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Abstract

In this paper, the problem of stabilization and synchronization of a new two
terminal memristive electronic circuit is considered. The system which was recently
introduced as the fourth basic circuit element is characterized by a charge and flux-
linkage relationship and it exhibit hyperchaotic dynamics for appropriate choice of
parameters. Based on backstepping technique, control inputs are proposed for
achieving the global stabilization and synchronization of hyperchaotic dynamics in
the system. Results of numerical simulation are given to show the effectiveness of the
proposed technique.

1.0 Introduction
The phenomenon of chaos in nonlinear dynamical system was first discovered by Poincare [1]. The concept did not however
receive adequate attention until Lorenz encountered chaotic behaviourwhile studying his now famous model of the
atmospheric convection – the Lorenz system [2]. Since then, several other systems in the physical, chemical and life sciences
that exhibit chaotic dynamics have been found. In the physical sciences, here we make mention of the Henon-Heiles system
[3,4], mechanical systems, like the periodically forced pendulum [1,5], the nonlinear Bloch equations [6], Bose- Einstein
Condensates [7], plasma oscillations[8], gyroscopic motion [9] as well as several electronics devices [10-12], including the
more recently found memristors [13-21].
Recently, the dynamical propertiesof memristive systems, including chaotic behaviour have attracted considerable
attentionsince 2008; when the Hewlett Packed (HP) researchers validated the original work of Chua [14-16]. The memristor
which was proposed by Leon Chua in 1971 as the fourth class of basic electrical circuit element is a device that has the
hysteresis property of ferromagnetic core memory as well as the dissipation that characterizes a resistor [13]; such that by
controlling the magnetic flux or flow of the electrical charge, the nonlinear resistance can be indefinitely memorized. Thus, as
the name implies, it may be regarded as a form of nonlinear resistance with ‘memory’ ability. Due to this interesting
property, memristor-based memory device appear to be the most obvious application of memristors. Infact, where capacitors
are replaced with memristors, it is possible for one memristor to store a single bit of data in a DRAM-like architecture.
Besides other applications in cellular and recurrent neural networks, ultra wide band receivers, programmable threshold
comparators [19], to name but a few, memristors can be used within analog processing domain, for instance in chaos secure
communication circuits [20]; and biomimetric and neuromorphic circuits for replicating observable biological behaviours
[21].
Applications of memristors in  nonlinear circuit are now active research topics and varieties of memristive chaotic circuits
have been proposed. For instance, Ito [15], introduced a fourth-order memristor-based Chua’s oscillator by replacing Chua’s
diode with an active two terminal circuit consisting of a conductance and a flux-controlled memristor. A similar circuit was
also proposed in [22,23] by adapting a modified Chua’s circuit.In another work, Bao et al. [16] introduced a variant of the
memristor-Chua’s circuit by replacing the monotone-increasing and piecewise-linear nonlinearity in [15, 22, 23] with a
smooth continuous cubic monotone-increasing nonlinearity. These memristive circuits exhibit chaos when appropriate
parameters are chosen.
In this paper, we consider the suppression and synchronization of chaotic behavior in a model of memristor circuit by using a
systematic approach based on backstepping technique. Chaos control and synchronization for more than two decades have
been considered asmain domain in which chaos theory find important applications [24-34]. The concepts were independently
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proposed by Ott,Grebogi and Yorke [24];and Pecora and Caroll [25], respectively in 1990. It is worth mentioning that
different methods have been employed to stabilize unstable orbits associated with chaotic behavior as well as to synchronize
chaotic systems. Increasing research has also revealed varieties of synchronization phenomena that may arise depending on
the approach employed and definition of synchrony. Our choice of backstepping is based on its flexibility and effectiveness
in the construction of control law and its ability to control chaos and to achieve chaos synchronization for identical and
generalized cases.However, hyperchaotic systems are less investigated in this regard, partly because they are of higher
dimension; so that obtaining the control laws becomes more challenging. Here, we undertake this task for strongly nonlinear
system modelled by a memristor. The rest of the paper is organized a follows: In section 2 the memristor model is introduced.
In sections 3 and 4, we treat chaos control and synchronization, respectively. Numerical simulations results are presented in
section 5. The paper is summarized and concluded in section 6.

2.0 The Model –Memristor
In 2010, Bao et al. [16] proposed a flux-controlled nonlinear circuit, with a memristor which replaces the Chua’s diode as
shown in Fig. 1.

Figure 1: Chua’s circuit with active memrsitor
By applying Kirchoff’s laws of electrical circuit to Fig.1, the following differential equations defining the relationship

between all the circuit variables 1 2 3, , ,  andv v i  are obtained:
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where the nonlinear q characteristic curve of the flux controlled memristor is defined by
3)(  baq  and

dt
dqW )()(   . By redefining the state variables as = G, C2 = 1, R= 1, 1 2 3,  ,  ,x v y v z i  
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The dimensionless state equations with a time scale factor, k is obtained as follows [16]:
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where x, y, z and w represents the rescaled voltage across C1, voltage across C2, current through the inductor L, and flux in the
memristor, respectively.
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For the purpose of our analysis using backstepping and to ensure that the memristor is operated in a stable chaotic state, we

set the system parameters 7
1a , 7

9 ,k = 1and 0 , and express system (4) as

2[ ( ) ]x y a dw x
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w x
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(5)

where the parameters 7
6d ,

7

100
89  ,β.α and initial conditions are ( , , , )x y z w =

10(0,10 ,0,0)
. In Fig. 2, we

show varieties of typical phase space plots of the chaotic attractor of the memristor for the given parameters set; while Fig. 3
shows the corresponding time series.
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Figure 2c: The chaotic attractor of the memristor in phase
space on z-axis against x-axis.

Figure 2d: The chaotic attractor of the memristor in phase
space on y-axis against x-axis.

Figure 2a:The chaotic attractor of the memristor system in
phase space on y-axis against w-axis.

Figure 2b:The chaotic attractor of the memristor system in
phase space on y-axis against w-axis
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3.0 Chaos Control in the Memristor
Here, we focus on the  design of controllers using backstepping method to eliminate the undesirable chaotic dynamicsshown

in Fig.1 by stabilizing the system asymptotically. To achieve the stability, we introduce controls ( 1,2,3,4)iu i  to the

system in Eq. (5) to obtain a controlled memristive system as follows:
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The backstepping technique employs a recursive procedure that is based on a chosen virtual control. At the ith step of the

procedure, the ith-order subsystem is stabilized with respect to appropriate Lyapunov function iV and a control input iu .

Suppose  z1 is the virtual control required to stabilize thez-subsystem and a Lyapunov function 1( )V z is assumed:

zzV
2

1
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(7)

and its time-derivative
.

1 1( )V z yz zu   . By choosing the control law as zu 1 and assuming that the state y is a

virtual control, that is 1( )y z z  , then the time-derivative of ( )V z becomes
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
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Thus, 1V
.

is negative definite.According to the Lyapunov stability theorem, the equilibrium point is globally and

asymptotically stable. Notice that if we choose 1 0u  , we can obtain the simplest control input, so that

2( ) 01
.

z zV    ; accordingly, the z-subsystem is globally stabilized.

Let the error signals between )(1 z and y be given by y ; such that zyy  . Using equation (6), we get the ( , )z y
subsystem given by
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Figure 3a: The time response of the state variable z Figure b: The time response of the state variable w.
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Suppose ),(2 yz is a virtual control required to stabilize the ( , )z y subsystem and assume a Lyapunov function of the

form:

2 1

1 2( , ) ( )
2

V z y v z y  (10)

By choosing a control law 2 ( )u y z   and assuming that x is a virtual control, then yyzx  ),(2 . The time

derivative of (10) gives
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Equation (11) is negative definite; and according to the Lyapunov stability theorem, the equilibrium point of subsystem (9) is
globally and asymptotically stable.

Suppose the error signal between ),(2 yz and x is given by x ,then yxx   . Using the definition for x and y from

equation (6) and (9), we get the following ( , , )x y z sub-system:
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Let ),,(3 xyz be a virtual control required to stabilize the ( , , )x y z sub-system and a Lyapunov function of the form

2
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1
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is assumed. Choosing the control law )](2[)( 2
3 dwazyu   and assume that z is the virtual control, then
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This implies that 3 ( , , ) 0V z y x 
is negative definite. Accordingly, the equilibrium point is globally and asymptotically

stable.
Now, considering the full system ( , , , )x y z w , and by assuming a Lyapunov function of the form

2
34 2

1
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(15)
we can globally stabilize the full system ( , , , )x y z w . Therefore, substituting equation (14) and (6) into the time-derivative

of (15) gives
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Suppose, the control law is chosen as xwu 4 , then,
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is negative definite . Thus, we can conclude that the orbit will attract a stable periodic orbit and fixed point, and since the full
system is asymptotically stable, all the solution of system (6) converges and the control goal is achievable.

4.0 Chaos Synchronization in the Memristor Systems
Here, we consider a drive-response configuration wherethe driver system is designatedwith the subscript 1 and the response
system, having identical equations is designated with the subscript 2.Thus, for the system (1),the slave (or response) systems
and master (or drive) systems are defined below respectively,
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The error between the state variable are defined by

1 2 1 2 2 1 3 2 1 4 2 1,  ,  ,e z z e y y e x x e w w        (21)

and time-derivative of the error states are written as
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So that using equations (19) an (20), the error dynamics system is written as
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where )( 1
2
12

2
2 xwxwdh  . Suppose )( 11 e is a virtual control,and consider the 1e subsystem. Assume a Lyapunov

function of the form

2
111 2

1
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The derivative of (24) is
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If the control law is chosen as 01 u and assume that , Then,

0)( 2
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Let the error between )( 11 e and 2e be given by 2e such that 122 eee  . Derivative of 2e becomes:

122 eee   (27)

Substitute 2e and 1e from equation (23) into (27), we get
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Let ),( 212 ee be a virtual control to stabilize the 2e subsystem and assume a Lyapunov function of the form:
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Derivative of (29) is:
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If the control law is chosen as 122 )1( eeu   and assuming that 3e is the virtual control, then
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Let the error between ),( 212 ee and 3e be given by 3e , such that 233 eee  and 233 eee   . Substitute

3e and 2e from equation (23) and (28) into (33), we get:
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Let ),,( 3213 eee be a virtual control to stabilize the 3e subsystem and assume a Lyapunov function of the form:
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The time-derivative of (35) is:
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If the control law is chosen as )()1( 1
2
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2
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In order to achieve the stability of the 4e subsystem, consider a Lyapunov function of the form:

2
4 1 2 3 4 3 1 2 3 4

1
( , , , ) ( , , )

2
V e e e e V e e e e  (38)

The derivative of (38) is 4 3 1 2 3 4 4 3 1 2 3 4 3 4( , , ) ( , , ) ( )V V e e e e e V e e e e e u       and if the control law is chosen as:

4 3 4u e e   (39)

then
2 2 2 2

4 1 2 3 4 0V e e e e       (40)

It is obvious that 4V is negative definite and hence systems (19) and (20) are globally synchronized;  implying that the goal of

synchronization has been achieved with the proposed control functions.

5.0 Numerical Results
Now, we present some numerical simulations to verify the effectiveness of the designed controllers by choosing the
parameters as

7
100,8.9   ; using a fourth-order Runge-Kutta algorithm with fixed integration time stepof 0.005 and

initial conditions  10( , , , ) 0,  10 ,   0,  0 .x y z w  Depicted in Figure 2 are typicallyperchaotic orbits of the memristor in

different phase space. The corresponding time history is also shown in Figure 3 illustratingirregular oscillations. To show the
effectiveness of \the control obtained in section 3 to stabilize the chaotic orbits of the memristor to the origin, the controls

were activated at 0t  . In Figure 4, the controlled chaotic time series shows that as 0t  , the state variables

( , , , ) (0,0,0,0)x y z w  with asymptotically convergence of the w variable.
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Figure 4a: Asymptotic convergence of the state variable
x in the controlled state.

Figure 4b: Asymptotic convergence of the state variable
y in the controlled state.
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Similarly, numerical simulation results are presented for synchronization of the master-slave system (19) and (20) using the
proposed control inputs. The parameters were set as before, while the initial conditions for the master and slave systems

where chosen as 1 1 1 1( , , , ) (0.005,0.0001,0.001,0.002)x y z w  and 2 2 2 2( , , , ) (0.015,0.0011,0.011,0.012)x y z w  ,

respectively. The results are shown in Figure 5. Evidently, the error dynamics 1 2 3 4( , , , ) (0,0,0,0)e e e e  asymptotically

showing that complete synchronization between the master and slave has been achieved.

Figure 5: Asymptotic convergence of the error states to the synchronization manifold showing complete
synchronization.

6.0 Concluding Remarks
In this paper,backstepping technique has been employed to achieve the global asymptotic stabilization of a hyperchaotic
memristor circuit and synchronization ofmaster-slave chaotic memristor circuits, respectively. With suitable choice of
controllers obtained via backstepping, the theoretical analysis and numerical simulations haveconfirmed that the system can
be fully stabilized. In a master-slave configuration of two memristive circuits, appropriate control inputs would also drive the
two systems into complete synchronization state. The control laws can be conveniently optimizedin order to realize minimal
control inputs, thereby reducing the complexity involved in most nonlinear control approaches. Finally, we remark that the
hyperchaotic orbits of the system maybe driven to a specified bounded point or projected to track a desired trajectory.
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variable w in the controlled state.

-20
-15
-10
-5
0
5

10
15

0 50 100 150

z

time

(c)

0

4

8

12

16

20

0 50 100 150

w

time

(d)

-15

-10

-5

 0

 5

 10

 15

 0  20  40  60  80

e i

time

e1e2e3e4



9

Hyperchaos Stabilization and… Vincent, Popoola and Talabi J of NAMP

[2] E. N. Lorentz, ‘‘Deterministic non-periodic flow’’, J. Atmos. Sci, 20 (2), 130-141 (1963).
[3] I. B. Okon and O. O. Popoola, ‘‘Investigating the chaoticity of Henon-Heiles system and a non-linear

harmonic chaotic oscillator’’, World J. Appl. Sci. Tech. 3: 21 - 26 (2011).
[4] I. M. Echi, A. N. Amah, E.  Anthony, Regular and chaotic motions in Henon-Heiles like

Hamiltonian, Turk. J Phys. 37: 380 - 386 (2013).
[5] U. E. Vincent, J. A. Laoye and A. Tella, ‘‘Control and synchronization of chaotic pendulum using

backstepping’’,     Int. J. Modern Physics B. 24: 3311-3321 (2010).
[6] D. Abergel, "Chaotic solutions of the feedback driven Bloch equations," Phys. Lett. A 302:  17-22

(2002).
[7] G. S. Chong, W. H. Hai, and Q. T. Xie, Spatial chaos of trapped Bose-Einstein condensate in one-

dimensional weak optical lattice potential, Chaos 14: 217–223 (2004).
[8] H. G. Enjieu Kadji, J. B. Chabi-Orou and P. Woafo, Regular and chaotic behaviors of plasma

oscillations modeled by a modified Duffing equation, Physica Scr. 77: 025503 (2008).
[9] Z. –M. Ge and H. H.  Chen, Bifurcations and chaos in a rate gyro with harmonic excitation, J. Sound

and Vib. 194:107- 119 (1996).
[10] T. Banerjee and B. C. Sarkar, Chaos and bifurcation in a third-order digital phase-locked loop, Int. J.

Electron. Commun. 62: 86 – 91 (2008).
[11] S. Sarkar, S. Sarkar and B. C. Sarkar, On the dynamics of a periodic Colpitts oscillator forced, by

periodic and chaotic signals, Commun Nonlinear Sci Numer Simulat 19:2883-2896 (2014).
[12] A. A. Ajayi, S. K. Ojo, U. E. Vincent, and A. N. Njah, Multi-switching synchronization of a driven

hyperchaotic circuit using active backstepping, J. Nonl. Dynamics 2014:918586 (2014).
[13] L. O. Chua, ‘Memristor – the missing circuit element, IEEE Trans Circ Theory: 18 507-519 (1971).
[14] Strukov, D.B., Snider, G.S., Stewart, D.R., and Williams, R.S.: ‘The missing memristor found’,

Nature 453: 80–83 (2008).
[15] M. Itoh and L. O. Chua, Memristor oscillators, Int. J. Bifurcation Chaos 18: 3183–3206 (2008).
[16] B. C. Bao, Z. Liu and J. P. Xu, Steady periodic memristor oscillator with transient chaotic

behaviours, Electron.Letters 46: 237-238  (2010).
[17] H. Lu and A. Fitch, “Development of memristor based circuits” (World Scientific, Singapore, 2013)
[18] A. Mehonic, S. Cueff, M. Wojdak, S. Hudziak, O. Jambois, C. Labbe, B. Garrido, R. Rizk, and A. J.

Kenyon, Resistive switching in silicon suboxide films, J. Appl. Physics 111, 074507 (2012).
[19] P. Mazumder, A. M. Kang, and R. Waser, Memristors: devices, models and applications,

Proceedings of the IEEE 100, 1911-1919 (2012).
[20] Z.-H. Lin and H.-X. Wang, Image encryption based on chaos with PWL memristor in Chua’s circuit,

in Proc. Int. Conf. Commun. Circuits Syst., 964-968 (2009).
[21] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu, BNanoscale memristor

device as synapse in neuromorphic systems, Nano Lett. 10: 1297-1301(2010).
[22] B. Muthuswamy,b and P. Kokate, Memristor-based chaotic circuits, IETE Tech. Rev. 26: 417-

429 (2009).
[23] B. Muthuswamy, Implementing memristor based chaotic circuits, Int. J. Bifurcat. Chaos Appl. Sci.

Eng. 20: 1335-1350 (2010).
[24] E. Ott, C. Grebogi and J. A. Yorke, ‘‘Controlling chaos’’, Phys. Rev. Lett. 64:1196-1199 (1990).
[25] L. M. Pecora and T. L. Carroll TL,Synchronization in chaotic systems, Phys. Rev. Lett. 84: 821-

824 (1990).
[26] U. E. Vincent, A. N. Njah, and J.A. Laoye, ‘‘Controlling chaos and deterministic directed

transport in inertia ratchets using backstepping control’’, Physica D, 231 (2), 130-136 (2007).

Journal of the Nigerian Association of Mathematical Physics Volume 29, (March, 2015), 1 – 10



10

Hyperchaos Stabilization and… Vincent, Popoola and Talabi J of NAMP

[27] K. Pyragas, ‘‘Continuous control of chaos by self-controlling feedback’’, Phys. Lett.A, 170:
421-428 (1992).

[28] W. Lin, ‘‘Adaptive chaos control and synchronization in only locally Lipschitz systems’’, Phys.
Lett. A, 372, 3195-3200 (2008).

[29] Wu, AL, Zeng, ZG: Exponential stabilization of memristive neural networks with time delays.
IEEE Trans. Neural Netw. Learn. Syst. 23: 1919-1929 (2012)

[30] G. Jiang, J. Zhang and Y. Huang, Chaos and its control in semiconductor laser with delayed
negative optoelectronic Feedback, Turk J Phys. 37: 296 - 303 (2013).

[31] R. W. Guo, U. E. Vincent,  B. A. Idowu, Synchronization of chaos in RCL-shunted Josephson
junction using a simple adaptive controller.   Physica Scr. 79: 035801(2009).

[32] U. E. Vincent, R. W. Guo, A simple adaptive control for full and reduced-order synchronization
of uncertain time-varying chaotic systems. Comm. Nonl. Sc. Num. Simulat. 14: 3925-3932
(2009).

[33] B. A. Idowu, U. E. Vincent, A. N. Njah, ‘‘Synchronization of chaos in non-identical
parametrically excited systems’’. Chaos Solitons Fractals 39, 2333-2331 (2009).

[34] F. Yu, C. Wang, Q. Wan and Y. Hu, ‘‘Complete switched modified function projective
synchronization of a five-term chaotic system with uncertain parameters and disturbances’’,
Pramana J. Phys. 80: 223-235 (2013)

Journal of the Nigerian Association of Mathematical Physics Volume 29, (March, 2015), 1 – 10


