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Abstract

In this paper, we apply a seemingly utility function derived for a pensioner whose
fund management is via the defined contribution (DC) or defined benefits (DB) or
both. We apply this utility function to investigate the retirement plan of the pensioner
with view to determining the optimal plan. It is shown that the optimal plan follows
the Integer-valued Poisson exponential-trawl process to capture the entry and exit of
a member from the scheme as a jump Levy diffusion process. Techniques of
Backward Stochastic Differential Equations (BSDE) to other utility functions are also
applied to show that the optimal plan follows the trawl process.
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1.0 Introduction
Count data are characterized as being non- negative, integer-valued, and often over-dispersed, meaning that the variance is
typically greater than the corresponding mean. Count data appear in various applications, including medical science,
epidemiology, meteorology, network modeling, actuarial science, econometrics and finance [1]. Various aspects of count data
have attracted active research interest [2-4].
It is the view of this paper that the assessment of the pension fund by a pensioner generates count data. There are basically
two different methods to design a pension fund scheme – the defined-benefit plan (hereinafter called DB) and the defined-
contribution plan(hereinafter called DC).
The structure in DB , the benefits are fixed in advance by the sponsor and the contributions are adjusted continually to ensure
that a required fund balance is maintained, where the associated financial risks are assumed by the sponsor agent. In DC, the
contributions are fixed and benefits depend on the returns on the assets of the fund, where all the associated financial risks are
borne by beneficiary.
Recently, owing to the demographic evolution and the development of equity markets, DC now plays a crucial role in the
social pension fund management.
Our main objective in this work is to show that the optimal investment strategy of a pensioner whether by DB or DC or both
follows the Poisson trawl process. We find the optimal processes in the case of DC, using a particular utility function and in
the case of DB, using the mean-variance method, in solving the respective associated HJB equations. One is to maximize the
accumulation of funds at the time of retirement and the other is to balance the return and the risk, that is, maximizing the fund
size and minimizing the volatility of the accumulation.
The former goal involves three types of utility functions; (i) constant relative risk aversion (CRRA) (ii) constant absolute risk
aversion(CARA), and (iii) quadratic loss functions. Concerning the CRRA utility function, some authors chose the power or
logarithmic utility function as the objective function [5-6]. Concerning CARA utility function, some authors chose the
exponential utility function as the objective function [7-8].
The latter goal includes the mean-variance utility and value-at-risk ( ) utility. The optimal portfolio selection for a
pension for a pension fund involves a long period, usually from 20 to 40 years, it is crucial to take into account the salary
risk. The novel feature of our research is the derivation of a smilingly utility function giving the DC and DB. We apply the
utility function to investigate the retirement plan of a DC, DB and both with view to determine the optimal plan. It is shown
that the optimal plan follows the Integer-valued trawl process to capture the entry and exit of a member from the scheme as a
jump Levy diffusion process.
We deal with a single cohort of workers, who enter the plan and retire at the same age and assume that the cohort is stable
across an accumulation phase, that is, any member who withdraws is replaced by another.

Corresponding author: Bright O. Osu, E-mail: megaobrait@hotmail.com, Tel.: +2348032628251.

Journal of the Nigerian Association of Mathematical Physics Volume 29, (March, 2015), 181 – 190



182

Optimal Plan for DC and DB Pension… Osu and Ijioma J of NAMP

At retirement time, an accumulated fund is used to purchase life insurance policy, whose amounts are related to the final
salaries of participants.
It is well known that Levy processes can easily reproduce heavy tails, skewness and other distributional properties of asset
returns and can generate discontinuities in the price dynamics. As levy processes generate more realistic sample paths of
stock prices, replacement of the celebrated Black-Scholes model, a Gaussian noise by Levy noise is worth the effort as
investment returns is a crucial factor when constructing strategies for pension plan.
The techniques of Backward Stochastic Differential Equations (BSDE) are used in the presence of random market coefficient
[9-11].
From the above , the rest of the  work is to examine the optimal policy for a pension fund scheme using the Integer-valued
Trawl process and show how the Levy jump process is solved by backward stochastic differential equation. In what follows,
we make the following assumptions:
Assumptions1:
A1: the state size of the defined benefit is known
A2: the state size of the defined contribution is known.
A3: the portfolio process consists of risky (from defined contribution) and risk free (from defined benefit) assets
A4: the fund management policy to consume is not as admissible as the policy to save (or invest more).

2.0 The Trawl Process [1]
The trawl process is used to govern the contribution of funds from the participants.
The Integer-valued Trawl process (IVT) ensures that funds are built up to maximize the expected returns. The trawl
movement may or may not be determined by the direction of the wave (this is a stochastic process). The net is allowed to
hold a certain number of fishes and usually the small ones may or may not escape from the net
This work introduces new method for accounting for stochastic volatility in the context of Integer-Valued stochastic
processes.
Trawl process have recently been introduced [12], here  focus is on the important sub-class of Integer-valued trawl (IVT)
process.
The DB pension scheme is viewed as an IVT process, which can be described using BSDE.
The PFM make the following assumptions:
Assumptions 2:
B1: A member will exit on retirement from the scheme
B2: A member can exit before retirement ( by death or dismissal)
B3: A new member enters into the scheme ( )0( T
The above process is governed by the IVT processes

Definition 1: A trawl is a Borel set  0, RA such that

 tAAsetwethenAleb t ,0,)(  (2.1)

The trawl is ensured non-anticipative, where A is of the form

     RdwheresdxssxA  0,:)(0,0:, is a continuous function

such that )(Aleb .

Then, we define

  
 


0 )(

0

0
* )()(

sd

dssddxdsAlebd (2.2)

That is ,

  )(0,:,),0( tsdxtssxtAAt  (2.3)

d is monotonically non-decreasing, then A is a monotonic trawl as in (2.3).

At time zero, it is considered the set 2
0 RAA  (with finite Lebseque measure), the pension member has entered into

the scheme with minimal initial contribution to be invested. At time t , we consider the
The connection between Integer-Valued Trawl (IVT) process and Integer-Valued Levy (IVL) basis is defined below.

Definition 2.2: A stationary integer-valued trawl(IVT) process RttY )( is defined as:
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(2.4)

The key component for an IVT process is an integer-valued, homogeneous Levy basis, which we will define in terms of a
Poisson random measure.

Definition 2.3: Let N be a homogeneous Poisson random measure on 3R with compensator

 wheredxdtdydtdxdyNE ,)()),,((  is a Levy measure satisfying

.)(),1min(




dyy  (2.5)

In addition , suppose that the Poisson random measure is integer-valued, which implies that the Levy measure is concentrated

on  0\Z . Then we define an integer-valued, homogeneous Levy basis on 2R in terms of Poisson random measure as






 ),,(),( dtdxdyyNdtdxL (2.6)

L is infinitely divisible with characteristic function
)),((exp()),((exp( dtdxLCdtdxLiE   (2.7)

where

 
R

yi dxdtdyedtdxLC )()1()),((   (2.8)

denotes the corresponding cumulant function.
We have a probability space ),,( PF and a fixed time horizon ),0( T so all processes defined on this space are

indexed by  T,0 , and all random times take their values in    T,0
This space is endowed with a non-explosive multivariate point processes(also called marked point process) on

  ),(,,0 EwhereET  is a LUSIN SPACE i.e. a sequence ),( nn XS of points , with distinct times of

occurrence nS and with marks nX , so it can be viewed as a random measure of the form





TSn

XS

n

nn
dxdtdxdt

,1
),( ),(),(  (2.9)

Put in IVT process, nS is the time a fish enters in the trawl and nX is the size of the fish (representing the entry of a

participant in the pension scheme andthe initial contribution or the entry point).

Here     TSn ,0 - valued and the sX n ' are E - valued and

 TSandSSandTSifSSandS nnnnnn   111 ,0 .

We denote by  the predictable   compensator of the measure  , relative to the filtration )( tF .

The measure  admits the disintegration:

  )()(,, , dxwdAdxdtw twt   (2.10)

where  is a transition probability from   PT ,,0 into   AandE ,, is an increasing Cadlag predictable

process starting at 00 A which is also the predictable compensator of the univariate point process.

    



n

tSt n
EtN 1,0 (2.11)

As a special case, the multivariate point process  reduces to the univariate EwhenN is a singleton.
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3.0 The Poisson Trawl Process
As a good starting point for exploring the wide class of IVT processes, we choose the Poisson trawl process, which we obtain

by choosing a Poisson basis for the Levy basis L or, equivalently, by choosing the Levy seed  vPoiL ~ for an

intensity parameter 0v . Then

    AvlebPoiAL t ~ , since    AlebAleb t  for all IRt .

The intuition behind such a basic model is the following one: If we consider a realization of L again, then we obtain a

countable set R of points  txy ,, in   21 IR , where-as before-the last two coordinates  xt, are uniformly

distributed over
2IR while y is the value of the basis at that point, which in the case of a Poisson basis is always equal to

1. Hence as soon as time reaches t the value of the process Y increases by 1. As time progresses, the point eventually drop
out of the trawl again, which will result in the value of the process dropping by one. This finding can be used to set up a
simulation algorithm for such processes.

4.0 Backward Stochastic Differential Equations
To find a generalization of the Feynman-Kac formula, more precisely to be able to represent semilinear PDEs of the type( , ) + ( , ) + ( , , ( , ), ( , ) = 0, (2.12)
assume that is the solution of this equation with no initial condition for now.  If one can describe the dynamics of= ( , ), then we could for every ( , ) consider a version , of that starts at time in . This would imply( , ) = , , − , . What would the dynamics of have to be? By Ito’s formula= ( , ) + ( , ) + ( , ) ( ) = − , , , ( , ) + ( , ) ( )
This suggests to consider equations of a slightly less general type than above:( , ) + ( , ) + ( , , ( , ), ( , ) ( ) = 0 (2.13)
If solves this equation, one obtains for = ( , ) and = ( , ) ( ):= − ( , , , ) + . (2.14)
A solution to this equation consists of a pair of processes ( , ). Note that this equation does not make any sense if we
consider it as a forward equation: For = 0 one obtains= , ≤ ; = ∈ . (2.15)
Of course then one can choose independently of the initial condition, and therefore there would be infinitely many
solutions. However, if one considers it as a backward equation, then there is hope: one considers again the case = 0.If is
adapted one gets for any adapted and square integrable= ( | ) = − ∫ | = ( | ). (2.16)

Therefore is a martingale. If the filtration is now generated by the Brownian motion , then by the martingale

representation property there exists a unique predictable process such that = + ∫ which yields= + ∫ = − ∫ . (2.17)
In what follows, we let represent the DC and the DB. The we propose;
Proposition 1.1: Let us consider the Picard sequence ( , ) recursively by ( = 0, = 0), and− = ( , , ) − , = (2.18)
This sequence ( , ) converges inℋ ⨂ℋ × , and ⨂ ℙ − . to the solution ( , ) of the BSDE ( , ). Moreover,
the sequence ( ) converges uniformly almost surely[11]

5.0 Mathematical Formulation
In this section, we introduce the market structure and define the stochastic dynamics of asset’s prices and the salary.
We consider a complete and frictionless financial market which is continuously open over the fixed time interval

  0,,0 TwhereT denotes the retirement time of a representative member.

We assume that , the pension fund manager(PFM) can invest into two  financial assets. The PFM is at liberty to invest in
either of the assets. The PFM can invest in risk-less asset (bond or bank account) at time t, which is governed by a dynamics

0,)0(, 000  rBBdtBrdB tt (3.1)

0Bwhere is the initial price value of the risk-less asset, 0r is the discount rate.

We also assume that the price of the risky asset is a continuous time stochastic process governed by the dynamics
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011 )0(,)()( SStdWtSdtSrdS tt   (3.2)

where 0S is the initial stock price of the risky asset, 11 andr are constant parameters,

1r is the expected instantaneous rate of return of the risky asset, satisfying the general  condition )(, 101 tSrr  is the

volatility,  0:)( ttW is a standard 1-dimensional Brownian motion defined on a complete probability space  PF ,, .

The filtration  tFF  is a right continuous   filtration of  - algebra on the space.

The stochastic salary dynamics at time t follows the SDE which is influenced by the financial market.

022 )0(,)()()()()( LLtdWtLtdttLrtdL   (3.3)

where 0L is the initial salary, 2r is the expected growth rate of the salary, )(2 t is the volatility and hedgeable  whose risk

source belongs to the defined set of the financial market risk source.
The wealth process under consideration are the contribution made into the pension fund at a rate of )(tL .

Let the wealth of the pension fund at  time  Tt ,0 be t (stock) and t1 (bank account) respectively. Then , the

optimal investment amount from the contributors is given as

0)0(),(
)(

)(
)(

)(

)(
)()1()( XXtL

tS

tdS
tX

tB

tdB
tXtdX tt   (3.4)

Using (3.1), (3.2) and (3.3) above, the evolution of the pension fund manager (PFM)
wealth is given by:

  )()()()()()()1()( 110 tdWtStXdttLrtXrtXtdX ttt   (3.5)

The contribution term dtt)( in (3.4) is the same as already established in [13].Based on the sets of assumptions A1-A3 and

B1-B3
Let

t
i

tt
i

t RPP  1 , (3.6a)

Where the LHS of (3.6a) is the total income for tperiodt , is the percentage of the contribution in periodt  .

The investment part of the total income is given by

,1
i

tt PR   (3.6b)

where  may be policy of fund manager to invest or not to invest and  is the investment rate.

The investment policy becomes
i

tt PR 1  as in (A2).

Recall from (A1)

,1 t
i

tt
i

t RPP  
where tt Rand are assumed independent random variables, by assumption of A3, that (A2) follows.

Then,

,11
i

t
i

tt
i

t PPP    (3.7)

or

.
)1(1 






i

tti
t

P
P (3.8)

The PFM assumed that a member will exit from the fund system on retirement at time T and  is risk averse, the utility

function )(xU is increasing and concave )0)(( xU II .

The PFM is interested in maximizing the utility of the member’s investor’s terminal wealth. For the given strategy t , we

define the value function by the PFM from the space state ttimeatx as

 xtXltLstSTXUExlstH
tt

 )(,)(,)())((),,,(  (3.9)
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The objective is to find the optimal value function

),,,(),,,( xlstHSupxlstH
t and the strategy *

t such that

),,,(),,,(* xlstHxlstH
t




(3.10)

is satisfied.
1. UTILITY FUNCTION
To investigate of the optimal plan, we consider a utility function which incorporating both the DE and the DB. Given (3.8),
the special utility function is derived in [14] as

.
1

)(
)1(








X
XU (4.1)

Put  1 then

.
1

)(







X
XU (4.2)

Notice that for = 0 and = 2, we have (4.2) becoming ( ) = which is the reciprocal  of the Melton’s quadratic utility
function.
The objective of the PFM is to choose an investment allocation of the contributions made in (3.5) so as to maximize the
expected utility of the terminal wealth on exit from the scheme.

The HJB equation associated with the problem is defined as

 







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

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222
001 )(

2
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(4.3)
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Where the optimal policy is
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Equation (4.6) implies that if the effect of the volatility is allowed to increase, it will affect the optimal policy generated from
the risky assets.
2. STOCHASTIC CONTROL PROBLEM

We consider the stochastic control problem on finite horizon. Let X be a controlled diffusion on nR governed by

ssssss dWXdsXbdX ),(),(   (5.1)

where W is a d -dimensional standard Brownian motion, and, the control process, is a progressively measurable  valued in

A .
Let be as in section 2where we have a controller who intervenes on a system S whose evolution when non-controlled is
described by a −valued stochastic income process ( ) solution of the SDE(2.15). Assume now that the reward
functional is given by the following expression:∀ ∈ , ( ) ≔ exp ℎ( , . , ) + Ψ( )
where is a real parameter. The problem we are interested in is to find an optimal strategy for the controller, i.e. an
admissible control ∗ which maximizes the reward ( ) . Since we have a utility function in the reward, which is of
exponential type, we call this problem of Risk-Sensitive type. The parameter stands for the sensitiveness of the controller
with respect to risk. He/she is risk averse (resp. seeking) if < 0 (resp. > 0). There are several works related to those
types of control problems and especially their applications [15-18]. Moreover we can write risk-sensitive control problem in
term of dynamic entropic risk measure which is studied in [19]. Indeed, let , , (resp. , ) be a ℙ-dynamics entropic
risk measure (resp. ℙ -dynamic entropic risk measure) given for any bounded by:, , ( ) = − | . . , ( ) = − | .Taking = 1⁄ and = −∫ ℎ( , . , ) − ( ), we get that ( ) = ( , , ( ).Actually it has been proved [19] that the dynamic entropic measure , ( ) is ℙ-solution of the following BSDEwith the quadratic coefficient ( , ) = ‖ ‖ and terminal bounded condition .− , ( ) = ‖ ‖ − , ℙ − . , , ( ) = − .We are going now to get similar result that is the link between ( ) and ℙ-solution of some BSDEs. Actually we havethe following result.
The gain functional to maximize the terminal wealth is









 

T

Ttt XgdtXtfEJ
0

)( )(),,(  (5.2)

where   RARTf n ,0: is continuous in RRgAaxt n  :,),( is a concave C  function, and gf ,
satisfy a quadratic growth condition in x .

The generalized Hamiltonian H is defined as:   RRRARTH dnnn  ,0: by

),,(),((),(),,,,( axtfzaxtryaxbzyaxtH   (5.3)

H is differentiable in ).( HDx x

For each A , the BSDE, called the adjoint equation

)(,),,,,( TxTttttttxt XgDYdWZdtZYxtHDdY   (5.4)

THEOREM 5.1;

Let A̂ and X̂ be associated controlled diffusion. Suppose that there exists a solution )ˆ,ˆ( ZY
T0 the associated BSDE (5.4) such that

saTtZYaXtHZYXtH ttt
Aa

tttt ..,0),ˆ,ˆ,,ˆ,(max)ˆ,ˆ,ˆ,ˆ,( 


 (5.5)

and

)ˆ,ˆ,,,(),( tt ZYaxtHax  (5.6)

is a concave function  Tt ,0 .

Then ̂ is an   optimal control:
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).(sup)ˆ( 


JJ
A



6.0 Criterion for Portfolio Selection
We consider the usual Black-Scholes financial model. There are basically two types of assets under consideration.
The risk less asset is of price process

dtrSdS tt
00  (5.7)

and the risky asset governed by the price dynamics

tttt dWSdtbSdS  (5.8)

with constants 0 andrb .

Consider an agent who invest at any time t an amount t in the risky asset, the wealth process is governed by

0

0

)(
t

t
tt

t

t
tt S

dS
X

S

dS
dX  

  ,,)( 0 xXdWdtrbrX tttt   (5.9)

where A is the set of progressively measurable processes  valued in R , such that










T

t dtE
0

2 . (5.10)

By mean-variance approach which is suitable in the optimization of portfolio selection in DB pension scheme, which consists
in minimizing the variance of the wealth under the constraint that its expectation is equal to given constant. Mean-variance
objective is equally applied in solving portfolio selection problem for self-financing wealth processes. The techniques of
BSDE in the presence of random market coefficients;

  RmmXEXVarmV TT
A




,)(:)(inf)(


(5.11)

Problem (5.11) is reduced to the resolution of an auxiliary control problem

  .,inf)(
~ 2 RXEV T

A






(5.12)

By stochastic maximum principle, (5.3) takes the form

  .)(),,,( azyrbarxzyaxH  (5.13)

The adjoint BSDE (5.4) is written as for any A
).(2,  Tttttt XYdWZdtrYdY (5.14)

Put A̂ as a candidate for the optimal control, and )ˆ,ˆ(,ˆ ZYX the corresponding processes.

Then,

 .ˆˆ)(ˆ)ˆ,ˆ,,( ttttt ZYrbaYrxZYaxH  (5.15)

By theorem(5.1) , (5.15) is linear in a , then,

..,0,0ˆˆ)( saTtZYrb tt   (5.16)

We seek solution for )ˆ,ˆ( ZY to (5.14) in the form of

)(ˆ)(ˆ tXtY tt   (5.17)

for some deterministic C  function . and Using (5.14) and (5.10), we have  ˆ, and satisfying

)(ˆ)(()()(ˆˆ)((ˆ)( tXtrtrbXrtXt tttt   , (5.18)

tt Zt ˆˆ)(  , (5.19)

together with the terminal  conditions
.2)(,2)(   TT (5.20)

Using (3.10),(5.17) and (5.19), we have expression for the candidate ̂ as :
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.
)(

))(ˆ)(2)((

)(

ˆ)(ˆ
22 t

tXtrt

t

Ybr tt
t 










 (5.21)

Also from (5.18), we obtained

.
)()(

)()(ˆ)(2)((ˆ
tbr

trtXtrt t
t 







 (5.22)

By (5.21) we obtained the ODE satisfied by  and :

i.e. 2)(,0)()
)(

2()(
2

2




 Tt
rb

rt 


 (5.23)

.2)(,0)()
)(

()(
2

2




 


 Tt
rb

rt (5.24)

Solutions to (5.23) and (5.24) are:   ondepending,)( 












 ))(

)(
2(exp2)(

2

2

tT
rb

rt


 (5.25)

.))(
)(

(exp2)()(
2

2

1 










 tT

rb
rtt


 

(5.26)

With appropriate choice of )ˆ,ˆ(,, ZYprocessthe is the solution of the BSDE(5.14), satisfying the maximum

principle in Theorem (5.1).
Then, the optimal control is given by (5.12), in Markovian form is

.
)(

)()()((
),(ˆ

2 t

txtbr
xt




 



 (5.27)

7.0 Computation of The Value Function )(
~ V :

For any ,A applying Ito’s formula to
tt XtXt )()(

2

1 2
  and using (5.11) , the ODE (5.23) to (5.24) is satisfied by

 and
.

By expectation:

 















 


T

T
t

tT

dt
t

trb

dt
t

tXtbrt
ExxXE

0

2
2

0

2
2

2
222

)(

)(
)(

2

1

)
)(

))()()((
(

2

)(
)0()0(

2

1

















 (5.28)

The above result implies that the optimal control in (5.11) and the value function is

.
)(

)(
)(

2

1
)0()0(

2

1
)(

~

0

2
222 




T

dt
t

trb
xxV





 


(5.29)

We conjecture that

.,)()(
~ 2

)( 2
2

RxeeV rT
rb





  (5.30)

8.0 Interpretation of Result and Conclusion
We have viewed the DC and DB pension scheme as integer-valued trawl (IVT) processes and also solve using the BSDE to
obtain the optimal plan. A Poisson exponential-trawl process can be constructed by trawling a Poisson basis using (see
section 2);= ( , ): ≤ , 0 ≤ ≤ ( ) . (6.1)
In our case , we construct a Poisson exponential- trawl using equations (4.5, 5.25 and 5.26). For example, for= + ( )( ) ,

equation (4.5) becomes;
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Similarly, equations (5.25 and 5.26) are respectively( ) = ( , ): ≤ , 0 ≤ ≤ 2 ( ) , (6.3)
and( ) = ( , ): ≤ , 0 ≤ ≤ 2 ℵ( ) . (6.4)

Where = 2 − ( )
and ℵ = − ( )

.

Consider the problem of a PFM with self-financed wealth process tX who wants to minimize  2)
~

( TXE in the complete

market. His optimal strategy is the usual Merton portfolio allocation for a quadratic function 2)( xxU  defined by

.0,
2

TtX
rb

tt 





 (6.5)

The optimal strategy for the problem of (5.12) is the same as (5.24) the wealth process.
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