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Abstract

The paper presents development of a block algorithm for the numerical solution
of ordinary differential equations with application to third order initial value
problems. Collocation and interpolation techniques were adopted and a set of
orthogonal polynomialsvalid in interval [-1, 1] with respect to weight function w(x) =
x + 1 was constructed and employed as basis function for the development of
continuous hybrid schemes. To make the continuous implicit schemes self-starting, a
block method of discrete hybrid form was derived. Findings from the analysis of the
basic properties of the method using appropriate existing theorems show that the
developed schemes are consistent, zero-stable and hence convergent. On
implementation, the schemes compared favourably well with the existing methods
owing to the fact that they are accurate and efficient.
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1.0  Introduction
Initial value problems of the form

y"=f (XYY Y™ o
Y(%) = Yo, ¥ (%) = Yo Y (X0) = Yo

arise frequently in applications and are useful in modelling of variety of physical phenomena such as oscillating systems,
chemical reactor dynamics, predator-prey problem, electrical networks, advanced mass spring systems, biological dynamics
and so on. Since most of these equations are difficult to solve, efficient ODEs solvers are much needed to approximate them.
The various techniques of solving such problems have been considered in literature. In the recent years, the solutions of (1)
for casesm = 1, 2 & 3 have been extremely discussed [1-4]. The approach of reducing the higher order of (1) to a system of
first order and the consequent setback has also been discussed in [5].

Predi ctor-corrector method was later adopted and applied but has its setbacks which were discussed in [5].

To cater for the setback of predictor-corrector methods, the approach of block method came into being.

Milne [6] proposed a method called block method as a means of obtaining starting values which Rosser [7] developed into
algorithms for general use. Later, the modified self-starting block method was givenin [8] as

Y, =€y, +h™ df (y,)+h™ bF (y,,) (2)

where eissx s vector, d isr-vector and b isr X r vector, sis the interpolation points and r is the collocation points. F is a k-

vector whosejthentry is ;= f(t,,;,Y,,;) andm istheorder of the differential equation.
Given a predictor equation in the form

Yy =ey, +h"df (y,) 3

Putting (3) in (2) gives

Yo = ey, +h"df (y,) + h"™F (ey, + h"dfy,) (4)
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which is called a self-starting block-predictor-corrector method [9, 10].

The block (4) is a simultaneous producing approximations to the solution of (1) at ablock of desired points

However, the effectiveness of these ODE solvers depends on the types of trial functions used in developing the schemes.
Varioustrial functions such as, the Chebyshev polynomials which was introduced in [11] as basis function for the solution of
linear differential equations in term of finite expansion, the Legendre polynomials, Power series and the Canonical
polynomials have been used to derive continuous schemes

The aim of this paper is to adopt the block method approach and develop orthogonal polynomials which are employed as
basis function to derive a block method that provides direct solution to (1).

2.0 Construction of Orthogonal Basis Function
Let the function g, (X) be defined as

9 (¥) = Y COx’ (5

where Q, (X) satisfies

<0y(X),0,(X)>=0, m=n,[-1]] (6)
For the purpose of constructing the basis function, we use additional property that
q,(M=1 ()
Forr=0in(5),

dp(X) = C(()O)
From (7),

Qo @ = CéO) =1
Hence,

qo(x) =1
Forr=1in(5),

(¥ =C{ + Cx ®
By definition (7), (8) gives

c¥ +C¥ =1 (9)

and

<0, Oy >= [ (x+2) 0 ()0, (X)x

which implies

Cl(l) + 3Cél) =0 (20

Solving (9) and (10) and substituting the outcomes into (8), we have
1

09,(X) = 3 (3x-1) 11

Whenr=2in(5),

d,(X)=C? +CPx + CPx? (12)

By definition (7), (12) gives

cP+cP+Cc? =1 13)

<0y, >= [ (x+1) 6 (x)a, (X)X
=0

which implies
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oc? +§c1<2> +§c;2> ~0 (14)

<00, > =j(X+1) 0, (X)d, (x)dx

=0
which gives
2 4
=c?+—-CP? =0 15
AT 15)
Solving (13), (14), (15) and substituting the resulting values into (12), we have
(%) = 5 (6" ~2x-1 (16)
Whenn=3in (5),
9, (x)=C{¥ +CPx + CPIx?* + CPIx° @7
By definition (7), (17) gives
cP+cP+cP+cP=1 (18)

<Gy, >= [ (x+1) 0 ()05 (¥)clx

=0
which implies
(3) 2 (3 2 (3 2 (3
2C0 +§C1 +§C2 +EC3 :O (19)

<0y, 05 > = [ (x+1) 4, ()05 (x)clx

=0
Thisleads to
2 4 2
fcOLc® L cc® 20
3 1 15 2 5 3 ( )

1

<005 > = [ (x+1) 6, (x)a () dx

-1
=0
Solving (18) — (20) and substituting the resulting valuesinto (17), we obtain

% (%) =% (35%° — 15 — 15X + 3) (21)

Inthe same vein, (], (X),N > 4 are developed.
The next four polynomials which are used in this paper are listed hereunder.
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a,(%) :% (63x* —28x* —42x* +12x+ 3)
s (X) :% (231x° -105x" — 210x> + 70x* +35x— 5)

gs(X) =1—16 (429x° —198x° — 495x* +180x° +135x% —30x—5)

g, (x) :1—;8 (6435x" —3003x°® —9009%° + 3465x" + 3465x° —945x* — 315x + 35)

3.0 LiteratureReview
To investigate the applicability of the derived orthogonal polynomials, we briefly review here the work of Adam-Moulton on
derivation of three-step implicit method whose discrete scheme is

Yoiz = Yoe2 +2L14(fn _5fn+1 +19fn+2 +9fn+3)

For this purpose, we shall seek an approximation of the form
s+k-1

y(x) = Zarqr () (22)

where @, (X) isthe orthogonal polynomials derived.

We collocate and interpolate (22) at X = X.,;,i = 0(1)3 and X = X, respectively to obtain a system of equations which
are solved and the resulting values of a are subgtituted back into (22) to have a continuous schemes. Evaluating the
continuous scheme at the grid point X = X, yieldsthe Adams-Moulton explicit three-step method.

We shall now employ the set of polynomials to formulate a continuous scheme through which numerical solutions of initial
value problemsin ordinary differential equations are obtained.

n+i ?

40 Methodsand Materials
We consider here equation (22) to obtain the solution of (1) in the sub-interval [xn, Xn+p] Of [&, b] taking our basis function to

be an orthogonal function where  _ 2X=X%, = Ph ang p varies as the method to be derived.
ph
Here, we are formulating a two-step method i.e. p = 2 and, s and k are points of interpolation and collocation respectively.

The procedure involves interpolating (22) at s= 0, 2, 1 and collocating the third order derivative of (22) at k = 0, 21,2
3 3

The a, r = 0(1)6 from the resulting system of equations are obtained as

_gy 3y +@y 3y L8t 244tk TETR® 277k
=3 Vg * g Y TNy M aa080 " T 3a000 ™ 272160 ™2 G048 %
_Ey +gy _gly +2377h3 ‘ +8767h3 +419h3 +3673h3
815V 15 Y "5 o2, T 3a0000 " 5050 ™ To7200 ™2 T 7600 %
3 9 1367h° .,  671h° 1963h? 1223n?

6
==Y, +=Yhu—— + + + +
25 It Yo "5 Yo T 506800 " 8100 ™ 253600 ™2 ' 50400 "%

_8h? ; +64h3 +32h3 _4n?
3465 " 1485 " 10395 "? 385 ™%
S LI LR L P
471386 " 189 ™' 504 ™2 77 ™%

17h® 8h® 61h® oh®
aS = fn - na T ne2 T f
45045 " 4095 90090 10010 ™%

h? 2h* h 3h’
= ocon n+2_7 n+1_7 n+7f
8580 2145 4290 " 2860 "%
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and substituted into (22) to have the continuous implicit method
YO) =aoM¥n +a, Y 5 +2,10Yns + 00V, +b, MY 5 +b,OY,s +b,OY,2) (23
3 3

3 3
where

(1) =5 (&7 +1

ag(t)z—%(tzﬁ)

3

a,(t)=3t"+4t+1

3
b,(t) = h (—81t° +108t° +135t* + 86t2 + 32t)
12960
3
b,(t)= h (81t° — 405t* + 464t* +140t)
3 2880
3
b,(t) = h—(—8]16 —54t° + 405t* + 540t +176t2 + 14t)
3240
3
b,(t)= h7(8116 +216t° + 135t + 4t? + 4t)
25920
X—X,—h
adt=—7—.
h
Evaluating equation (23) at X = Xn+ yields the discrete equation

7h® . 7h° 25h° 11h?
Y2 =2t BYoa =Y, a b pg ot 2y e ey o g o

3

(24)

5.0 Derivation of the Block Method

To develop the block method from the continuous scheme, we adopt the general block formula proposed in [8] in the
normalized form given

APY, = ey, +h™ df (y,)+h™ bF(y,,) (25)

Evaluating the first and second derivative of (23) at X = xn+j, j = 0, 2/3, 1, 2 and substituting the resulting equations and
equation (24) into (25) givesits coefficients as

_[17 13 2 139 23 7 19 1 1}T

540 160 5 1215 120 15 81 48 3

T T
8 11000000 |3 2 0 W 9 9 2 74
9 40 64 10 90 20 10 3 32
e<|2 12111000 ,b=|-2 L o 22 -3 8 -0 -14
3 135 120 1225 20 15 81 12 3
0ol o2 4,444 |.7L 1 1w 1 1 1 11
2 3 360 320 30 2430 120 10 81 9% 3
where A° = 9x9 identity matrix.
6.0 Basic Propertiesof the Block Method
7.0  Order and Error Constant of the Block
The linear operator L of the block (25) is defined as
L{y(x):h} =Y, —ey, +h™ df (y,) +h™ bF(y,) (26)
Using Taylor series expansion to expand Y(X,, +1h) and f (X, + jh), (26) becomes
L{y(x) : h} = Coy(X) + C hy' () + C,h?y"' (X) +...+ C hPy P (x) + (27)
The block (25) and associated linear operator are said to have order p if
G =C=..=C,=C_,=0C_, =0
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Theterm C, # O iscalled the error constant and the local truncation error is given
As
tn+k = Cp+2h(p+2) y(p+2) (Xn) + Oh(p+3)

Thus, the block (26) is of order 5 with error constants Cp+2 given as

[ 4 3w 4 1 7 1 17 1 17
Pz 229635 60480 945 135 4320 135 7290 480 90

8.0 Zerostability of the Block
The block (25) is said to be zero stable if the roots zs = 1, 2, . . ., N of the characteristic polynomial r (z) = det(zA- E),

satisfies ‘Z| <1 and the root ‘Z| =1 has multiplicity not exceeding the order of the differential equation. Also, as
h™ > 0,r (2)=2z""(I —1)™, where m isthe order of the differential equation, r = dim(A©).

For the block (25),r=9, m=3and r (2) =1 °(I —-1)°,

Hence the proposed method is zero stable.

9.0 Convergence
The necessary and sufficient condition for a numerical method to be convergent is for it to be Zero stable and consistent. This

method is consistent owing to the fact that the order p > 1, hence it is convergent.

10.0 Numerical example
We implement the scheme on four test problems.
Problem 1

ylll_

-y, ¥(0) =1 y'(0)=-1 y"(0) =1, 0< x<1
Exact solution: y(x) =e™*

Problem 2
-, y(0)=1, y'(0)=-1 y"(0) =3, 0<x<1
Theoretical solution: y(x) = 2+ 2x*> —e*

Problem 3
y"=3sinx, y(0) =1 y'(0)=0, y"(0) = -2, 0< x<1

y”l_

2
True solution: y(x) = 3cosx + [X?] -2

Problem 4

y'=¢€", y0)=3 y(0)=1 y'(0)=50<x<1

Theoretical solution: y(x) = 2+ 2x* + €*
Table 1: Comparison of the solutions of Exact, the New Method and Existing Method of test problem 1

X Exact Solution New Method Error in New Method Errorin[12] (p = 6)
0.1 | 0.904837418035960 0.904837417979346 5.661382473931553e-11 1.95961e-11
0.2 | 0.818730753077982 0.818730752688398 3.895839206791152e-10 2.47756e-09
0.3 | 0.740818220681718 0.740818219066154 1.615563682832999%¢-09 4.18183e-08
0.4 | 0.670320046035639 0.670320041963222 4.072417292277919e-09 1.18007e-07
0.5 | 0.606530659712633 0.606530651450277 8.262356576693719e-09 2.30843e-07
0.6 | 0.548811636094027 0.548811621637371 1.445665509525185e-08 3.79421e-07
0.7 | 0.496585303791410 0.496585280733952 2.305745783193203e-08 5.60411e-07
0.8 | 0.449328964117222 0.449328929844064 3.427315736770353e-08 7.63714e-07
0.9 | 0.406569659740599 0.406569611326962 4.841363732133175e-08 9.62881e-07
1.0 | 0.367879441171442 0.367879375547914 6.562352861116949e-08 1.09640e-06
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Table 2: Comparison of the solutions of Exact, the New Method and Existing Method of test problem 2

X Exact Solution New Method Error in New Method Errorin[12]
(p=6)

0.1 | 0.914829081924352 0.914829081858189 6.616285297411650e-11 2.00922e-11
0.2 | 0.858597241839830 0.858597241379556 4.602747072368629-10 2.60461e-09
0.3 | 0.830141192423997 0.830141190457356 1.966641183237528e-09 4.50760e-09
0.4 | 0.828175302358730 0.828175297256612 5.102117950350760e-09 1.27448e-08
0.5 | 0.851278729299872 0.851278718475214 1.082465772572760e-08 2.50056e-08
0.6 | 0.897881199609491 0.897881179843941 1.976554986349299e-08 3.13587e-08
0.7 | 0.966247292529523 0.966247259434682 3.309484120084250e-08 4.00392e-08
0.8 | 1.054459071507532 1.054459019923943 5.158358939993946e-08 5.20610e-08
0.9 | 1.160396888843050 1.160396812182158 7.666089274493970e-08 1.4132e-07
1.0 | 1.281718171540955 1.281718062272431 1.092685231185442e-07 1.7644e-07
Table 3: Comparison of the solutions of Exact, the New Method and Existing Method of test problem 3
X Exact Solution New Method Error in New Method Errorin [13]
0.1 | 0.990012495834077 0.990012495848359 1.428168694417309e-11 1.65922e-10
0.2 | 0.960199733523725 0.960199733629373 1.056474907557004e-10 4.76275e-10
0.3 | 0.911009467376818 0.911009467899794 5.229756627755933e-10 6.23182e-10
0.4 | 0.843182982008655 0.843182983535743 1.527087678532269e-09 2.91345e-10
0.5 | 0.757747685671118 0.757747689443271 3.772152812331342e-09 8.71118e-10
0.6 | 0.656006844729035 0.656006852484582 7.755547204446600e-09 3.92904e-09
0.7 | 0.539526561853465 0.539526576364118 1.451065279045594e-08 9.55347e-09
0.8 | 0.410120128041497 0.410120152793067 2.475157034886877e-08 1.80415e-08
0.9 | 0.269829904811993 0.269829944661690 3.984969709769359-08 3.03120e-08
1.0 | 0.120906917604419 0.120906978311808 6.070738874097703e-08 4.73044e-08
Table 4: Comparison of the solutions of Exact, the New Method and Existing Method of test problem 4
X Exact Solution New Method Error in New Method Error in

[13]
0.1 | 3.125170918075648 3.125170918141810 6.616263092951158e-11 7.56479%-11
0.2 | 3.301402758160170 3.301402758620444 4.602740411030482e-10 1.83983e-09
0.3 | 3.529858807576003 3.529858809542644 1.966640628126015e-09 4.42400e-09
0.4 | 3.811824697641271 3.811824702743388 5.102116951150038e-09 1.03587e-08
0.5 | 4.148721270700128 4.148721281524786 1.082465761470530e-08 1.12999e-08
0.6 | 4.542118800390509 4.542118820156059 1.976555008553760e-08 1.46095e-08
0.7 | 4.993752707470477 4.,993752740565318 3.309484153390940e-08 2.05295e-08
0.8 | 5.505540928492469 5.505540980076057 5.158358806767183e-08 1.95075e-08
0.9 | 6.079603111156950 6.079603187817842 7.666089185676128e-08 1.08431e-08
1.0 | 6.718281828459046 6.718281937727569 1.092685231185442e-07 1.54095e-07

11.0 Conclusion

The development of new basis function has been considered and employed to derive a numerical block integrator for the
solution of third order initial value problems in ordinary differential equations. The results obtained, as apparent from the
foregoing tables, show that the derived orthogonal polynomials can be suitably adopted to construct continuous schemes for
numerical solution of ODEs. Numerical results presented in Tables 1-4 have demonstrated an apparent agreement between
the exact solutions and the solutions obtained through the methods. On comparison, the solutions obtained through the

proposed method compared favourably well with the existing methods.
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