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Abstract

The dynamic behaviour of elastically supported (non-classical boundary
condition) rectangular plate carrying moving concentrated masses and resting on bi-
parametric (Pasternak) elastic foundation with stiffness variation is considered in this
investigation. The governing equation is a fourth order partial differential equation
with variable and singular coefficients. In order to solve the governing differential
equation, it is reduced to a sequence of coupled second order ordinary differential
equations using a technique based on separation of variables. The modified method of
Struble is used to simplify the coupled differential equations and the integral
transformations are then employed for the solutions of the simplified equations. The
analysis of resonance shows that, for the same natural frequency, the critical speed
(and the natural frequency) for the moving mass problem is smaller than that of the
moving force problem. Thus, resonance is reached earlier in the moving mass system
than in the moving force system The resultsin plotted curves show that as the value of
the rotatory inertia correction factor Ro increases, the response amplitudes of the
plate decrease. It is also shown that as the value of the shear modulus Go increases
the displacement amplitudes of the plate decrease for fixed foundation modulus Fo.
For fixed Ro, Fo and Go, the transverse deflections of the elastically supported
rectangular plates under the actions of moving masses are higher than those when
only the force effects of the moving load are considered. This implies that resonance
is reached earlier in moving mass problem than in moving force problem. Thus,
safety is more guaranteed with the moving mass solution.
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1.0 Introduction

The analysis of flexure of beam resting on a Winkler foundation and under moving load is very common in literature
especially when the foundation modulus is constant. It is generally known that the dynamical problems of structures under
moving load and resting on a foundation is generally complex, the complexity increases if the foundation stiffness varies
along the structure. Aside the problem of singularity brought in by the inclusion of the inertia effects of the moving load, the
coefficients of the governing fourth order partial differential equation are no longer constant but variable. Earlier researchers
into beam member on variable elastic foundation include Franklin and Scott [1] who presented a closed-form solution to a
linear variation of the foundation modulus using contour-integrals. Closely following this, Lentini [2] presented a finite
difference method to solve the problem where the foundation stiffness varies along x as a power of x. Much later, Clastornik
et al [3] presented a solution for the finite beams resting on a Winkler elastic foundation with stiffness variation that can be
presented as a general polynomia of x. Though works in [1,2,3] are useful, the loads acting on the beams are not moving
loads. In a more recent development, Oni and Awodola [4] extended the works of these previous authors to investigate the
dynamic response to moving concentrated masses of uniform Rayleigh beams resting on variable Winkler elastic foundation.
Recently, many researchers have made efforts in the study of dynamics of structures under moving loads [5-10]. In al of
these, considerations have been limited to cases of one-dimensional (beam) problems. Where two-dimensional (plate)
problems have been considered, the foundation moduli are taken to be constants. No considerations have been given to the
class of dynamical problems in which the foundation is the type with stiffness variation

The foundation model based on Winkler’s approximation model is very common in literature, whereas, in such an important
Engineering problem as the vibration of plates resting on elastic foundation, a more accurate Two-Parameter (Pasternak)
foundation model which in addition to subgrade modulus incorporates the shear effect of the foundation should be used rather
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than the Winkler’s approximation model. Eisenberger and Clastornik [11] presented two methods for the solution of beams
on variable two-parameter elastic foundation. Also, Gbadeyan and Oni [12] studied the dynamic analysis of an elastic plate
continuously supported by an elastic Pasternak foundation traversed by an arbitrary number of concentrated masses. In their
work, they assumed that both the foundation modulus and the shear modulus are constants.

In al these investigations, extension of the theory to cover two-dimensional (plate) problem in which the plate is resting on
Pasternak elastic foundation with stiffness variation has not been considered. Where this has been considered, it has been
exclusively reserved for elastic structures having the classica boundary conditions such as the Clamped edge, Free edge,
Simply supported edge and Sliding edge boundary conditions. For practical applications in many cases, it is more realistic to
consider non-classical boundary conditions, such as the elastically supported edge condition, because the classical boundary
conditions can seldom be realized. This study is however concerned with the behaviour of elastically supported rectangular
plate under the action of concentrated moving masses and resting on Pasternak elastic foundation with stiffness variation.

20  Governing Equation

The dynamic transverse displacement Z(x,y,t) of a rectangular plate when it is resting on a Pasternak elastic foundation with
stiffness variation and traversed by concentrated masses M; moving with velocity ¢ is governed by the fourth order partial
differential equation givenin[13] as

0°Z(x,y,1) o* o*

WVZ[V2Z(x, y,0)]+ 1 . rRy oo ooy’ Z(x, y,t) - Fy[ax—3x% + *z(x, y.t) o
+G [713+12x73x2]g2(x Y1) + G,[12-13x + 6x% — X*] a—2+i Z(x y,t)

0 ox 7 0 X% oy? e

N 62 62 ) 62
+izll[Migd(x—cit)d(y—s)—Mi(atz+2ci Freal aijZ(x, y,t)d (x—ct)d(y-9)]

2

Where \y — __EN 2

12(1-v)
isthe bending rigidity of the plate, V2 isthe two-dimensional Laplacian operator, h is the plate’s thickness, E is the Young’s
Modulus, V is the Poisson’s ratio (v <1), m is the mass per unit area of the plate, R, is the Rotatory inertia correction

factor, Fo is the foundation constant, Go is the shear modulus, g is the acceleration due to gravity, d(.) is the Dirac-Delta
function, x and y are respectively the spatial coordinatesin x and y directions and t is the time coordinate.

Theinitial conditions, without any loss of generality, istaken as

_oo 9Z(x¥.1) 3
Z(x,y,t)=0= " (©)

3.0 Analytical Approximate Solution

The method of analysis involves expressing the Dirac — Delta function as a Fourier cosine series. In order to solve equation
(1), atechnique [14] based on separation of variablesis used to reduce it to a set of coupled second order ordinary differential
equations. Then, the modified asymptotic method of Struble in conjunction with the techniques of integral transformation and
convolution theory are employed to obtain the closed form solution of the resulting second order ordinary differential
equations.

In the first instance, we consider rectangular plate elastically supported at edgesy = 0, y = Ly with simple support at edges x
=0, x = Lx, the boundary conditions can be written as[10]

Z(0,y,t) =0, Z(L,,y,t)=0 4

0°Z(x0,t) o OZ(x0) _ o 0°Z(xL,.t) 2Lt 5
oy’? tooy ’ ? ooy

0°Z(0,y,1) 9 0°Z(Ly,yit) _ 0 ©)
ox? ox?

6Za(yx3,0,t) +k,Z(x,0,t) =0, w +k,Z(x,L,,t)=0 (7)

and for norma modes
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¥, (0)=0, ¥, (Ly) =0 ©®
0¥, (0) WAL Iy (L) ) g ®
ayz 1 ay ! ayZ 1 ay
0°¥, (0) 0 0"y (Ly) _ 0 (10)
ox> ’ ox?
3 3
0 T”i3(o) k,¥, (0) =0, aLgLY) k, ¥y (Ly)=0 ()
oy

where k; is the stiffness against rotation and ks is the stiffness against trand ation.
Secondly, we consider an elastic rectangular plate resting on a variable Pasternak elastic foundation and having elastic
supports at al its edges, the boundary conditions are given in [10] as

0’Z0y.1) _, 9Z(0,y.1) O°Z(Lyt) | GZ(L ) _

=0, 12
ox? toox ox? ' ox (12
2 2
0 Z(XZ,O,t) K, 0Z(x,0,1) _o, 0 Z(x,zLy,t) K, 0Z(x, L, ,t) 0 (13)
oy oy oy
3
% +K,2(0,y,t) = 0, %w;ux Vi) =0 (14)
X
3 3
% +Kk,Z(x,0,t) =0, % +k,Z(x L,,t)=0 (15)
and for normal modes
2 2
0 lez(o) _ k1 aani (0) — 0’ 0 \Pni ELY) _ k;]_ aLIjni (LY) =0 (16)
OoX oX OX OX
ok N (0) 0¥, (0 o0°¥_ (L v, (L
njz()_kl nl()ZO, njg Y)_kl nJ(Y): (17)
oy oy oy oy
¥, (0 WL
OX OX
0°¥, (0) 0’y (Ly)
— s+t kz‘Pnj (0)=0, T + kz‘Pnj (L,)=0 (19)
where k; and k; are the stiffness against rotation and the stiffness against tranglation respectively.
In order to solve equation (1), in the first instance, the deflection is written in the form [14]
Z(x,y.t) =D f (xy)s (1) (20)
n=1
where ¢, are the known eigenfunctions of the plate with the same boundary conditions. The ¢, have the form of
V¥, -wi =0 (21)
. Q’m
where W, = W (22)
Qn,n=1,2 3, ..., are the natural frequencies of the dynamical system and T(t) are amplitude functions which have to be
calculated.
Next, the equation (1) isrewritten as
W, %Z(x,y,t) o o* _5 Cay? L o3
, V*Z(x,y,t) + e = R“Latzaxz + atzayz}Z(x, y,t) [4x 3X° + X ]Z(x, y,t)
G 82 82 (23)
; —0[-13+12x - 3x? ] Z(x Y, t)+—°[12 13x + 6x% — X ]{+6y}z(x y,t)

+z{ M9 g (x—ctyd(y— s)—r(;zu ;a ; jZ(X y.d (x—ct)d(y - 9)]
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Theright hand side of equation (23) is written in the form of a seriesto have

o’ o' F
R{W+W}Z(x, y,t)—r—(’[4x—3x2 + x3]Z(x, y,t) o0

Go 2) 0. i} 2y 20,00
+r—{(—13+12x—3x ) Z(X, y,t)+(12 13x+ 6x° — x )(ax +ay ]Z(X yt)}
N |g 62 62 ) 62 _ 0
+Z{ . d(x-ct)d(y - S)—r(atz+20i oox G aXZJZ(X.y,t)d(X—Cit)Ol(y—S)}HZ;fn(X.y)@Jn(t)

i=1

Substituti ng equation (20) into equation (24) we have
F,
SR % YIS e (04 1y, (X0 Y)S 1 (0] - 2 [ax=3¢ X i 1 (x ¥)s, ()

n=1

G, | .
+r—[( 13+12x = 3% )j (%, Y)S (1) + (12-13x+ 6X" = X°)(j 0 (X, Y)S , (1) +] n,W(x,y)sn(t))}

+2[ 29 (x-a08 (Y9~ (618 10+ 255 1, (X8 1,0

+GT (X V)5, (1) )d(x-ct)d(y-s) ] }Zii 2 (X ¥)9, () (25)

00

SR 1 (6 )8 1 (O +F 1 (%08 10 O] [ax-3% + 5}, (x )5, ®
r

n=1

+%[(— 13+12x—3x2)f (X y)s L () + (12—13x+ 6X* — XS)(f o G YIS () +F (X, Y)s n(t))]

N

#2190y =9~ T (00908 0 0+ 208, (x5 1, 1)

i=1

6t (Y8 () H(x-cd(y=9) ] 1= 3F,(x Y)g,® (25)
where "
fo(XY) impliesm, fo(XY) irrpliesw,
' oX ' OX
£,,(xy) implies af;;‘y) £, (xy) implies ot (), (26)

ds , (1)

nt (0 |mpl|e£

S, ()
dt’

Multiplyi ng both sides of eguation (25) by ¢p(x,y) and integrating on area A of the plate, we have
Zj [F oo 6 9 5 (%108 0 () +F 1y (X5 ()8 1 (0]

- '%[4x— 3% + x3} SOV (X Y)s L () + %[(— 13+12x— 3x2)f Y (%, Y)s (1) 2

+(12-13x+ 6x2 =) 10 (% W (6 YIS o (©) +F 1y (6 W 5 (6 Y)S 1 (1))

#21ME )= 60y =9 =T (6 0498 1 0+ 268 1 (I 5 (6308 1,0

+¢ OO Y (% YIS, () H(x-ct)d(y-9) ] }dA=ijAf 2 (6 Y 5 (%, Y)g, (B)dA

Considering the orthogonality of ¢n(x,y), we have
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g.() == ZJ Rolf 0 06 WIF 5 06 108 1 (0 +F 1 (% V) 5 (%, Y)S 1 (O]

—r—"[4x—3x2 + x3} FOG Y (X Y)s () + %[(—13+12x—3x2)‘ (%Y (6 Y)s (1)

(12—13x+ X% =X N 1o (6 W, 06 YIS 2 () +F 1, 06 Y L (%, DS )]

Z[ i3 p (% y)d(x=ct)d(y - S)—f( (V) 5 (X Y)S e (1)

+2cf X(X, VI 5 (X YIS o (8) +C7F o (X W (X, V) (1) M (x—ct)d(y—s) ] }dA

where M= '[Af sdA

Using (28), equation (23), taking into account (20) and (21), can be written as

4

L y){wr”"

S () +S 4 (t):| = @ih {Ro[f q,xx(xa y)f p(X, y)s it (t)+f
—?[4x—3x2 + x3} Y (6 Y)s 4 (1) +%[(—13+12x—3x2)‘ a6 Y (X

(12134 65 = XN 4. 6 VI, (6 WIS o (©) +F 0y (G Y L (X Y)S )]+ ZN:[

oy OOV 5 (% Y)S (0 (O]

' Y)S ()

22, (x i (x-cDd(y-9)

M,
_Tl(f q (X, y)f p (Xv y)S q.tt (t)+ ZCif q,x(x‘ y)f p(Xl y)s q;t (t) + Cizr q,xx(X| y)f p(Xl y)s q (t) )j(X— Cit)d (y_ S) ] }dA
Equation (29) must be satisfied for arbitrary x, y and thisis possible only when

W,
S n,tt (t) +

S,0=— Z [ Rl a6 5 (X108 () 6 43y (% 0, (0,08 4 )]

- %[4x— 3x? + x3} OO (X Y)s () + %[(— 13+12x— 3x2} ax Y (6 Y)s 4 (1)

+(12-13x+ 6X% = XN oo O Y, (6 WIS o (0 +F o,y (W, 6 Y)S ()]

+Z 'gf o6y (x—c by (y - s)——( (% Y 5 (X Y)S g (1)

+ 26 4 (Y (6 YIS o (1) +C7F o (6 Y (X, Y)s 4 (1) J(x—ct)d(y—s) ] }dA
The system in equation (30) is a set of coupled ordinary differential equations.
Considering the property of the Dirac-Delta function and expressing it in the Fourier cosine series as

d(x—ct) = Li{h 2?‘ cos———— IPG cosﬂ}

X j=1 X X
and
d(y- s)——{1+ ZZcoskp kpy}
L Y LY

equation (30) becomes

pect dt? r

+Y cos JEC‘t P (j)+ Zz Z cos ij t cos? P (] k)}

=1 X j=1 k=1 >< Y

( i

Y

N ‘U‘-U» N ‘#

(28)

(29)

(30)

(31)

(32)

dzzt;(t)+a§sn(t)—rlni{Roa*d Sq(t)—{F‘) ] PZB:|S ® 2“: { zcos"psp (K)
)

icos@ P, (k)
k=1

= t © .
+Zcos]p' P (j)+ ZZZCOSJpCtCOSEP‘l (j,k) o () -2[ +20 Os@p (k)
j=1 Lx j=1 k=1 Lx LY k=1 Y
+Zcosjp' [ (J)+ZZZCOSJp' cos@ P (], k)]s (t)}}:Z—fMig ,(ct,9)
i |- j=1 k=1 L L i- N

(33)
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n

r
B = [ [ oM+ T oy, B = [ [ [ax—3x +° ] (x 9)F , (%, y) dyax,

« rlx fly " Ly Ly k
P=[" fn<x,y)fp(x,y)dydx, R =["[ Cosﬂfn(x,y)fp(x,y)dydx,

where af =

P ())= I J' cos f LWL y)dydx, PT(j k) = J' J' cos:_LcosL—f (x, Y)f ,(x,y)dydx,

X Y

P = [ [ o f () dydx P (R)=[ j cos pyfnx(x,y)fp(x,y)dydx,

P Lx ply X
R (=[] cosﬂfn,xx,y)fp(x,y)dydx, U =[) [ cos P eos onfnx(x,y)f,J(X.y)olyolx,

kp

P = [ [ o N (V) Ay P ()= j [, cos yfnxx(x N1 40 y) dy,

R ()= [ cos It (W), (x y)dydx, PGk = [ [ cos—coskL o 06 Y)F 5 (X, ) dly i,

Y

2A = 4h1 _3h2 + hs ) st :_13h4 +12h5 _3h6 +12(h7 + hs) _13(h9 + th) + 6(h11 + h12) - (h13 + hl4)

hy = [ [ L (% W, (% y)axdy, b, = [ 753 (%, y)F 4 (%, v)axdy, by = [ [, (x, y)F , (x, y)dxdy

h = [ [ F W (ko yaily, by = [ [ (0, ()i, by = [ 73, (%, y)F  (x, y)exely

hy = [ [ o 06, 06 )XY, Ry = [ 8 (W, (%, )y, By = [ [ XE L (%Y, (% Y)dxdy

o= [ [ X6 0 (X (% V)X by = [ [ X3 o (% ( )y, By, = [ [ 7%, (% F (%, Y)dxdy
= [ X W oY)y and by, = [ [ (6 F (X, )y

The second order coupled differential equation (33) is the transformed equation governing the problem of arectangular plate
on a Pasternak elastic foundation with stiffness variation.
on(x,y) are assumed to be the products of the functions wyi(x) and yrj(y) which are the beam functions in the directions of x
and y axes respectively [15, 16]. That is

f n(X1 y) =y ni (X)y nj (y) (34)

these beam functions can be defined respectively, as

L(X)=sin=n% QX A, cos 2 X B, sinh 2% +C, cosh 2% (35)
LX LX LX X
and
Q, . Q. Q.
5 () =sin Y, A, cos 2 Y +B, snh--1Y 4 C, cosh—" Y (36)
LY Y LY Y

where Ani, Anj, Bni, Brj, Cii and Cy; are constants determined by the boundary conditions. Qi and Q; are called the mode
frequencies.

In order to solve equation (33) we shall consider only one mass M traveling with uniform velocity c along theliney = s. Thus
for the single mass M equation (33) reducesto
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dzs”(t)+a§sn(t)—1Z{Ro ) d’s (t)—crao{':"P;A—P;B}sq(t)—F{ [ +Zcoskpsp*(k)

dt? més G,
DR ' d’ (t e -
+Yoos P 23> cosIP% cos Py k)j ) %(P“+ZCoskps P (k) @7
j=1 k=1 Ly L, 2 3 Ly
> - 2 & ' ds (t .
+Zcosjpd P (J)+ZZZCOS”)Ct cos@P4 (j,k) ()+2c [+Zcoskpsp (k)
j=1 Ly =1 k=1 Ly L, 2 o L,
= jpCt _wer . 2L M
eos g (423 G0 |- W, @, @
j=1 I->< j=1 k=1 v nr
where o__ M (38)
LyL,r

Equation (37) is the fundamental equation of our problem. We shall discuss two cases of the equation (37) namely; the
moving for ce and the moving mass problems.

Casel: Moving Forceproblem

An approximate model of the differential equation describing the response of a rectangular plate resting on a variable Bi-
Parametric (Pasternak) elastic foundation and traversed by a moving force would be obtained from equation (37) by setting
r’'=o.

Thus, setting I'° = 0, equation (37) reducesto

d? (t) d’s,) G - . Mg

2 +als (t — s () =—¥,(ct)¥, (s 39
dtz () RO; m dtz ;m G 2A q() nr pl( ) pJ() ( )

An exact analytical solution to equation (39) is evidently not possible. Consequently, the approximate analytical solution

technique, which is a modification of the asymptotic method of Struble [16] shall be used.

First, we neglect the rotatory inertial term and rearrange the equation (39) to take the form

d%s . () - Fo - = . Fo Mg
a‘-T'|P,——P s (t)-T P,—P,s , t)=—Y¥Y_(c)¥_ (s 40
d 2 |: n ( 2B GO 2A]:| n() qzl|: 2B GO 2A q() nr p|( ) pJ() ( )
g=n
where F*:& (41)
rm

By means of this technique, one seeks the modified frequency corresponding to the frequency of the free system due to the
presence of the shear modulus Go. An equivalent free system operator defined by the modified frequency then replaces
equation (40). Thus, we set the right hand side of (40) to zero and consider a parameter A" < 1 for any arbitrary ratio I' *
defined as

*

g (42)
1+1T
sothat T =1"+0( ") (43)
Thus, the homogeneous part of equation (40) can be replaced with
ds (t

dz()+gs =0 ”

where
* * F *
I (PZB - PzA]
GO

gs=a, - (45)

2a n
isthe modified frequency due to the effect of the shear modulus of the foundation. It is observed that when A" = 0, we recover

the frequency of the moving force problem when the shear modulus effect of the foundation is neglected
Using equation (44), equation (39) can be written as

Journal of the Nigerian Association of Mathematical Physics Volume 29, (March, 2015), 65 — 80

71



On the Vibrationsunder Moving... Awodola J of NAMP

2 d%s (t
olsnz(t)+gsZS 0 dsz(t) PZ S () Mg\P RECE )
dt d q=1
q#n
where | o= RO
P

We then seek the modified frequency corresponding to the frequency of the free system due to the presence of the effect of
rotatory inertia correction factor Ro. An equivalent free system operator defined by the modified frequency then replaces
equation (46). To this end, the homogenous part of equation (46) is rearranged to take the form

2 2 | P e dis(t
ds“z(t) s (1)-—2 Z Z()=0 (47)
dt> 1-1,P 1-1 P& d
g=n

Consider the parameter &* < 1 for any arbitrary ratio defined as

Lo

p

1+Ip

(48)

It can be shown that

* * 2
| ,=e +o(e ) (49)
Following the same argument, equation (47) can be replaced with

d%s (t
2:01g25,0 -0 50)
where Qg = g{l+ © ;1 } (51)

represents the modified frequency corresponding to the frequency of the free system due to the presence of the rotatory
inertia. It is observed that when £" = 0, we recover the frequency of the moving force problem when the rotatory inertia effect
is neglected.

In order to solve the non-homogenous equation (46), the differential operator which acts on Ty(t) is replaced by the
equivalent free system operator defined by the modified frequency y«. Thus the moving force problem (39) is reduced to the

non-homogeneous ordinary differential equation given as
d’s,(t)
w 94S o (1) = Ky ()P (9) (52)
where
K -Mg (53)
nr
Using (35), equation (52) can be written as
2
d Zt”z(t) +05s () =K, ¥, (9)lsina w1+ A, cosa ;t+ B, sinha ;t+C, cosha pit] (54)
where
Q,c
X

When equation (54) is solved in conjunction with the initial conditions (3), one obtains expression for on(t). Thus, in view of
equation (20), one obtains
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Z(X y,t) ZZ g [; T(S) ]{[gsf apl][cplgs‘ (Coma t—COSgét)

B, (s sinha jt-a, sing )] +[9s +a ;1[A,04 (cosa ;t - cosgyt) (56)

. . . Q Q ., Q
—(a,Snggt—gy sina ,t)] J[sin L”'X+Ani coS L”'X+Bnismh nX

X X X

' Q. Q. Q. Q.
nlxl[sin njy.yAnj cos "Jy.:,.anSinhLy""an COShLLy]

X Y Y Y Y
as the transverse displacement response to a moving force of a rectangular plate resting on variable non-Winkler (Pasternak)
elastic foundation.
Casell: Moving Mass problem
In this section, we seek the solution to the entire equation (37) when no term of the coupled differential equation is neglected.
Evidently, an exact analytical solution to equation (37) does not exist; an analytical approximate method is therefore
desirable. To this end, the approximate analytical solution method of Struble that has been used to tackle this form of coupled
differential equation shall be employed to treat equation (37). We take note that, neglecting the terms representing the inertia
effect of the moving mass we obtain equation (46) and then equation (52). The homogeneous part of this equation can be
replaced by a free system operator defined by the modified frequency v«, due to the presence of the effects of rotatory inertia
and the shear modulus of thefoundation Thus, equation (37) can be rewritten in the form

I:l+2:[ +Zcos—P (k) Jp P j)+ZZZCOSIIE)C kpSP;”(J k)ﬂdzs”(t)

j=1 k=1 X dtz
dec
s
=¥

+[g§f +2eT( Zcos—P (k)JchosJp P’ (j)+ZZZCOS f%os?&m‘(] k)ﬂsn(t)

=1 k=1 X

Q
+C, cosh

[ +ZcosL—P (k)+ZCOSJEtPA J)+222cos 'ipsﬁ'*x(j,k)]¥

=1 k=1 ¥

*ZH**ZCOS*P (|<)+ZCOst R () +ZZZcostthos$ 2 (] k)]dsq(t)
=1 k=1 v
g=n

dtZ
4({ +Zcos Sp (k) (1) + 23, Y cos P cos"L”sP"“( k)jds“(t)
+2c [+Zcoska (k)+Zco SLLTS (J)+ZZZcosttho ks p, R (], k)]s ()
2 L, Ly 1 kL
e.ol,L
:%Tm (€)', (9) €YY
M
where e, = (58)
Ly L,r

Furthermore, for our plate model, resting on variable non-Winkler elastic foundation and traversed by a moving mass, we
rearrange equation (57) to take the form

dzztnz(t)+lesR2(t) dsn(t)+gsf+eng(t)Sn( () R %a®
+e R (t) dt 1+e R (t) SRl(t) dt

& (59)

_ esgLX I-Y

+R0s,O)= i R g o @Fa
where
R(t)= { +ZCOS—P (k)+zco 1Pl o (j)+ZZZCO cos‘i'isp****(J k)} (60)
R,(t) = {é‘ i os—P (k)+2cos P (J)+ZZZcoscoslfSP ***(j,k)} (61)
Rs(t)_ { cos—P (k) + ZcosL P (j)+ZZZCOSJfCtCOST_pSP;m(j,k):| (62)

Journal of the Nigerian Association of Mathematical Physics Volume 29, (March, 2015), 65 — 80

73



On the Vibrationsunder Moving... Awodola J of NAMP

Going through the same arguments and analysis as in the previous case, considering the homogeneous part of eguation (59),
the modified frequency corresponding to the frequency of the free system due to the presence of the moving mass M is
obtained and an equivalent free system operator defined by the modified frequency then replaces equation (59).

Thus, equation (59) becomes

d’s . (t L, L

8220 s bzs 0 =Pt v (v, (9 ©

where &5 has been written as a function of the massratio po and

by =gy|1-2 Rl—&z (64)
2 O«

is the modified frequency corresponding to the frequency of the free system due to the presence of moving mass. Here, it is
remarked that this modified frequency has in it the effects of the shear modulus of the foundation and rotatory inertia. It is
observed that when po = 0 in equation (64), we recover the frequency of the moving force problem of the same dynamical

system.

Using (35), equation (63) becomes

d’s ,(t : :

—’;()+ bgs () =G, ¥, (s)[sina ;t+ A, cosa ;t+ B, sinha ;t+C cosha ] (65)
L,L

where G, = MOxty (66)
m

It is noticed that equation (65) is analogous to equation (54) with B¢ and Gq replacing ys and K respectively. Therefore, one
obtains

o o G,¥.(s)
Z(x,y,t) = zz ﬁ {[bj —a3][C, by (cosha ;t—cosbt)

ni=lnj=1 i sf pi

+B, (bg sinha ;t—a ;sinbgt)]+[bs +a;][A,;bg (cosa ;t —cosbt) (67)

QX QX

(@, sinbyt—b, sina t)] J[sin=2X 4 A, cosQL”iX+ B, sinh

X X X
Q - X . Q ni Q nj . Q nj Q nj
+C,; cosh—"=][sin ’y+Aﬂj cos Jy+Bm.smh ’y+an cosh Jy]
LX I‘Y LY Y LY
Equation (67) is the transverse displacement response to a moving mass of a rectangular plate resting on variable Pasternak

elastic foundation and having arbitrary edge supports. The constants Ani, Agi, Anj, Api, Bni, Bpi, Brij, B, Cri, Cpiy Crj and Cyy are
to be determined from the choice of the end support condition.

4.0 Discussion of the Analytical Solutions
Here, we shall examine the phenomenon of resonance. From equation (56), the rectangular plate on a variable Pasternak
elastic foundation and traversed by a moving force encounters a resonance effect when

Q o C (68)
Og = L,
while equation (67) reveals that the same plate under the action of a moving mass reaches the state of resonance whenever
Q o C
by = (69)
I—X
m R
where :g{ —%[Rl——fﬂ (70)
O«
Equations (68) and (69) imply
M| p o Re | 2sC (71)
941173 [Rl géﬂ_ L

Journal of the Nigerian Association of Mathematical Physics Volume 29, (March, 2015), 65 — 80

74



On the Vibrationsunder Moving... Awodola J of NAMP

Consequently, for the same natural frequency, the critical speed (and the natural frequency) for the moving mass problem is
smaller than that of the moving force problem. Thus, resonance is reached earlier in the moving mass system than in the
moving force system.

5.0 Ilustrative Examples

a. Rectangular plate elastically supported at edgesy =0, y = Ly with simple support at edgesx = 0, X = Lx.

At x = 0 and x = Lx, the plate is taken to be simply supported and at the edgesy = 0 andy = Lv, it is taken to be elastically
supported.

Using the conditions (4-11) in equations (35) and (36), the following values of the constants and the frequency equation are
obtained for the elastic edges.

Q, i rQ, nQ, .
—kir, |SiNQ,,; +| Kk, + cosQ, ———sinhQ_ +kr, coshQ
C LY } LY J L J J

Y

nj

_ Q, rsQ, Q,
krsnQ, - cosQ; + -k, |[sinhQ; + —kyry |coshQ
Y LY I‘Y
rZQij . Qr31j . 1Qr31j
| =5 +k, |SNQ; +| —5- =K, I, [cosQ; —K,r, Sinh Q) ———=coshQ,,
_ LY LY Y 72
YeH o5 r,Q3 ' (2
= sinQ +k,r, cosQ +{;‘+ kzrg}sinhan +{ A +k2}coshQnj
L L
Y Y Y
A, =nC, +r, and B, =r,C, +r1, (73)
where
Q 2, Q) —- 2k, Q.
— tkk, — =
LY . I‘Y LY
r = 4 ; rzzr and r, = P .
—kk, — ¥ _kk —¥_kk
L4 L¢ 172 L¢ 172
Equation (72) when ssimplified yields
tanQ,, =tanhQ (74)
which istermed the frequency equation for the elastic edge, such that
Q, =3927, Q, =7.069, Q,=10.210, ... (75)
For the simple edges, it can be shown that
An=0,By=0,Cy=0,and Qy = i (76)
Similarly, Ap =0, Bp =0, Ci =0, and Qp = pirt (77)

Using (72), (73), (75), (76) and (77) in equations (56) and (67) one obtains the displacement response respectively to a
moving force and a moving mass of a simple-elastic rectangular plate resting on a variable Pasternak elastic foundation.

b. Elastic support at all edges.
Using the conditions (12-19) in equations (35) and (36), one abtains

Fi”ﬂ—klrz(i)}gngm{k 4 2002y }cosg (0

C. - X X
kr(@)snQ, - (:_)Q”' cosQ {rﬁ‘(l)g’“ —kl}sinhQni +ﬁ_2“'
X

X

AT Gnh Q) + k1 (i) coshQ

— k1, )} coshQ
X
3

_ ; _
{rz(')g k}st {gﬁ krU)}cosQ kzrl(i)sinhQni—rl(:_)3Q”‘coshQni

3
_ Lt S . . (™
7r e, snQ,; +k,r,(i)cosQ +ﬁ33”‘ +k2r3(i)}sinhQni +{r 52, +k }coshQni
A, =r@)C, +r,() and B, =r,(i)C,; +r1,(i) (79)
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4 3
Q4ni +klk2 _ 2kl§2ni 2k2£2ni
. ] . Ly . Ly
r,(i) :17 ;o L) =——— and r,(i) = ———.
J_klkz J_klkz J_klkz
L% L% L%
and
Q. r,(j))Q, r (),
{ - —klrz(j)}sinan {kﬁ (1) };osgznj 024 ghha, ke (j)coshar,
C — Y Y Y
k N\ rl(j)an ra(j)an : an :
kr(j)snQ, - cosQ; + -k, |SnhQ,; + —kiry(]) |coshQ
Y Y LY (80)
r (1) . Q; : o ()
- 3 +k, |SnQ; + LT_kzrz(J) cosQ,, —k,r(j)snhQ; — 37— coshQ
Y Y Y
- O3 3 O3 !
rl(])an . o) k . Q an k . hQ r3(J)an k ShQ
3 sSnQ; +Kk,r(j)cosQ,, + L—3+ of3(J) [sinhQ,, + 37— +k, |co i
Y Y Y
Ay =1())Cy +1.(]) and By =r5(J)Cy +1.(]) (81)
where
Q Kk 20 -2k, Q2
. e . L2 . L
rl(J):g;li; rz(J):Q47Y and r,(j) = o .
0 _kk N kk N _kk
L:l( 172 L:‘( 172 L:‘( 172
Equations (78) and (80) when simplified yield
tanQ , =tanhQ (82)
and
tanQ; =tanhQ (83)

Using (78), (79), (80), (81), (82) and (83) in equations (56) and (67) one obtains the transverse-displacement response
respectively to a moving force and a moving mass of an elastically supported rectangular plate resting on a variable Pasternak
elastic foundation.

6.0 Numerical Calculationsand Discussion of Results

For the calculations of practical interests in dynamics of structures and engineering design for the elastically supported plate
resting on variable Pasternak elastic foundation, a rectangular plate of length Ly = 0.914m and breadth Lx = 0.457m is
considered. It is assumed that the mass travels at the constant velocity 0.8123m/s. The values for E, Sand I" are chosen to be
2.109x10%g/m?, 0.4m and 0.2 respectively. For various values of the foundation modulus Fo, Shear modulus Go and the
rotatory inertia correction factor Ry, the deflections of the elastically supported plate are calculated and plotted against time t.
a. Simple - elastic rectangular plate on variable Paster nak foundation.

Figures 6.1 — 6.3 present the responses of the plate ssimply supported at the edges x = 0 and x = Lx and elastically supported
attheedgesy=0andy =Ly.

Figure 6.1 displays the effect of rotatory inertia correction factor Rq on the transverse deflection of moving force for simple—
elastic rectangular plate, while Figure 6.2 displays the effect of Shear modulus Go on the transverse displacement of moving
mass for simple-elastic plate. It is shown that as both Ry and Gp increase the amplitude of the deflection decreases
respectively for the simple-elastic rectangular plate resting on variable Pasternak elastic foundation.

Journal of the Nigerian Association of Mathematical Physics Volume 29, (March, 2015), 65 — 80
76



On the Vibrationsunder Moving... Awodola J of NAMP

0.000000025

0.00000002 4

0.000000015 -

0.00000001

0.000000005

Z(x,y,t) (m.)

-0.000000005 -

-0.00000001 -

-0.000000015 -

-0.00000002

Fig.6.1: Deflection profile of simple-elastic plate on variable Pasternak foundation and
traversed by moving force for various values of Ro.
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Fig.6.2: Deflection profile of simple-elastic rectangular plate resting on variable Pasternak

foundation and traversed by moving mass for various values of Go.

For the purpose of comparison, Figure 6.3 compares the displacement curves of moving force and moving mass for the
simple — elastic plate for fixed Fo, Go and Ro. It is evident from the graph that the response amplitude of a moving mass is
greater than that of a moving force problem.
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Fig.6.3: Comparison of the deflections of moving force and moving mass cases for simple-

elastic rectangular plate resting on variable Pasternak foundation.
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b. Elastically supported rectangular plate on variable Pasternak foundation.

The responses of the plate elastically supported at all its edges are presented in Figures 6.4 — 6.6. It is observed in Figures 6.4
and 6.5 that as the values of Gpand Ry increase the deflection amplitude of the plate decreases for both cases of moving force
and moving mass respectively. Figure 6.6 compares the displacement response of the moving force and moving mass for an
elastically supported rectangular plate for fixed values of Fo, Go and Ro. It is evident that the displacement response of the
moving mass problem is greater than that of the moving force problem.
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Fig.6.4: Displacement response of elastically supported rectangular plate resting on variable
Pasternak foundation and traversed by moving force for various values of Go.
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Fig.6.5: Deflection profile of elastically supported plate on variable Pasternak foundation and
traversed by moving mass for various values of Ro.
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Fig.6.6: Comparison of the deflections of moving force and moving mass cases for elastically
supported rectangular plate resting on variable Pasternak foundation.
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7.0  Conclusion

In this work, the problem of the dynamic response to moving concentrated masses of elastically supported rectangular plates
on variable Pasternak elastic foundations has been studied. The closed form solutions of the fourth order partia differential
equations with variable and singular coefficients governing the rectangular plate is obtained for both cases of moving force
and moving mass using a solution technique that is based on the separation of variables which was used to remove the
singularity in the governing fourth order partial differential equation and to reduce it to a sequence of coupled second order
differential equations. The modified Struble’s asymptotic technique and the methods of integral transformation are then
employed to obtain the analytical solution of the two-dimensional dynamical problem. These solutions are analyzed and
resonance conditions are obtained for the problem.

The analyses carried out show that, for the same natural frequency, the critical speed (and the natural frequency) for the
moving mass problem is smaller than that of the moving force problem. Thus, resonance is reached earlier in the moving
mass system than in the moving force system. Thus, the moving force solution is not an upper bound for the accurate solution
of the moving mass problem.

The resultsin plotted curves show that as the rotatory inertia correction factor increases, the response amplitudes of the plates
decrease for both cases of moving force and moving mass problem. When the rotatory inertia correction factor is fixed, the
displacements of the elastically supported rectangular plates resting on the variable Pasternak elastic foundations decrease as
the shear modulus increases. The effect of shear modulusis more noticeable than that of the foundation modulus.

It is shown further from the results that, for fixed values of rotatory inertia correction factor, foundation modulus and shear
modulus, the response amplitude for the moving mass problem is greater than that of the moving force problem implying that
resonance is reached earlier in moving mass problem than in moving force problem of the elastically supported rectangular
plate resting on variable Pasternak elastic foundation. Also, an increase in the shear modulus results in an increase in the
critical speed of the moving load; this shows that risk is reduced when the shear modulus increases. The same result obtains
for an increase in both foundation modulus and rotatory inertial correction factor.
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