are adjusted according to the method
described below.

(i) Death benefit;
Let ∝ ( ) be the adjusted constant death benefit if is exercise at time . We shall now calculate ∝ ( ) by taking the
accumulated policy asset present at the time the policy holder stop premium payment as single premium for a new
contract, putting into consideration the current age of the insured, the adjusted benefit can be obtain as in (1.1) and (1.2).
Thus∝ ( ) =

( ∝ )∑ ( ) ( ) ( ) ( ) (2.1)

With ∝ =  λ, model parameter assured to be 0 (default value). ∝ is also parameter that determine the flexibility of the
insurer to adapt to the benefit after exercising the option [2].
If ∝ < 0, it is a penalization parameter,
And if ∝ > 0, it is an incentive parameter, however it is more favorable or profitable when this parameter is ≤ 0.
We also use ∝ in numerical analysis to asses the sensitivity of the option value on variation of the benefits.

(ii) Survival benefit;
The adjusted survival benefit can be estimated similarly to (1.6) and it is given by( ) = ( ) − − 1 max ∝ ( )− ( ) , 0

= 1 + max , − 1 (2.2)

With ( ) = ( )(1 + ∝ )
7.0 Payoff and paid-up-option value
The accumulated payoff in the case of the paid-up-option exercise in is given by( ) = ∑ ∝ + ( ) + ∑ ∝ ( )t + ( ) + ( ) − ∑ ( ) (2.3)
The first term in (2.3) is the original expected accumulated death benefit until the exercise date of the paid-up-option, the
second term is the expected accumulated death benefit after exercising the paid-up-option, and the third term is the adjusted
survival benefit at time since the premium payments are stopped at time , while the  last term contains expected premium
until time , compounded to time .

The value of the paid-up-option ( ) exercise at time is obtained by the difference of the basic contract without the paid-
up-option in (1.7) which can be written as;( ) = ( ) −

= ( ) (2.4)
Where( ) = ∑ ∝ ( )−∝ − ( ) ( ) ( ) ∑ ( ) (2.5)

Now if given the fairness condition in (1.9), the net present value П ( ) at time = 0, will be equal to the exercise value of
the option. This implies that∏ = ∏ ( )( ) (2.6)
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8.0 Resumption Option
This is the right to resume payment after exercising the paid-up-option. In other word, there is no resumption option if the
paid-up-option is not exercise. The resumption option can be exercised annually on dates = + 1,… , − 1. the
resumption option arises when exercising the paid-up-option, hence the policy holder receives a combine option denoted by

. It will be necessary for us to examine the effect of combining the resumption option with paid-up-option.

9.0 Resumption and Paid-up-option.
Let us denote the resumption option by . Then we can calculate the present value of the contract payoff assuming that the
policy holder stops premium payment at time = 1, …, − 1,and resume payment at time = +1, …, -1 just as in the case
of the .
Given that the policy holder is still alive, let ( , ) be the combine exercise of the two options at time and respectively,
in this case the insurance benefits are adjusted as discuss below [4].

(i) Death benefit ;
Let∝ ( , )be the adjusted constant death benefit after the combined exercise ( , ) from (2.1), we have∝ ( , ) ( ) ∑ ( ) ( )∑ ( ) ( ) ( ) ( ) (3.1)
With a model parameter with default value 0, however if ≥0, it will incentisize constant resumption. Also note that
when = T -1, resumption is impossible, hence ( ) = ( ).

(ii) Survival benefit:

Following from (2.2), we can evaluate the accumulated policy asset over time. ( , ), t = + 1, - -- - T as follows;( , ) = ( , ) + t -1 ∝ ( , ) ( , ) ,
= 1 + max , − 1 (3.2)

With ( , ) = ( )(1 + ).
The adjusted survival benefit is given by ( , ) .

10.0 Contract payoff and option value
The accumulated payoff  of the contract including the paid-up and resumption options at maturity is given by ;( , ) = ∑ ∝ ( ) + ∑ ∝ ( ) ( ) + ∑ ∝ ( , ) ( ) + ( , ) −∑ ( ) − ∑ ( ) (3.3)
The value of the exercise at time t =0 of the combined paid- up and resumption options ( , )at time and respectively
can be calculated as;∏ ( , ) = ( , ) (3.4)

Where ( , ) = ∑ ∝ ( )−∝ − + ( ) + ∑ ∝ ( , )−∝ − + ( ) + ∑ −
+ ( ) (3.5)

11.0 Surrender Option
This is the right to terminate the contract early before the maturity date. In this section, we will only consider the basic
contract B and include the Bermudan-style of surrender option in which the policy holder can exercise annually until
maturity.
We shall denote the surrender option by . will be exercise at time t = ή, ή =1 , - - -,T-1 which we will also denote by (ή).
In the case of the surrender option, the death benefit is eliminated while the surrender benefit is paid out at time ή. This is
because the policy holder is still alive, but the contract was only terminated.
4.1  Surrender benefit:

Let ή(ή) be the surrender benefit paid out at time ή when exercising at time t = ή. We  assume that the surrender benefit
correspond to the accumulated assets until time ή,
hence  for ή = 1,- - - -, T-1, ή(ή)= ή 1 + ή (4.1)

Where ή is given by (1.6), and ή is the parameter initially set to zero as shown in (3.1).
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12.0 Contract payoff and surrender option value:
The contract payoff at the time of surrender t = ή can be expressed as;ή (ή) = ∑ ∝ή ή(ή ) ή ή(ή)- ∑ ή(ή )ή (4.2)

The exercise value at time t = 0 of the (ή) is given by∏ (ή) = ή(ή) (ή) − ή( ή) = ή(ή)ή ή (ή) (4.3)

Where ή (ή) = ∑ ∝ − ή + ή ή( ή ) ή(ή) ή(ή) ή ή ή( ή) ∑ ή ή ( ή) (4.4).

13.0 Numerical Result and Discussion
We shall analyze numerically the impact of the various level of the guaranteed interest rate, the annual surplus participation
and the policies regarding the exercise and in particular, the timing of the three options described above. Let us considered a
30years old man policy holder who sign a contract with a term of 10years. The contract are taken out in year 2012, this imply
that the policy holder was born in 1982. We shall also consider a contract term of 20 and 30years, and the case of a 50years
old man with a contract of 10years.
Here, Monte-Carlo simulation is used with antithetic variables to obtain numerical solution. This method has to do with
variance reduction by generating negatively correlated variables such that large output are accompanied and counter balance
with small output [1].In this regard, let assume different Monte-Carlo paths are simulated. We define = 1000,000 paths.
In the numerical analysis, the risk-free interest rate = 4% and the annual premium payments are = 1200 currency units.
In the first step, the parameter (guaranteed interest rate) and (fraction of the annual return of the investment portfolio) are
marked in order to get a fair contract condition see (1.9).
A standard bisection method is used to determine ′ for a given′ . We will illustrate the basic contracts and consider a
reference example with the following: = 10, = 1200, = 4%, = 3% = 0.20. Both cases of an =30 = 50, the policy holder taking out reference contract are considered for both cases, When = 30 =50, ℎ = 24.1% and 29.3%  respectively. The parameter is determined such that the contract is fair for different
contract length. The parameter is stable under variations of the time to maturity. Note that if = 0, there is no financial
risk, and a fair contract should provide rate of return equal to riskless rate .
14.0 Summary and Conclusion
We have developed a model framework which deals with the fair valuation of premium payment options within participating
life insurance. In our work, option values are highly depended on the conversion techniques of the guaranteed benefits. The
valuation of payment option is connected to the policy holder behavior which may depend on:

(i)       Maximum of expected option payoff for given exercise time(s)
(ii)        Optional admissible exercise strategy.
(iii) Maximum expected value of the option payoff over any exercise method.

The result of the second technique is regarded as the option value in this paper. The first and the third method assumes that
the policy holder knows the future, hence can choose optional time of exercise which is not in practice [3]. Note also that the
last method does not give an acceptable value for the option but a maximum value for it. One way of evaluating the option
value is to consider a policy holder who follows an exercise strategy that maximizes his expected discounted payoff(under
the risk-neutral measure) given available information at exercise date.
This method leads to an optional stopping problem that can be solved using Monte-Carlo simulation. In this case, the random
variable, in the contract which describes when to exercise the option is an admissible strategy as it only uses information
known as the present time. This imply that ‘ ′ has to be adapted to the filtration of time.
In conclusion, this paper have developed a model framework which deals with the fair valuation of premium payment options
within participating life insurance. In this framework, option values are highly depended on the conversion techniques of the
guaranteed benefits upon exercise of the option. We also provide option values as well as the maximum value for the
inherited risk potential for presented contracts. This paper focuses on premium payment and surrender options offered on top
of a contract that already include a guaranteed interest rate and annual surplus participation.
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