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Abstract

Differential equations can be solved using many methods that are generally
accepted in Mathematics. However, it is believed that one method should be more
accurate, efficient, sufficient and unique than the other. Thus; solutions of First
order Differential Equations (FOD’s) with Initial Value Problems (IVP’s) by the
three different methods; Picard, Euler and Modified Euler Methods (PEMEM) will
be exercised. As such numerical computational algorithm, convergence rate,
approximation errors and uniqueness will be investigated.
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1.0 Introduction
Parker and Sochacki theorem on Existence and Uniqueness states that if both ( , ) and are continuous in some region

around the point ( , ) then there is a unique solution to the IVP [1]
′ = ( , )( ) = ( ) (1)

Valid in some interval around . In other words, if the slope field is sufficiently smooth at each point, then there is unique
integral curve passing through any given point. How do we prove such a theorem? There are two methods, but both use a
sequence of approximate solutions and prove that these approximations converge at least in a small interval around . One
method is due to Euler and is quite simple to use in practice: one simply ‘’connect the dots’’ in the slope field. The
disadvantage to this method is that it only gives an approximation ‘’at the dots’’. In other words, Euler’s method only
approximates the values of the solution at a finite list of points. It does not give us formula for an approximate function at
every point. However, Euler’s method has the advantage that its accuracy can be improved with only minor modifications.
Foremost applications some version of an improved Euler method is ideal. A second method is due Picard. The Picard
method gives a sequence of functions which converges to the solution. Picard’s method is far less efficient computationally
than Eulerian methods, but it introduces an important technique that will be useful for the error analysis of Eulerian methods.
An approximation method is useless without an estimate of the error. Picard’s method begins by transforming the pair of
conditions that are the IVP into a single integral equation. Estimates with integrals are fairly straightforward.Parker and
Sochacki (2000) showed that a large class of ODE’s could be converted to polynomial form using substitutions and using a
system of equation. While this class of ODE’s is dense in the analytic functions, it does not include all analytic functions.
They also showed one can approximate the solution by a polynomial system and the resulting error bound when using these
approximations [2]. Parker and Sochacki also showed that if ≠ 0, one computes the iteration as if = 0 and then the
approximated solution to the ODE is y ( + ). This algorithm is called the modified Picard method (MPM). While the
MPM algorithm easily computes the approximations, since it only depends on calculating derivatives and integrals of the
underlying polynomials, it has some limitations. They also showed how to handle the PDE including the initial conditions.
However, the method requires the initial conditions in polynomial form. While in some PDE’s this is the case, many time
one computes a Taylor polynomial that approximates the initial condition to high degree.
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This results in a substantial increase in computational time. For some problems, the initial condition is not explicitly known,
but only a digitized form of the data.For example, in image processing, most of the data have already been digitized and we
have to interpolate the data using polynomials in other to apply the Modified Euler Method (MEM). If this is done, the
resulting polynomial may not effectively approximate the derivatives of the original function. The polynomial approximation
might contain large number of oscillations that do not represent the underlying data accurately. Finally, we would also like to
handle boundary conditions in a simple manner, but keep the extensibility of the Modified Euler Method (MEM), which does
not allow for a boundary condition.Picard’s method, sometimes called the method of successive approximations, gives a
means of proving the existence of solutions to the method of DE. Emile Picard, a French Mathematician, who developed the
method in the early 20th century. It has proven to be so powerful that it has replaced the Cauchy- Lipchitz method that was
previously employed for such endeavours.
Picard developed his method while he was a Professor at the University of Paris. It arose out of a study involving the Picard-
Lindel of existence theorem that had been formulated at the end of the 19th century. Picard’s method is utilized in similar
situations as those that employ the Taylor series method. It is a method that converts the differential Equation into an
equation involving integrals.Some DE’s are difficult to solve, but Picard’s method provides a numerical process by which
solution can be approximated. The method consists of constructing a sequence of functions that will approach the desired
solution upon successive iteration. It is similar to the Taylor series method in that successive iterations also approach the
desired solution to a DE. Picard’s method allows us to find a series solution about some fixed point. The number of terms or
iterations that is required to reach the desired solution depends on how far from the chosen point the solution must apply. The
closer the chosen point to the known point, the fewer terms that are needed. It can be shown that the series is convergent and
provides a solution to the differential equation of interest although the number of terms will depend upon how rapidly the
series converges as well[3].The details of Picard’s method involve starting with an initial value problem and expressing it as
an integral equation. This is done by integrating both sides with respect to one variable from a defined starting point to a
defined termination point, . The initial value given is substituted into the resulting integral equation.  This yields the
simple fraction evaluated at the initial value summed with the remaining integral, after a simple substitution and appropriate
arrangements of the limits on the remaining integral, the result can be used to generate successive approximations of a
solution to the initial equation. The number of iteration steps is determined by two factors; how quickly the series converges
and how far away from the point of interest is the value given in the initial problem [4].The term ‘’Picard iteration’’ occurs in
two places in undergraduate mathematics. In numerical analysis it is used when discussing fixed point iteration for finding a
numerical approximation to the equation = ( ). In differential equations, Picard iteration is a constructive procedure for
establishing the existence of a solution to a DE ′ = ( , ) that passes through the point( , )[5].Picard iteration is a
widely used procedure for solving the nonlinear equation governing flow in variably saturated porous media. The method is
simple to code and computationally cheap, but has been known to fail or converge slowly [6].Picard showed that an entire
function can omit not more than one finite value without being reduced to a constant function and if there exist at least two
values, each of which is taken on only a finite number of times, the function is a polynomial [7]. Otherwise the function takes
on every value, other than the exceptional one, an infinite number of times. His beautiful proof of what is known as Picard’s
Big [8].Picard iteration is a special kind of fixed point iteration. We call a fixed point of a function if x = f( ).Suppose a
sequence is defined by: = ( ), = [ ℎ ]. Often you will find that converges to a
fixed point of . The process of taking the successive terms of such a sequence is called iteration. We are going to apply this
iterative idea to differential equations and we come up with the Picard method. Basically, we are going to apply fixed point
iteration to a whole differential equation. The goal here is to use Picard method to find a solution to the given FODE with
IVP of the form in (1) ODE frequently occurs as mathematical models in many branches of science, engineering and
economy. Unfortunately it is seldom that these equations have solutions that can be expressed in closed form, so it is
common to seek approximate solutions by means of numerical methods [10]; nowadays this can usually be achieved very
inexpensively to high accuracy and with a reliable bound on the error between the analytical solution and its numerical
approximation. In this section we shall be concerned with the construction and the analysis of numerical methods for FODE

of the form in (1). For the real – valued function y of the real variable , where ′ = . In oder to select a particular integral

from the infinite family of solution curves that constitute the general solution to (1), the FODE will be considered in tandem
with an initial condition: given two real number  We seek a solution to (1) for > ∋ ( ) = . The FODE (1) together
with the IVP is called FODE with IVP. In general, even if ( , )is a continuous function, there is no guarantee that the IVP
in (1) possesses a unique solution. Fortunately, under a further mild condition on the function , the existence and uniqueness
of a solution to (1) can be ensure: the result is encapsulated in the next theorem[11].

2.0 Material and Method
3.0 Picard’s Method
This is the first method we shall consider. This deals with successive integration as we progress from one step to another.
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The details of Picard’s method involve starting with IVP and expressing it as an integral equation. This is done by integrating

both sides with respect to one variable from a defined starting point to a defined termination point, 10 xtox . The initial

value given is substituted into the resulting integral equation. This yields the function evaluated at the initial value summed
with the remaining integral. After a simple substitution and appropriate arrangements of the limits on the remaining integral;
the result can be used to generate successive approximations of a solution to the initial equation. The number of iteration
steps is determined by two factors: how quickly the series converges and how far away from the point of interest is the value
given in the initial problem[12]. The equations  (equation 4) as the equivalent solution to equation (1), will be used for the
values of = 0, 1, 2.. in determining the solution to (1).

4.0 Picard’s Method of Successive Approximation
Considering the FODE with the IVP in (1), then the solution to equation (1) is equivalently given as the integral equation:= + , ( ) (2 )≡ ( )( ) = + , ( ) (2 )
Proof
In this method, the value of the dependent variable is expressed as a function of .
To show that (2a) and (2b) are the equivalent integral solution of equation (1) it suffices that:
Let ′ = ( , ) be the FODE with IVP y( ) = e from equation (1)

Since ( ) is a differentiable function in some neighbourhood of then, , ( ) is a continuous function of x in some
neighbourhood of . Thus; it is integrable in this neighbourhood of . Now, if we integrate (1) between and , we get :ie dydx = f(x, y) with the initial condition x = x , y(x ) = y⇒ dy = f(x, y) dx⇒ dy = f(x, y) dx⇒ [y] = f(x, y) dx⇒ y − y = f(x, y) dx⇒ y(x) = y + f(x, y) dx (3 )
This equation satisfies the initial condition in equation (1) as( ) = + ( , ) (3 )
The value of is replaced by in the RHS of equation(1) and assuming the solution is ( )( ), then the first approximation
of becomes:y ( ) = + ( , ) (3 )
Again ( )( ) is replaced in (3c) from (3b) and the second approximation ( )( ) is obtained as:y ( ) = + , ( )
This way, the following approximations of are generated.y ( ) = + , ( )y ( ) = + , ( )
--------------------------------------ie: y (x) = y + f x, y( ) dx (4)
Hence equation (3b) and (4) gives theProof of (2a)and the nthiteration  for the Picard’s Method (PM) respectively.

Journal of the Nigerian Association of Mathematical Physics Volume 29, (March, 2015), 29 – 48



32

Comparison of Numerical Solution of… Lanlege, Wachin, Garba and Aluebho J of NAMP

Thus a sequencey ,y … y of is generated in terms of . Equation (4)will be used for = 0, 1, 2.. in determining the
solution to any first order DE of the form inequation (1).
Problem 1Use Picard′s Method (PM) to solve the differential equation:dydx = x + y (5)with initial conditiony(0) = 0. Also find the values of y(0.1) and y(0.2)
Solution
From equation (5):= +by the initial condition ∶y(0) = 0.ie y(0) ⇒ value of y at x = 0ie y = 0 when x = 0 Initial Condition (IC) , wheref(x, y) = x + y by equation (1)
So, by equation (4):ie: y (x) = y + f x, y( ) dx
Suppose n = 1 since ∈ , then;by equation (4) ⇒ y (x) = y + f x, y( ) dx becomes:ie y (x) = y + f x, y( ) dxsince y = 0 and x = 0 by the Initial Condition (IC) then;⇒ y (x) = 0 + f x, y( ) dx⇒ y (x) = y + (x + y ) dx⇒ y (x) = 0 + (x + 0) dx , y = 0 and x = 0

= x dx = x2 + 1 = x3evaluating the interval⇒ y (x) = x3 − (0)3= x3 − (0)3= x3 − 0= x3hence y (x) = x3 (6)again when n = 2 then (4) becomes:⇒ y (x) = y + f(x, y ) dx⇒ y (x) = y + f(x, y ) dx; where f(x, y ) = x + y ,
y = 0 and y (x) = x3 by (6)
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⇒ y (x) = y + (x + y ) dx
= 0 + x + x3 dx
= x + x3 dx
= (x ) dx + x3 dx; x = 0
= x2 + 1 + x3(3 + 1)ie y (x) = x3 + x3.4 = x3 + x3.4= x3 + x3.4 = x3 + x3.4 − (0)3 + (0)3.4= x3 + x3.4 − [0 + 0] = x3 + x3.4 − [0] = x3 + x3.4hence y (x) = x3 + x3.4 (7)again when n = 3 then (4) becomes:⇒ y (x) = y + f(x, y ) dx⇒ y (x) = y + f(x, y ) dx⇒ y (x) = y + f(x, y ) dx; where f(x, y ) = x + y ,

y = 0 and y (x) = x3 + x3.4 by (7)⇒ y (x) = 0 + (x + y ) dx
= 0 + x + x3 + x3.4 dx= x + x3 + x3.4 dx= (x ) dx + x3 dx + x3.4 dx; x = 0= x2 + 1 + x3(3 + 1) + x3.4(4 + 1)ie y (x) = x3 + x3.4 + x3.4.5 = x3 + x4 + x3.4.5= x3 + x3.4 + x3.4.5= x3 + x3.4 + x3.4.5 − (0)3 + (0)3.4 + (0)3.4.5= x3 + x3.4 + x3.4.5 − [0 + 0 + 0] = x3 + x4 + x5 − [0]= x3 + x3.4 + x3.4.5
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hence y (x) = x3 + x3.4 + x3.4.5 … (8)
RemarkEquation (8) gives y expressed as a power series in x. By choosing a desired valuefor x = 0.1 into (6), (7)and (8) then ∶now; by evaluating equation (6) for x = 0.1 as:ie when x = 0.1⇒ (0.1) = (0.1)3 = 0.0013 = 3.333333333 × 10∴ (0.1) ≅ 0.0003 (9)gain when x = 0.2 then (3) becomes:by (6): y (x) = 3⇒ (0.2) = (0.2)3= 0.0083= 2.666666666 × 10∴ (0.2) ≅ 0.0027 (10)(7): ( ) = 3 + 3.4 , = 0.1( ) = (0.1) = (0.1)3 + (0.1)3.4 = 0.0013 + 0.00013= [3.333333333 × 10 + 3.333333333 × 10 ]

  4
2 10666666667.31.0 yie
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Table 1 : Result generated From Picard Method (PM) for the step size h =0.05, for the values of = 0.1 0.2= 0.1 = 0.2
1 0.0003 0.0027

2 0.0004 0.0028

3 0.0003 0.0028

Analytical Solution 0.0003 0.0028
Associated Error 0.0000 0.0000

5.0 The Euler’s Method (EM)
This is the most simple but crude method to solve differential equation of the form in (1). Considering the FODE with the
IVP in (1), then the solution to (1) is equivalently given as finding solution to the integral equation:y = f(x, y)y(x ) = y (IVP) (15a)= + ℎ ( , ), = 0,1,2, … (15 )
Proof
To show that equation (15b) is the equivalent solution to any first order DE of the form in equation (1) by Euler Method
(EM) also suffices that:
Let = ( , ) be the FODE with IVP y( ) = (15 )⇒ = ( , )= ( , )

Let = + ℎ, where ℎ is small. Then by Taylor’s series= ( + ℎ) = + ℎ + , where lies between+ ℎ ( , ) + ℎ2 ( )
If the step size ℎ is chosen small enough, then the second-Order term may be neglected and hence is given by:⇒ = + ℎ ( , )⇒ = + ℎ ( , )⇒ = + ℎ ( , )
And so on
In general,= + ℎ ( , ), = 0,1,2, … (15 )where x = x + kh (15d)
Thus: equation (15a) gives the(n + 1)th iteration , hence the Proof of Euler Method (EM).
This method is very slow. To get a reasonable accuracy with Euler’s method, the value of ℎ should be taken as small.It may
be noted that the Euler’s method is a single-step explicit method. According to Atkinson et al., (1989) ‘’ Euler method is a
first-order numerical procedure proposed by Leonhard Euler for solving ODE’s with IVP’s’’. It is the most basic explicit
method for numerical integration of ODE’s and is considered as the simplified Runge-Kutta method
Problem 2Find the values of y(0.1) and y(0.2) from the following differential equation= +with initial condition(0) = 0. ℎ (0.1) (0.2)
Solution 2let h = 0.05, x = 0; y = 0 by the ivp then;by x = x + h where k = 1,2,3, …, (16)when k = 1⇒ x = x = x + h = x + h⇒ x = x + h where x = 0 and h = 0.05ie x = 0 + 0.05 = 0.05∴ by equation (15a)when n = 0y = y + hf(x , y ), n = 0,1,2, …ie y = y + hf(x , y ), n = 0
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Comparison of Numerical Solution of… Lanlege, Wachin, Garba and Aluebho J of NAMPie y = y + hf(x , y ), n = 0ie y = y(0.05) = y + hf(x , y ), n = 0ie y = y(0.05) = y + h(x + y ), n = 0= 0 + (0.05)((0) + 0)hence; y = 0 (17)again by (15b) x = x + h where k = 1,2,3, …,when k = 2⇒ x = x = x + h = x + h⇒ x = x + h where x = 0.05 and h = 0.05ie x = 0.05 + 0.05 = 0.1∴ by equation (15a)when n = 1y = y + hf(x , y ), n = 0,1,2, … and k = 1,2,3, ….ie y = y + hf(x , y ), n = 1, k = 2ie y = y + hf(x , y )ie y = y(0.1) = y + hf(x , y )ie y(0.1) = y + h(x + y ), where x = 0.1, y = 0 and h = 0.05= 0 + (0.05)((0.1) + 0)= (0.05)(0.01)= (0.0005)hence; y = 0.0005 (18)similarly; by (15b) x = x + h where k = 1,2,3, …,when k = 3⇒ x = x = x + h = x + h⇒ x = x + h where x = 0.1 and h = 0.05ie x = 0.1 + 0.05 = 0.15∴ by equation (15a)when n = 2y = y + hf(x , y ), n = 0,1,2, … , k = 1,2,3, … .,ie y = y + hf(x , y ), n = 2 , k = 3ie y = y + hf(x , y ) ie y = y(0.15) = y + hf(x , y )ie y(0.15) = y + h(x + y ), where x = 0.15, y = 0.0005 and h = 0.05= 0.0005 + (0.05)((0.15) + 0.0005)= 0.0005 + (0.05)(0.0225 + 0.0005)= 0.0005 + (0.05)(0.023)= 0.0005 + 0.00115= 0.00165hence; y = 0.0017 (19)similarly; by (15b) x = x + h where k = 1,2,3, …,when k = 4⇒ x = x = x + h = x + h⇒ x = x + h where x = 0.2 and h = 0.05ie x = 0.15 + 0.05 = 0.2∴ by equation (15a)when n = 3y = y + hf(x , y ), n = 0,1,2, … , k = 1,2,3, … .,ie y = y + hf(x , y ), n = 3 , k = 4ie y = y + hf(x , y ) ie y = y(0.2) = y + hf(x , y )ie y(0.15) = y + h(x + y ), where x = 0.2, y = 0.00165 and h = 0.05= 0.00165 + (0.05)((0.2) + 0.000165)= 0.00165 + (0.05)(0.04 + 0.00165)= 0.00165 + (0.05)(0.04165)= 0.00165 + 0.0020825= 0.0037325hence; y = 0.0037 (20)
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Table 2 : Result generated From Euler Method (EM) for the step size h =0.05
Analytical Method(AM) Associated Error (AE)

1 0.05 0.0000 0.0000 0.0000
2 0.1 0.0005 0.0003 0.0002
3 0.15 0.0017 0.0012 0.0005
4 0.2 0.0037 0.0028 0.0009

6.0 Modified Euler Method (Heun Method). (MEM)
Considering the FODE with the IVP in (1), then the solution to (1) is equivalently as finding solution equation in (15a) for
the Modified Euler Method given as:y ( ), = y + h2 f(x , y ) + f x , y ( ), (21a)
Proof
To show that equation (21a) is the equivalent solution to first order DE of the form in equation (1) which suffices Heun
Method:
Let y = f(x, y) be the FODE with IVP y(x ) = y ie from (1)⇒ dydx = f(x, y)⇒ dy = f(x, y) dx⇒ dy = f(x, y) dx⇒ [y] = f(x, y) dx⇒ y − y = f(x, y) dx⇒ y = y + f(x, y) dx
The integration of the RHS can be done using any numerical method. If the trapezoidal rule is used with step size ℎ(= −) then the above integration becomes:y(x) = y(x ) + h2 f x , y(x ) + f x , y(x ) (21b)
Remark
The RHS of (21) involve an unknown quantit ( ). This value can be determined by the Euler Method (EM). Denoting this

value by ( )( ). Then the resulting formula for finding is :y (x ) = y(x ) + h2 f x , y(x ) + f x , y( )(x )⇒ y( ) = y + hf(x , y )ie y( ) = y + [f(x , y ) + f(x , y )] (22)

Equation (22) gives the first approximation of .
The second approximation is:ie y( ) = y + h2 [f(x , y ) + f(x , y )]
The (n + 1)th approximation of y is:ie y( ) = y + h2 f(x , y ) + f x , y
Generally,⇒ y( ) = y + hf(x , y )ie rewritten as y ( ), = y + h2 f(x , y ) + f x , y ( ), (23)for i = n = 1,2,3, …y ( ), = y + hf(x , y ), for i = n = 0. (24)
Where i = n = 0,1,2,3, …
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The iterations are continued until two successive approximations ( ) and ( ) coincide to the desired accuracy. The
iterations converge rapidly for sufficiently small spacing

7.0 Modified Euler Method (MEM)
In this method, problem of the form in equation (1) will be solved using Modified Euler Method. Thus; Considering same
problem solved in problem (1) and problem (2) for Picard and Euler Methods respectively using Modified Euler Method
inproblem (3)
Problem 3Find the values of y(0.1) and y(0.2) from the following differential equationdydx = x + ywith initial conditiony(0) = 0. Also find the values of y(0.1) and y(0.2)
Solution 3
From the given general term of Modified Euler Method in equation ((7) and (8)):ie y ( ), = y + h2 f(x , y ) + f x , y ( ), f0r i = n = 1,2,3, …y ( ), = y + hf(x , y ), for i = n = 0
Using a desired step size of h= 0.05
By the IVP:y(0) ⇒ value of y at x = 0ie y = 0 when x = 0 Initial Condition (IC) ,where f(x, y) = x + y by equation (1)at x = 0, y = 0, h = 0.05, i = n = 0, and f(x , y ) = x + yy ( ), = y + hf(x , y )y ( ), = y + h(x + y )= 0 + (0.05)[(0) + 0]hence y ( ), = 0.00000 = 0ie: y ( ), = 0 (25)at x = 0, x = x + h = 0 + 0.05 = 0.05, y = 0, h = 0.05, i = 0 =, n = 1,f x , y ( ), = x + y ( ), , y ( ), = 0and f(x , y ) = x + yy ( ), = y + h2 f(x , y ) + f x , y ( ),y ( ), = y + h2 f(x , y ) + f x , y ( ),= y + h2 (x + y ) + x + y ( ),y ( ), = 0 + 0.052 [(0) + ((0.05) + 0)]= (0.025)[(0.0025)] = 0.0000625ie y ( ), = 0.0000625hence y ( ), ≅ 0.0001 (26)at x = 0, y = 0, h = 0.05, i = 0, n = 2, and f(x , y ) = x + yf x , y ( ), = x + y ( ), , y ( ), = 0.0000625 , f(x , y ) = x + y = 0x = x + h = 0.05 + 0.05 = 0.1. ie x = 0.05 and x = 0.1y ( ), = y + h2 f(x , y ) + f x , y ( ),y ( ), = y + h2 f(x , y ) + f x , y ( ),= y + h2 (x + y ) + x + y ( ),y ( ), = 0 + 0.052 [(0) + ((0.05) + 0.0000625)]
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Comparison of Numerical Solution of… Lanlege, Wachin, Garba and Aluebho J of NAMP= (0.025)[(0.0025625)] = 6.40625 × 10ie y ( ), = 6.40625 × 10 −hence y ( ), ≅ 0.0001 (27)at x = 0, y = 0, h = 0.05, i = 1, n = 0, and f x , y ( ), = x + y ( ),y ( ), = 6.40625 × 10 −x = x + h = 0 + 0.05 = 0.05. ie x = 0.05y ( ), = y ( ), + hf x , y ( ),y ( ), = y ( ), + h x + y ( ),= 6.40625 × 10 + (0.05)[(0.05) + 6.40625 × 10 ]= 6.40625 × 10 + (0.05)[(2.5640625 × 10 )]= 6.40625 × 10 + (1.28203125 × 10 )= 1.92265625 × 10thus; y ( ), ≅ 0.0002 (28)at x = 0, y = 0, h = 0.05, i = n = 1, f x , y ( ), = x + y ( ), ,f x , y ( ), = x + y ( ), , x + y ( ), = 2.5640625 × 10, y ( ), = 1.92265625 × 10 , x = x + h = 0.05 + 0.05 = 0.1.ie ∶ x = 0.05 , x = 0.1 and y ( ), = 6.40625 × 10 .y ( ), = y ( ), + h2 f x , y ( ), + f x , y ( ),y ( ), = y ( ), + h2 x + y ( ), + x + y ( ),y ( ), = 6.40625 × 10 + 0.052 [((0.05) + 6.40625 × 10 ) + ((0.1) + 1.92265625 × 10 )]= 6.40625 × 10 + (0.025)[(0.0025 + 6.40625 × 10 ) + (0.01 + 1.92265625 × 10 )]= 6.40625 × 10 + (0.025)(1.275632813 × 10 )= 6.40625 × 10 + 3.189082031 × 10ie y ( ), = 3.829707031 × 10thus; y ( ), ≅ 0.0004 (29)at h = 0.05, i = 1, n = 2, f x , y ( ), = x + y ( ), ,f x , y ( ), = x + y ( ), , x + y ( ), = 2.5640625 × 10, y ( ), = 3.829707031 × 10 − , x = x + h = 0.05 + 0.05 = 0.1.ie ∶ x = 0.05 , x = 0.1 and y ( ), = 6.40625 × 10 .y ( ), = y ( ), + h2 f x , y ( ), + f x , y ( ),y ( ), = y ( ), + h2 x + y ( ), + x + y ( ),
y ( ), = 6.40625 × 10 + 0.052 [((0.05) + 6.40625 × 10 ) + ((0.1) + 3.829707031 × 10 )]= 6.40625 × 10 + (0.025)[(0.0025 + 6.40625 × 10 ) + (0.01 + 3.829707031 × 10 )]= 6.40625 × 10 + (0.025)(1.29470332 × 10 )= 6.40625 × 10 + 3.236758301 × 10ie y ( ), = 3.877383301 × 10thus; y ( ), ≅ 0.0004 (30)at h = 0.05, i = 2, n = 0, f x , y ( ), = x + y ( ), ,y ( ), = 3.877383301 × 10 , x = x + h = 0.05 + 0.05 = 0.1,ie x = 0.1y ( ), = y ( ), + hf x , y( , )

Journal of the Nigerian Association of Mathematical Physics Volume 29, (March, 2015), 29 – 48



40

Comparison of Numerical Solution of… Lanlege, Wachin, Garba and Aluebho J of NAMPy ( ), = y ( ), + h x + y ( ),= 3.877383301 × 10 + (0.05)[(0.1) + 3.877383301 × 10 ]= 3.877383301 × 10 + (0.05)[(1.038773833 × 10 )]= 3.877383301 × 10 + 5.193869165 × 10= 9.071252466 × 10thus; y ( ), ≅ 0.0009 (31)at h = 0.05, i = 2, n = 1, f x , y ( ), = x + y ( ), ,f x , y ( ), = x + y ( ), , x + y ( ), = 1.038773833 × 10y ( ), = 3.877383301 × 10 , y ( ), = 9.071252466 × 10x = x + h = 0.05 + 0.05 = 0.1, x = x + h = 0.1 + 0.05 = 0.15ie x = 0.15 and x = 0.1.y ( ), = y ( ), + h2 f x , y ( ), + f x , y ( ),y ( ), = y ( ), + h2 x + y ( ), + x + y ( ),y ( ), = 3.877383301 × 10 + 0.052 [(1.038773833 × 10 ) + ((0.15) + 9.071252466 × 10 )]= 3.877383301 × 10 + (0.025)[(1.038773833 × 10 ) + (0.0225 + 9.071252466 × 10 )]= 3.877383301 × 10 + (0.025)(3.379486358 × 10 )= 3.877383301 × 10 + 8.448715894 × 10ie y ( ), = 1.23260992 × 10thus; y ( ), ≅ 0.0012 (32)at h = 0.05, i = 2, n = 2, f x , y ( ), = x + y ( ), ,f x , y ( ), = x + y ( ), , x + y ( ), = 1.038773833 × 10y ( ), = 3.877383301 × 10 , y ( ), = 1.23260992 × 10x = x + h = 0.05 + 0.05 = 0.1, x = x + h = 0.1 + 0.05 = 0.15ie x = 0.15 and x = 0.1.
y ( ), = y ( ), + h2 f x , y ( ), + f x , y ( ),y ( ), = y ( ), + h2 x + y ( ), + x + y ( ),y ( ), = 3.877383301 × 10 + 0.052 [(1.038773833 × 10 ) + ((0.15) + 1.23260992 × 10 )]= 3.877383301 × 10 + (0.025)[(1.038773833 × 10 ) + (0.0225 + 1.23260992 × 10 )]= 3.877383301 × 10 + (0.025)(3.412034825 × 10 )= 3.877383301 × 10 + 8.530087062 × 10ie y ( ), = 1.240747036 × 10thus; y ( ), ≅ 0.0012 (33)at h = 0.05, i = 3, n = 0, f x , y ( ), = x + y ( ), ,x = 0.15 and x = 0.1, y ( ), = 1.240747036 × 10y ( ), = y ( ), + hf x , y( , )y ( ), = y ( ), + h x + y ( ),= 1.240747036 × 10 + (0.05)[(0.15) + 1.240747036 × 10 ]= 1.240747036 × 10 + (0.05)[(0.0225 + 1.240747036 × 10 )]= 1.240747036 × 10 + (0.05)[(2.374074704 × 10 )]= 1.240747036 × 10 + 1.187037352 × 10= 2.427784388 × 10thus; y ( ), ≅ 0.0024 (34)
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Comparison of Numerical Solution of… Lanlege, Wachin, Garba and Aluebho J of NAMPat h = 0.05, i = 3, n = 1, f x , y ( ), = x + y ( ), ,f x , y ( ), = x + y ( ), , x + y ( ), = 2.374074704 × 10y ( ), = 2.427784388 × 10 , y ( ), = 1.240747036 × 10x = x + h = 0.05 + 0.05 = 0.1, x = x + h = 0.1 + 0.05 = 0.15x = x + h = 0.15 + 0.05 = 0.2 ie x = 0.15 and x = 0.2.y ( ), = y ( ), + h2 f x , y ( ), + f x , y ( ),ie: y ( ), = y ( ), + h2 x + y ( ), + x + y ( ),= 1.240747036 × 10 + 0.052 [((0.15) + 1.240747036 × 10 ) + ((0.2) + 2.427784388 × 10 )]= 1.240747036 × 10 + (0.025)[(0.0225 + 1.240747036 × 10 ) + (0.04 + 2.427784388 × 10 )]= 1.240747036 × 10 + (0.025)(6.616853142 × 10 )= 1.240747036 × 10 + 1.654213286 × 10ie y ( ), = 2.90663972 × 10thus; y ( ), ≅ 0.0029 (35)at h = 0.05, i = 3, n = 2, f x , y ( ), = x + y ( ), ,f x , y ( ), = x + y ( ), , x + y ( ), = 2.374074704 × 10y ( ), = 2.90663972 × 10 − , y ( ), = 1.240747036 × 10x = x + h = 0.05 + 0.05 = 0.1, x = x + h = 0.1 + 0.05 = 0.15x = x + h = 0.15 + 0.05 = 0.2 ie x = 0.15 and x = 0.2.y ( ), = y ( ), + h2 f x , y ( ), + f x , y ( ),y ( ), = y ( ), + h2 x + y ( ), + x + y ( ),y ( ), = 1.240747036 × 10 + 0.052 [((0.15) + 1.240747036 × 10 ) + ((0.2) + 2.90663972 × 10 )]= 1.240747036 × 10 + (0.025)[(0.0225 + 1.240747036 × 10 ) + (0.04 + 2.90663972 × 10 )]= 1.240747036 × 10 + (0.025)(6.664738676 × 10 )= 1.240747036 × 10 + 1.66184669 × 10ie y ( ), = 2.906931705 × 10thus; y ( ), ≅ 0.0029 (36)
Table 3: Result generated From Modified Euler Method (MEM) for    the step size h=0.05

Analytical Solution Associated Error (AE)
1 0.05 0.0001 0.0000 0.0001
2 0.1 0.0004 0.0003 0.0001
3 0.15 0.0012 0.0012 0.0000
4 0.2 0.0029 0.0028 0.0001

8.0 Analytical Solution of the Problem
The equation considered in this scope can also be solved through the analytical method using the method of integrating factor
as follows:
By the equation described inproblem (1, 2 and 3):
Problem 4 Find the values of y(0.1) and y(0.2) from the given differential equation below:dydx = x + ywith initial conditiony(0) = 0. Also find the values of y(0.1) and y(0.2)
Solution 4
Given that = + 2
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Using the method of integrating factor the solution to the given problem as described in (3.1) is given below:ie: dydx = x + y ≡ y − y = x (37)⇒ dydx − y = x ≡ y − y = x ,where y = dydx , p(x) = (−1)q(x) = x and integrating factor (I. F) = e∫ ( )by the . = e∫ ( )= e∫( )= e ∫= e∴ . = e (38)now; multiplying equation (37 ) by equation (38)ie: (37) becomes; y e − ye = x e⇒ y e − ye = d(ye )dx = x eie: d(ye )dx dx = x e dxie: d(ye ) = (x e )dxintegratung both sides:d(ye ) = (x e )dx⇒ ye = (x e )dx (39)applying method of integration by part to the R. H. Sudv = uv − vdu, (40)where u = function to be differentiated andv = function to be integratedie: (x e )dx = RHS (41)where dv = e dx and v = dv = vie: v = e dx = [e ] ÷ d(−x)dx = e−1 = −ehence; v = −eagain by u = x ⇒ dudx = d(x )dx ⇒ du = (x )dx⇒ du = 2(x ) = 2xdx∴ v = −e , u = x , dv = e and du = 2xdx (42)substituting equation (42) into (40)to give the point process integralsolution of (39)ie: udv = uv − vdu⇒ (x e )dx = −x e − (2x)(−e )dx= −x e − (−) (2x)(e )dx= −x e + (2x)(e )dx= −x e + 2xe dx (43)
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Comparison of Numerical Solution of… Lanlege, Wachin, Garba and Aluebho J of NAMPagain; u = 2x, dv = e dxie: dudx = d(2x)dx ⇒ du = (2x)dx⇒ du = 1. (2x )= 1.2x= 1 × 2 × 1dx= 2. dx= 2dx ⎭⎪⎪
⎬⎪
⎪⎫ (44)

∴ v = −e , u = x , dv = e and du = 2xdx (45)using equation (40)ie: udv = uv − vdu,⇒ equation (43) becomes:= −x e + uv − vdu (46)where v = −e , u = 2x, dv = e and du = 2dx (47)∴ by substituting equation (47) into equation (46)we obtain equation (48):⇒ udv = 2xe dx = −2xe − (2dx)(−e )⇒ (x e )dx = −x e + −2xe − (2dx)(−e )⇒ (x e )dx = −x e − xe − (−)2 (e ) dx= −x e − 2xe + 2 (e ) dx= −x e − 2xe + 2 [e ] ÷ d(−x)dx + C= −x e − 2xe + 2 e−1 + C= −x e − 2xe + 2(−e ) + C= −x e − 2xe − 2e + C= −(x e + 2xe + 2e ) + Cthus; (x e )dx = −(x e + 2xe + 2e ) + C⇒ by (3.31): ye = (x e )dx = −(x e + 2xe + 2e ) + Cie: ye = −(x e + 2xe + 2e ) + Cie: yee = −(x e + 2xe + 2e ) + Ce , ie dividing both side by (e )⇒ y = −(x e + 2xe + 2e ) + Ce = − x ee + 2xee + 2ee + Ce∴ y(x) = Ce − (x + 2x + 2) (48)
Equation (48) gives the equivalence analytical solution of problem (1,2 and 3)But by the given IVP; ie y(0) = 0, ⇒ y = 0 when x = 0now substituting the IVP into equation (48)to obtain the value of the constant term of integration (C)∴ y(0) = −((0) + 2(0) + 2) + Ce = −2 + C × 1 = 0ie: C − 2 = 0, ⇒ C + 2 − 2 = 0 + 2, ⇒ C = 2hence C = 2 (49)∴ equation (36) becomes ∶y(x) = −(x + 2x + 2) + 2ethus: y(x) = 2e − (x + 2x + 2) (50)
REMARK
Equation (50) gives the general non-numerical solution of problem (1,2 and 3) for any given value of xBelow are the analytical computation of the equivelence unknown (54)
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Comparison of Numerical Solution of… Lanlege, Wachin, Garba and Aluebho J of NAMP: ( ) = 2 − ( + 2 + 2)so when x = 0.05: (0.05) = 2 ( . ) − ((0.05) + 2(0.05) + 2)= 2(1.051271096) − (0.0025 + 0.1 + 2)= 2.102542192 − (2.1025)= 4.2192 × 10ℎ (0.05) ≅ 0 (51)ℎ = 0.1: ( ) = 2 − ( + 2 + 2)⇒ (0.05) = 2 ( . ) − ((0.1) + 2(0.1) + 2)= 2(1.105170918) − (0.01 + 0.2 + 2)= 2.210341836 − (2.21)= 3.41836 × 10ℎ (0.1) ≅ 0.0003 (52)ℎ = 0.15: ( ) = 2 − ( + 2 + 2)⇒ (0.15) = 2 ( . ) − ((0.15) + 2(0.15) + 2)= 2(1.161834243) − (0.0225 + 0.3 + 2)= 2.323668486 − (2.3225)= 1.168486 × 10ℎ (0.15) ≅ 0.0012 (53)ℎ = 0.2: ( ) = 2 − ( + 2 + 2)⇒ (0.15) = 2 ( . ) − ((0.2) + 2(0.2) + 2)= 2(1.221402758) − (0.04 + 0.4 + 2)= 2.442805516 − (2.44)= 2.805516 × 10hence y(0.2) ≅ 0.0028 (54)
Table 4. Result generated From Analytical (AM) for the step size h =0.05

Analytical Solution(AS)
1 0.05 0.0000
2 0.1 0.0003
3 0.15 0.0012
4 0.2 0.0028
Table 5 Results from Analytical, Picard, Euler and Modified Euler Methods for h = 0.05( )

Analytical Method(AM) Picard Method(PM) Euler Method(EM) Modified Euler Method(MEM)0.1 0.0003 0.0003 0.0005 0.00040.2 0.0028 0.0028 0.0037 0.0029
Table 6 Some examples of FODE using PEMEM
S/N Problem PM Problem EM

y’ = x-y Error y’ =1+y Error
1 y(0) = 1 0.05 0.9513 0.9525 0.0012 y(0) = 1 0 1.0000 1.0000 0.0000
2 0.1 0.9098 0.9097 0.0001 0.1 1.2000 1.2103 0.0103
3 0.15 0.8714 0.8714 0.0000 0.2 1.4200 1.4428 0.0228
4 0.2 0.8374 0.8378 0.0000 0.3 1.6620 1.6997 0.0377
5 0.25 0.8075 0.8078 0.0003 0.4 1.9282 1.9836 0.0554
Problem MEMy = 1 + y Errory(0) = 1 0 1.0000 0.0003

0.1 1.2103 0.0008
0.2 1.4428 0.0013
0.3 1.6997 0.0018
0.4 1.9836 0.0025
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Table 5 Displays the summary of numerical solution obtained from Picard, Euler, Modified Euler and Analytical Method
(PEMEM & AM) for the specified values of (x).
Furthermore, Figure 1 shows the nature of the numerical solution of equation (1)

Figure 1Graphical Illustration of Solutions Obtained for problem (1,2 and 3) Using the Three Methods (PEMEM).

9.0 Error Analysis( ) = | ( ) − ( )|, = 1,2, …, (55)− : ( ) = | ( ) − ( )|, = 1,2, …, (56)ℎ : ( ) = | ( ) − ( )|, = 1,2, …, (57)ℎ ∶ ( ) = ℎ ( )( ) = ( ℎ ( ) )
Table 7 Tabular Representation of The Global Errors in AM & PEMEME E E E
0.0000 0.0000 0.0000 0.0001

0.0000 0.0000 0.0002 0.0001

0.0000 0.0000 0.0005 0.0000

0.0000 0.0000 0.0009 0.0001
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Figure 2Graphical illustration of Associated Error in the Solution of   Equation (1) Using AM, PM, EM and MEM

10.0 Result and Discussion
In Equations [(4), (15), (21) and (50)] shows the derived general form of the three Methods namely (Picard, Euler and
Modified Euler) and the Analytical Method (AM) respectively. Similarly, Equations [(55),(56) and (57)] gives Expression for
the Local, Global and Final global Errors respectively. Also; equations [(9) – (14)], [(17) – (20)] and [(25) – (36)] gives the
approximate numerical solution to four decimal place of problem (1,2 and 3) using the proved equations in [(4), (15), (21)
and (50)] for the three methods (Picard, Euler and Modified Euler) and the numerical results in chapter three. Again
equations [(51) – (54)] and numerical solution for the analytical method of the general solution of problem 4 in equation (50).
In addition, graphical illustrations for the general solutions and associated error were shown and displayed in figures 1 and 2
for the three methods (Picard, Euler and Modified Euler) and Analytical Method (AM) respectively. Tables [1 – 5] shows the
numerical results together with their associated errors where necessary of the solutions obtained from solutions for the
problems (1,2,3 and 4) using the three methods (Picard, Euler and Modified Euler) as well as the analytical method
respectively. Table 1show the numerical solution obtained from Picard Method for the successive iterations. Similarly,
numerical solution from the Analytical Method and the associated error were also displayed. Table 2 shows the numerical
solution obtained from Euler Method (EM) for the successive iterations. In addition, numerical solution from the Analytical
Method and the associated error were also displayed. Table 3 shows the numerical solution obtained from Modified Euler
Method (MEM) for the successive iterations. More so, numerical solution from the Analytical Method and the associated
error were also displayed.
Table 4 shows the numerical solution obtained from Analytical Method (AM). In addition, numerical solution from the

Analytical Method and the associated error were also displayed. Table 5 displays the summary of numerical solution obtained
from Picard, Euler, Modified Euler and Analytical Method (PEMEM & AM) for the specified values of (x) and table 6 thus;
as seen it is important to note that PM gives an average error of 10.8%, EM 25% and MEM gives 20%. Hence it is still
evident to say that PM is more accurate than EM and MEM followed by MEM to EM by average percentage error.
Furthermore, in figure 1 shows the nature of the numerical solution obtained from Picard Euler, Modified Euler and
Analytical Method (PEMEM). In Figure 2. Similarly, figure 2 shows the nature of the associated error in the numerical
solution of problem 1, 2, 3 and 4 relative to the solution from Analytical Method (AM)for the three methods namely; Picard,
Eulerand Modified Euler Method (PEMEM).
More so, the graphical illustration in figure 1 and 2 also displays the distinction and uniqueness by associated errors in the
numerical solutions of the problem 1,2,3 and 4 using the three methods (PEMEM)and Analytical Method. It is clear to say
that; Picard Method is the most accurate method for the solution of the problem which gives closely or approximately the
same solution of the problem as the solution obtained from the analytical solution. Hence considered as most efficient,
accurate and fastest by convergence.
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Mores so, Modified Euler Method (MEM) is considered second position by accuracy but involves much iteration before
converging to the required approximate solution (converges slowly). Conversely, Euler Method (EM) is the last position by
error associated in the iterations involved in the solution of the problem 1,2,3 and 4, the graphical solutions helps to show
how unique by either convergence or associated error a given method is, as such comparing the line curve for the solution of
the problem in figure 1; the graphical solutions displayed for each method as well as the results in Table 1-3 with that of the
Analytical Method (AM) in Table 1, it was observed that Picard Method (PM) Emerged the Winner by Accuracy, less
iteration process, faster rate of convergence, negligible associated error and gives the same approximate solution as the
Analytical Method (AM).

11.0 Conclusion
Explicitly and analytically solution has been obtained for the problem considered for each method and justified; as such it is
very important to conclude that Picard Method (PM) is a more Stable  Numerical  Scheme (SNS) for the solution of  First
Order Differential Equation (FODE) with Initial Value Problem  (IVP) with negligibly zero Globally Associated Error
(GAE). However, on the other hand Euler Method (EM) and Modified Euler Method (MEM) are considered to be
Conditionally Stable Numerical Scheme (CSNS). Even though, Modified Euler Method (MEM) is more accurate than Euler
Method (EM) with less Globally Associated Error (GAE) but requires a lot of multiple iterations before converging to the
approximate solution at the given point of evaluation than Euler Method (EM).Thus; by the aim and objective of this paper,
successful conclusion is said that Picard Method is the Best, Accurate, most Convergent, Stable and reliable for the solution
of First order Differential Equations (FODE) with Initial Value Problem (IVP) over the two other Methods (Euler Method
(EM) and Modified Euler Method (MEM) ) with respect to the Analytical Method (AM).
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