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Abstract

Typhoid fever has become a major public health concern in developing countries
like Nigeria, Ghana, Mali and Kenya.Most cases in developed countries are imported
from endemic countries. Individuals in the greater parts of Africa, Asia and Central
America are at a great risk of contracting the disease due to poor sanitation,
inadequate portable water supply and health care. As a result of poor diagnosis of
typhoid in these areas due to similar signs and symptoms with malaria, resulting in
improper treatment and care for typhoid, this constitutes the major obstacle in
managing the typhoid disease by the health workers. In this paper, SIR-
Bmathematical model that addresses the control of the transmission and spread of
typhoid is developed and analyzed. The human population is divided into three
classes; the susceptible, the infected and recovered (and immune) classes for humans,
and for the bacteria we only have infectious class.All the new born for humans are
susceptible to the typhoid infection and there is no vertical transmission (i.e. mother
to child transmission of typhoid Salmonella). The next generation approach is used to
determine the epidemiological threshold known as the basic reproductive number R0

where R0 is the non-zero eigenvalue. We establish the existence of the disease free
equilibrium and endemic equilibrium pointsin terms of the reproductive numbers R0

typhoid. It isalso established that the disease free equilibrium is asymptotical stable
using Jacobian method. Using Lynapunov function it is proved that the disease free
equilibrium point E0 is globally asymptotically stable when R0< 1 and the disease will
always die out. For R0> 1, the disease free equilibriumE0 becomes unstable and the
endemic equilibriumE* is locally and globally asymptotically stable. Therefore,
typhoid fever persists in the population. Numerical experiment using data obtained
from Central Intelligence Agency and Journal materials show that typhoid fever can
be controlled at 70% vaccination rate.

1.0 Introduction
Typhoid fever is a major public health problem in the world. This disease continues to affect the poor countries of the world
including Nigeria. Typhoid is an infectious disease caused by the bacillus Salmonella typhi. It can be transmitted by taking
solid food contaminated by faeces of typhoid infected persons or of carrier persons, healthy individuals who carries germs
without showing the symptoms of the disease. The World Health Organization (WHO) claims that about 16 million cases
were reported annually causing about 600,000 deaths[1]. Typhoid is an infectious disease characterized by an acute illness,
the first typical manifestations of which are fever, headache, abdominal pain, relative bradycardia, splenomegaly and
leucopenia [2]. There are many mathematical models inform of ordinary differential equations (odes), partial differential
equations (pdes) and integral equations  describing transmission of typhoid, vaccination of the populace against typhoid and
other diseases, treatment of typhoid disease. Most of them considered susceptible-Infectious-Recovered (SIR) relationship,
but, our model considered susceptible-Infection-Recovered-Bacteria SIR-B where a compartment B is added to the SIR, so as
to study the transmission mode of salmonella typhi from bacteria to the susceptible, S. the susceptible individuals become
infected individuals with typhoid, I after interacting with Salmonella typhi bacteria, B.
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2.0 The Derivation of the Model
The human populationN(t) is divided into the following classes: susceptible individuals S(t), infected individuals with
typhoid, I(t) and recovered individuals while the total population of Salmonella bacteria typhi is represented by B(t). The total
population of human is N=S+I+R. In this model, α denotes transmission rate of Salmonella bacteria typhi from bacteria
salmonella, B to the susceptible, S; γ denotes recovery rate of typhoid infected individuals, I(t). The birth rate and death rate
are represented byβ and respectively. We displayed the relationship between human and bacteria salmonella typhi in figure
1:
β αB     γ                                    μ
μ+pμ
β2I

β1β3

Fig 1: A diagram for a typhoid epidemic.
After all these assumptions, the model has the following forms:= β − αBS – ( + )= αBS – ( + + ) (2.1)= − ( + )= + −
Where p represents vaccination against typhoid and represents the death rate of Salmonella typhi bacteria.Note that both of
them represent control measures against typhoid fever.

3.0 Model Analysis
4.0 Boundedness
The system of equations (2.1) is epidemiologically and mathematically well-posed in the domain
D={(S, I, R, B)ϵR4: S ≥ 0, ≥ 0, ≥ 0, ≥ 0}and the equilibrium points are defined.
3.2 Basic Reproduction Number, R0

This number gives the number of secondary infective (new infection) cases of the typhoid disease produced by typhoid
infected individuals during the effective period when introduced in a population of susceptibles[3--6].
We use the next generation method to find the basic reproduction of number of our typhoid model by finding the next
generation matrix (operator), FV-1 of our typhoid infected individuals, I compartment and bacteria typhi, Bcompartment.= 0 (0)0 0 (2.2)

V=
+ + 0− − (2.3)

Finding the eigenvalues of the characteristic equation of FV-1, we have:= 0 (2.4)
and= ( )( )( ) (2.5)

The largest positive eigenvalue( ) is thebasic reproduction number, therefore= (0)( + + )( − ) (2.6)
where − > 0
5.0 Equilibrium Points
6.0 Disease Free Equilibrium and Endemic Equilibrium Points
By setting the system of equation (2.1) to zero, we have− [ + ( + )] = 0 (2.7)− ( + + ) = 0 (2.8)− ( + ) = 0 (2.9)
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Substituting (2.8) into (2.7) gives= ( )( )[ ( ) ] (2.11)

Substituting (2.11) into (2.10) gives{−( − )( + )( + + ) + [ − ( + + ) ]} = 0 (2.12)
Solving (2.12) gives= 0,represents the situation where human population is free of typhoid fever infection or∗ = ( )( ) 1 − ( ) (2.13)

Where ∗biologically represent the number of infected human with typhoid disease.Substitu-ting (2.13) into (2.6) gives∗ = ( ) ( )( ) (2.14)

Equation (2.14) represents the number of bacteria Salmonella typhi that cause typhoid in human population. To find the
number of susceptible individuals ∗ in the population, we substitute (2.14) into (2.7) and this gives∗ = ( )( )( ) (2.15)

We therefore have two equilibrium points: diseases free equilibrium = ( , 0 0 0) and endemic equilibrium ∗ =( ∗, ∗, ∗, ∗)
7.0 Stability Analysis
8.0 Local stability of Disease-Free Equilibrium
We test our model local stability by applying Jacobian method to our model (2.1) as follows−( + + ) 0 − (0)0 −( + + + ) (0)0 ( − ) − = 0 (2.16)[( + ) + ][ + ( + + + [ − ]) + (1 − )] = 0 (2.17)
Solving equation (2.17), we obtain three eigenvalues( ’) that are negative provided < 1,therefore, our typhoid model
(2.1) is locally asymptotically stable.
4.2 Global stability of disease-free equilibrium
Let us consider the Lynapunov function[7]= − 1 − ln( ) + − 1 − ln( ) (2.18)

It is easy to see that V is positive in the positive cone and attains zero at . We therefore show that ̇ is negative definite.
Differentiating V at the point , we obtaiṅ = 1 − + 1 − (2.19)

Substituting equations (2.7) and (2.8) and rearranging the related giveṡ = 2 − − + ( + ) 2 − − + ( + + )( − 1) (2.20)

If < 1. By this and the relation of geometric and arithmetic means, we conclude ̇ ≤ 0, with equality holding at the
equilibrium . Therefore, is globally asymptotically stable if < 1.
9.0 Local stability of Endemic Equilibrium
We test our model local stability by applying Jacobian method to our model (2.1) as follows−( ∗ + + + ) 0 − ∗∗ −( + + + ) ∗0 ( − ) − = 0 (2.21)

Solving equation (2.18), we obtain the characteristic equation of degree 3:+ + + = 0 (2.22)
where= ∗ + + 2 + + + − (2.23)= ( ∗ + + 2 + + )( − ) + ( ∗ + + )( + + ) + ∗ (2.24)
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It is obvious that in (2.22) and in (2.22) are positive, but, in (2.22) is positive provided > 1. Solving equation
(2.22), the three eigenvalues ( s’) are all negative. Also, by applying Routh-Hurwith criterion[8,9]to (2.22), we have the
following:> 0,> 0,
and − > 0.
Provided > 1.Therefore, the model ∗ is locally asymptotically stable.

10.0 Global Stability of Endemic Equilibrium
Let us consider the Lynapunov function= ∗ ∗ − 1 − ln( ∗) + ∗ ∗ − 1 − ln( ∗) (2.26)

It is easy to see that V is positive in the positive cone and attains zero at ∗. We therefore show that ̇ is negative definite.
Differentiating V at the point ∗, we obtaiṅ = 1 − ∗ + 1 − ∗

(2.27)

Substituting equations (2.15) and (2.13) and rearranging the related giveṡ = ∗ ∗ 2 − ∗ − ∗ ∗ + ( + ) ∗ 2 − ∗ − ∗ + ( + + ) ∗( ) − 1 (2.28)

Equation (2.15) combined together with the relation of geometric and arithmetic means, implies that ̇ ≤ 0, with equality
holding at the equilibrium ∗ . By applying Lyapunov-Lasalle theorem[7], we therefore conclude that is globally
asymptotically stable in .

11.0 Numerical Result
Here, we consider the parameter values gotten from Central Intelligent Agency (CIA) and Journal materials for our model.
Table 1 displays the parameter values and theirreferences.
Table 1: Parameter values
S/n Parameter Symbol Parameter Description Value reference

1
2

3
4

5

6
7

8
9
10
11

Recruitment rate for human beings
Transmission rate of typhoid from Bacteria to
susceptible human and infected host
Natural mortality rate for human
Vaccination rate

Removal rate of human from typhoid infected state
to susceptible state
Typhoid induced death
Recovery rate for typhoid

Growth rate of Salmonella bacteria
Rate of discharge of bacteria by Infected human
Natural/Drug Induced death of Bacteria
Total humans

0.0001063 day-1

0.000197 day-1

0.000052 day-1

0.7

(0.6 - 0.8)

(0.5 - 0.8)
0.000548 day-1

0.000904 day-1

0.0000022 day-1

0.00247 day-1

155215600

[10]
[11]
[12]
[10]

[12]
[13]
[11]
[11]
[12]
[14]
[14]
[14]
[10]

To support analytical results in this study, we carried out numerical experiment on the typhoid model using the MATLAB
ODE solver, ode45 and parameter values in Table 1.
Figure1 shows that the number of susceptible humans is decreasing with time for R0>1, due to control measure introduced
(i.e. vaccination) to control the spread of typhoid Salmonella typhi in the population.Figure2 shows that the number of
typhoid infected is on the decrease due to the fact that there is less number of susceptible individuals to be attacked by the
bacteria. Figure3 shows that the number of recovered humans is increasing with time for, due to treatment of infected
individuals.  Figure4 shows that the number of bacteria Salmonella typhi is decreasing exponentially withtime; this is as a
result vaccination and preventive measure like washing of hands.

Journal of the Nigerian Association of Mathematical Physics Volume 29, (March, 2015), 167 – 172
A Mathematical Model for the… Adeboye and Haruna J of NAMP



171

Figure 1: The population of susceptible humans with respect to time

Figure 2: The population of typhoid infected humans with respect to time

Figure 3: The population of recovered humanswith respect to time
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Figure 4: The population of Salmonella typhi bacteria with respect to time

12.0 Discussion
In this paper, we propose a system of four ordinary differential equations to model the control of typhoid fever with
vaccination for the susceptible individuals in the population. We investigated the following:i. existence of disease-free
equilibrium ii. existence of endemic equilibrium and iii. their stabilities. It was discovered in this paper that global stabilities
of disease-free and endemic equilibriums exist unlike other papers where only local stability exist for  disease-free
equilibrium. We also discovered that vaccination against typhoid and thorough washing of hands and fruits can reduced
bacteria Salmonella typhi in the community there by reducing the spread and transmission of the bacteria to the susceptible
subpopulation.
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