# Optimization of the Compressive Strength Characteristics of Concrete Mixes made with Crushed Granite Chippings Using the Second-Degree Polynomial 

${ }^{1}$ Umeonyiagu Ikechukwu Etienne and ${ }^{2}$ Adinna B.O.
${ }^{1}$ Dept. of Civil Engineering,Anambra State University, P.M.B.,02, Uli. ${ }^{2}$ Dept. of Civil Engineering,Nnamdi Azikiwe University, Awka.


#### Abstract

This research work set out to develop a model for the compressive strength characteristics of concrete made with crushed granite chippings based on the seconddegree polynomial. The crushed granite chipping was from Abagana and the river sand from Amansea, both in AnambraState. These aggregates were tested for their physical and mechanical properties based on BS 812: Part 2 \& Part 3:1975. Sixty concrete cubes of dimensions $150 \mathrm{~mm} X 150 \mathrm{~mm} X 150 \mathrm{~mm}$-three cubes for each experimental point were made, cured and tested according to BS 1881:1983. A model equation was developed and the student's t-test and the Fisher's test were used to test the adequacy of this model. The strengths predicted by the model were in complete agreement with the experimentally obtained values and the null hypothesis was satisfied.


Keywords:Optimization, Concrete, Compressive strength, Second-degree polynomial.

### 1.0 Introduction

### 1.1 Osadebe's Concrete Optimization Theory

Concrete is a four-component material of mixing water, cement, fine and coarse aggregate. These ingredients are mixed in rational proportions to achieve desired strength of the hardened concrete [1]. Let us consider an arbitrary amount, S , of a given concrete mixture and $S_{i}$, the portion of the $i^{\text {th }}$ component of the four constituent materials of the concrete where $i$ $=1,2,3,4$, then in keeping with the principle of absolute volume or mass [2]:

$$
\begin{equation*}
\sum S_{i}=S \tag{1}
\end{equation*}
$$

Dividing through by S and substituting $\mathrm{Z}_{\mathrm{i}}$ for $\mathrm{S}_{\mathrm{i}} / \mathrm{S}$ gives:

$$
\begin{equation*}
\sum Z_{i}=1 \tag{2}
\end{equation*}
$$

Then, the compressive strength of concrete can be expressed as:
Using Taylor's theorem and the assumption that Y is continuous, equation (3) becomes:
$Y=f\left(Z_{i}\right)$

$$
\begin{align*}
& f(Z)=f\left(Z^{(0)}\right)+\sum_{i=1}^{4} \frac{\partial f\left(Z^{(0)}\right)}{\partial Z_{i}}\left(Z_{i}-Z_{i}^{(0)}\right)+\frac{1}{2!} \sum_{i=1}^{3} \sum_{j=1}^{4} \frac{\partial^{2} f\left(Z^{(0)}\right)}{\partial Z_{i} Z_{j}}\left(Z^{(0)}\right)\left(Z_{i}-Z_{i}^{(0)}\right)\left(Z_{j}-Z_{j}^{(0)}\right)  \tag{3}\\
& +\frac{1}{2!} \sum_{i=1}^{3} \frac{\partial^{2} f\left(Z^{(0)}\right)}{\partial Z_{i}{ }^{2}}\left(Z_{i}-Z_{i}^{(0)}\right)^{2}+\ldots \ldots \ldots \ldots . . \tag{4}
\end{align*}
$$

If $\mathrm{b}_{0}=\mathrm{f}(0), \mathrm{b}_{\mathrm{i}}=\partial \mathrm{f}(0) / \partial \mathrm{Z}_{\mathrm{i}}, \mathrm{b}_{\mathrm{ij}}=\partial \mathrm{f}^{2}(0) / \partial \mathrm{Z}_{\mathrm{i}} \partial \mathrm{Z}_{\mathrm{j}}$ and $\mathrm{b}_{\mathrm{ii}}=\partial^{2} \mathrm{f}(0) / \partial \mathrm{Z}_{\mathrm{i}}^{2}$, then eqn. (4) can be written as follows:
Multiplying eqn.(2) by $\mathrm{b}_{0}$ we have

$$
\begin{align*}
& f(Z)=b_{0}+\sum_{i=1}^{4} b_{i} Z_{i}+\sum_{i=1}^{3} \sum_{j=1}^{4} b_{i j} Z_{i} Z_{j}+\sum_{i=1}^{4} b_{i i} Z_{i}^{2}+\ldots \ldots \ldots \ldots  \tag{5}\\
& b_{0} Z_{i}=b_{0}
\end{align*}
$$

Corresponding author: Umeonyiagu I. E., E-mail: umeonyiaguikechukwu @ yahoo.com, Tel.: +2348068282212
Journal of the Nigerian Association of Mathematical Physics Volume 28 No. 1, (November, 2014), 475 - 480

## Optimization of the Compressive... <br> Etienne and Adinna J of NAMP

Also, multiplying eqn.( 2) by $\mathrm{Z}_{1}, \mathrm{Z}_{2}, \mathrm{Z}_{3}$ and $\mathrm{Z}_{4}$ in succession, making $\mathrm{Z}_{1}{ }^{2}, \mathrm{Z}_{2}{ }^{2}, \mathrm{Z}_{3}{ }^{2}$ and $\mathrm{Z}_{4}{ }^{2}$ the subject of the formula, substituting into eqn. (5) and factorizing gives:
$Y=\sum \beta_{i} Z_{i}+\sum \beta_{i j} Z_{i} Z_{j}$
where $\quad \beta_{i}=b_{0}+b_{i}+b_{i i}$ and $\beta_{i j}=b_{i j}-b_{i i}+b_{i j} \quad(i, j=1,2,3,4)$

### 1.2 The Coefficients of the Regression Equation

If the $\mathrm{K}^{\mathrm{th}}$ response (compressive strength for the serial number k ) is $\mathrm{y}^{(\mathrm{k})}$, substituting the vector of the corresponding set of variables, i.e., $Z^{(\mathrm{K})}=\left[\mathrm{Z}_{1}^{(\mathrm{K})}, \mathrm{Z}_{2}{ }^{(\mathrm{K})}, \mathrm{Z}_{3}{ }^{(\mathrm{K})}, \mathrm{Z}_{4}{ }^{(\mathrm{K})}\right]^{\mathrm{T}}$ (see Table 1) into eqn.(7) generates the explicit matrix of equation (8):

$$
\begin{equation*}
\left[y^{(k)}\right]=[B][Z] \tag{8}
\end{equation*}
$$

Re-arranging eqn. 8 yields:

$$
\begin{equation*}
[Z]^{T}[B]^{T}=\left[y^{(k)}\right] \tag{9}
\end{equation*}
$$

Solution of eqn. (9) gives the values of the unknown coefficients of the regression equation (eqn. 7).

### 1.3 The Student's T-test

The unbiased estimate of the unknown variance $S^{2}$ is given in [3],
$S_{Y}^{2}=\frac{\sum\left(y_{i}-\stackrel{v}{y}\right)^{2(10)}}{n-1}$
If $a_{i}=z_{i}\left(2 z_{i}-1\right), a_{i j}=4 z_{i} z_{j}$; for $(1 \leq i \leq q)$ and $(1 \leq i \leq j \leq q)$ respectively.
Then,
where $\varepsilon$ is the error of the predicted values of the response.
The t -test statistic is given in [3]

$$
\begin{equation*}
\varepsilon=\sum a_{i}^{2}+\sum a_{i j}^{2} \tag{11}
\end{equation*}
$$

where $\Delta y=y_{0}-y_{t} ; y_{0}=$ observed value, $y_{t}=$ theoretical value; $n=$ number of replicate observations at every point; $\varepsilon=$ as defined in eqn.(11).

### 1.4 The Fisher's Test

The Fishers-test statistic is given by

$$
\begin{equation*}
t=\left(\frac{\Delta y \sqrt{n}}{S_{Y}}\right) \sqrt{(1+\varepsilon)} \tag{12}
\end{equation*}
$$

The values of $S_{1}$ (lower value) and $S_{2}$ (upper value) are calculated from equation (10).
(13) $F=\frac{S_{1}{ }^{2}}{S^{2}{ }_{2}}$

### 2.0 Materials and Method

### 2.1 Preparation, Curing and Testing of Cube Samples

The aggregates were sampled in accordance with the methods prescribed in BS 812: Part 1:1975 [4]. The test sieves were selected according to BS 410:1986 [5]. The water absorption, the apparent specific gravity and the bulk density of the coarse aggregates were determined following the procedures prescribed in BS 812: Part 2: 1975 [6]. The Los Angeles abrasion test was carried out in accordance with ASTM. Standard C131: 1976 [7]. The sieve analyses of the fine and coarse aggregate samples were done in accordance with BS 812: Part 1: 1975 [4] and satisfied BS 882:1992[8]. The sieving was performed by a sieve shaker. The water used in preparing the experimental samples satisfied the conditions prescribed in BS 3148:1980 [9]. The required concrete specimens were made in threes in accordance with the method specified in BS 1881: 108:1983 [10]. These specimens were cured for 28 days in accordance with BS 1881: Part 111: 1983 [11]. The testing was done in accordance with BS 1881: Part 116:1983 [12] using compressive testing machine.

Table 1:Selected Mix Ratios and Component's Fraction Based on Osadebe's Second Degree Polynomial

| S/NO | MIX RATIOS |  |  |  | COMPONENT'S FRACTION |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{S}_{1}$ | $\mathbf{S}_{2}$ | $\mathbf{S}_{3}$ | $\mathrm{S}_{4}$ | $\mathrm{Z}_{1}$ | $\mathbf{Z}_{2}$ | $\mathrm{Z}_{3}$ | $\mathrm{Z}_{4}$ |
| 1 | 0.88 | 1 | 2.5 | 4 | 0.105 | 0.119 | 0.298 | 0.477 |
| 2 | 0.86 | 1 | 2 | 4 | 0.109 | 0.127 | 0.254 | 0.509 |
| 3 | 0.855 | 1 | 2 | 3.5 | 0.116 | 0.136 | 0.272 | 0.476 |
| 4 | 0.86 | 1 | 2 | 3 | 0.125 | 0.146 | 0.292 | 0.437 |
| 5 | 0.855 | 1 | 2.5 | 3.5 | 0.109 | 0.127 | 0.318 | 0.446 |
| 6 | 0.865 | 1 | 3 | 4 | 0.098 | 0.113 | 0.338 | 0.451 |
| 7 | 0.87 | 1 | 3 | 4.5 | 0.093 | 0.107 | 0.320 | 0.480 |
| 8 | 0.86 | 1 | 1.5 | 3 | 0.135 | 0.157 | 0.236 | 0.472 |
| 9 | 0.86 | 1 | 2.75 | 3.4 | 0.107 | 0.125 | 0.343 | 0.424 |
| 10 | 0.865 | 1 | 2 | 4.25 | 0.107 | 0.123 | 0.246 | 0.524 |
| CONTROL |  |  |  |  |  |  |  |  |
| 11 | 0.858 | 1 | 2.43 | 4 | 0.104 | 0.121 | 0.293 | 0.483 |
| 12 | 0.86 | 1 | 1.75 | 3 | 0.130 | 0.151 | 0.265 | 0.454 |
| 13 | 0.855 | 1 | 2.4 | 3.5 | 0.110 | 0.129 | 0.309 | 0.451 |
| 14 | 0.86 | 1 | 2 | 4.33 | 0.105 | 0.122 | 0.244 | 0.529 |
| 15 | 0.862 | 1 | 2.25 | 3.13 | 0.119 | 0.138 | 0.311 | 0.432 |
| 16 | 0.858 | 1 | 2 | 2.83 | 0.128 | 0.150 | 0.299 | 0.423 |
| 17 | 0.858 | 1 | 2.67 | 3.29 | 0.110 | 0.128 | 0.342 | 0.421 |
| 18 | 0.86 | 1 | 3 | 4.13 | 0.096 | 0.111 | 0.334 | 0.459 |
| 19 | 0.855 | 1 | 2 | 3 | 0.125 | 0.146 | 0.292 | 0.438 |
| 20 | 0.8595 | 1 | 2.75 | 4 | 0.100 | 0.116 | 0.319 | 0.465 |

LEGEND: $S_{1}=$ water/cement ratio; $S_{2}=$ Cement; $S_{3}=$ Fine aggregate; $S_{4}=$ Coarse aggregate, $Z_{i}=S_{i} / S$
Table 2: $\mathbf{Z}^{\mathrm{T}}$ Matrix

| $Z_{1}$ | $Z_{2}$ | $Z_{3}$ | $Z_{4}$ | $Z_{1} Z_{2}$ | $Z_{1} Z_{3}$ | $Z_{1} Z_{4}$ | $Z_{2} Z_{3}$ | $Z_{2} Z_{4}$ | $Z_{3} Z_{4}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.105 | 0.119 | 0.298 | 0.477 | 0.013 | 0.031 | 0.050 | 0.036 | 0.057 | 0.142 |
| 0.109 | 0.127 | 0.254 | 0.509 | 0.014 | 0.028 | 0.056 | 0.032 | 0.065 | 0.129 |
| 0.116 | 0.136 | 0.272 | 0.476 | 0.016 | 0.032 | 0.055 | 0.037 | 0.065 | 0.129 |
| 0.125 | 0.146 | 0.292 | 0.437 | 0.018 | 0.037 | 0.055 | 0.042 | 0.064 | 0.127 |
| 0.109 | 0.127 | 0.318 | 0.446 | 0.014 | 0.035 | 0.049 | 0.041 | 0.057 | 0.142 |
| 0.098 | 0.113 | 0.338 | 0.451 | 0.011 | 0.033 | 0.044 | 0.038 | 0.051 | 0.153 |
| 0.093 | 0.107 | 0.320 | 0.480 | 0.010 | 0.030 | 0.045 | 0.034 | 0.051 | 0.154 |
| 0.135 | 0.157 | 0.236 | 0.472 | 0.021 | 0.032 | 0.064 | 0.037 | 0.074 | 0.111 |
| 0.107 | 0.125 | 0.343 | 0.424 | 0.013 | 0.037 | 0.046 | 0.043 | 0.053 | 0.146 |
| 0.107 | 0.123 | 0.246 | 0.524 | 0.013 | 0.026 | 0.056 | 0.030 | 0.065 | 0.129 |

## Optimization of the Compressive... Etienne and Adinna J of NAMP

Table 3 Responses of the Mix Ratios

| $S / \mathrm{NO}$ | $S_{l}$ | $S_{2}$ | $S_{3}$ | $S_{4}$ | RESPONSES[N/mm ${ }^{2}$ ] |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |
| 1 | 0.88 | 1 | 2.5 | 4 | 19.21 |
| 2 | 0.86 | 1 | 2 | 4 | 20.00 |
| 3 | 0.855 | 1 | 2 | 3.5 | 21.23 |
| 4 | 0.86 | 1 | 2 | 3 | 22.24 |
| 5 | 0.855 | 1 | 2.5 | 3.5 | 21.08 |
| 6 | 0.865 | 1 | 3 | 4 | 14.95 |
| 7 | 0.87 | 1 | 3 | 4.5 | 14.15 |
| 8 | 0.86 | 1 | 1.5 | 3 | 24.19 |
| 9 | 0.86 | 1 | 2.75 | 3.4 | 21.59 |
| 10 | 0.865 | 1 | 2 | 4.25 | 19.57 |

LEGEND: $\mathrm{S}_{1}=$ water/cement ratio; $\mathrm{S}_{2}=$ Cement; $\mathrm{S}_{3}=$ Fine aggregate; $\mathrm{S}_{4}=$ Coarse aggregate

### 2.2 Testing the Fit of the Quadratic Polynomials

The polynomial regression equation developed was tested to see if the model agreed with the actual experimental results.
The null hypothesis was denoted by $\mathrm{H}_{0}$ and the alternative by $\mathrm{H}_{1}$.


Figure 1:Grading Curve for the Fine Aggregate


Figure 2:Grading Curve for the Crushed Granite Chippings

## 3. 0 Results and Discussion

### 3.1 Physical and Mechanical Properties of Aggregates

Sieve analyses of both the fine and coarse aggregates were performed and the grading curves shown in Figures 1 and 2. These grading curves showed the particle size distribution of the aggregates. The maximum aggregate size for the granite chipping was 20 mm and 2 mm for the fine sand. The granite chippings had water absorption of $2.7 \%$, moisture content of $44.2 \%$, apparent specific gravity of 2.26 , Los Angeles abrasion value of $22 \%$ and bulk density of $2072.4 \mathrm{~kg} / \mathrm{m}^{3}$.

## Optimization of the Compressive... Etienne and Adinna J of NAMP

### 3.2 The Regression Equation for The Compressive Strength Tests Results

Solution of Eqn.(9), given $\mathrm{Z}^{\mathrm{T}}$ values of Table 2 and the responses (average compressive strengths) in Table 3 gave the values of the unknown coefficients of the regression equation (Eqn.7) as follows: $\beta_{1}=-2878.52, \beta_{2}=1989.71, \beta_{3}=-$ $133.53, \beta_{4}=-160.83, \beta_{12}=135.92, \beta_{13}=-13202.90, \beta_{14}=4739.91, \beta_{23}=11461.35, \beta_{24}=-2309.10, \beta_{34}=638.92$. Thus, from Eqn.(7), the model equation based on Osadebe's second-degree polynomial was given by:
$\hat{Y}=-2878.52 \mathrm{Z}_{1}+1989.71 \mathrm{Z}_{2}-133.53 \mathrm{Z}_{3}-160.83 \mathrm{Z}_{4}+135.92 \mathrm{Z}_{1} \mathrm{Z}_{2}-13202.90 \mathrm{Z}_{1} \mathrm{Z}_{3}+4739.91 \mathrm{Z}_{1} \mathrm{Z}_{4}+11461.35 \mathrm{Z}_{2} \mathrm{Z}_{3}-$ $2309.10 \mathrm{Z}_{2} \mathrm{Z}_{4}+638.92 \mathrm{Z}_{3} \mathrm{Z}_{4}$
, where $\hat{Y}$ represented the compressive strength of the mixture in $\mathrm{N} / \mathrm{mm}^{2}$.

### 3.3 Fit of the Polynomial

Selected mix ratios and component's fraction based on Osadebe's second degree polynomial was shown in Table 1. The polynomial regression equation developed, was tested to see if the model agreed with the actual experimental results. There was no significant difference between the experimental and the theoretically expected results. The null hypothesis, $\mathrm{H}_{0}$ was satisfied.

Table 4 t -Statistic for the controlled points, granite chippings concrete compressive test, based on Osadebe's

| ResponseSymbol | i | j | $\mathrm{a}_{\mathrm{i}}$ | $\mathrm{a}_{\mathrm{ij}}$ | $\mathrm{a}_{\mathrm{i}}{ }^{2}$ | $\mathrm{a}_{\mathrm{ij}}{ }^{2}$ | $\varepsilon$ | y | $\hat{\mathbf{Y}}$ | t |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | -0.082 | 0.050 | 0.007 | 0.003 | 0.4835 | 23.20 | 23.88 | -2.43 |
|  | 1 | 3 | -0.082 | 0.121 | 0.007 | 0.015 |  |  |  |  |
|  | 1 | 4 | -0.082 | 0.120 | 0.007 | 0.0399 |  |  |  |  |
|  | 2 | 3 | -0.092 | 0.142 | 0.01 | 0.020 |  |  |  |  |
|  | 2 | 4 | -0.092 | 0.233 | 0.013 | 0.0543 |  |  |  |  |
|  | 3 | 4 | -0.121 | 0.566 | 0.016 | 0.3202 |  |  |  |  |
|  | 4 | - | -0.017 | - | 0.001 | - |  |  |  |  |
|  |  |  |  | $\Sigma$ | 0.052 | 0.4316 |  |  |  |  |
|  | Similarly |  |  |  |  |  |  |  |  |  |
| $\mathrm{C}_{2}$ | - | - | - | - | - | - | 0.4809 | 22.64 | 22.61 | 0.11 |
| $\mathrm{C}_{3}$ | - | - | - | - | - | - | 0.9234 | 25.35 | 26.11 | -3.10 |
| $\mathrm{C}_{4}$ | - | - | - | - | - | - | 0.4642 | 23.49 | 24.23 | -2.63 |
| $\mathrm{C}_{5}$ | - | - | - | - | - | - | 0.5053 | 18.58 | 18.38 | 0.71 |
| $\mathrm{C}_{6}$ | - | - | - | - | - | - | 0.4966 | 23.77 | 24.33 | -2.03 |
| $\mathrm{C}_{7}$ | - | - | - | - | - | - | 0.5707 | 19.1 | 18.69 | 1.52 |
| $\mathrm{C}_{8}$ | - | - | - | - | - | - | 0.5624 | 19 | 18.29 | 2.61 |
| $\mathrm{C}_{9}$ | - | - | - | - | - | - | 0.4949 | 23.44 | 24.01 | -2.04 |
| $\mathrm{C}_{10}$ | - | - | - | - | - | - | 0.5236 | 20.46 | 20.72 | -0.94 |

## Second -Degree Polynomial

LEGEND: $\mathrm{c}_{\mathrm{i}}=$ =response; $\mathrm{a}_{\mathrm{i}}=\mathrm{z}_{\mathrm{i}}\left(2 \mathrm{z}_{\mathrm{i}}-1\right) ; \mathrm{a}_{\mathrm{ij}}=4 \mathrm{z}_{\mathrm{i}} \mathrm{z}_{\mathrm{j}} ; \varepsilon=\Sigma \mathrm{a}^{2}{ }_{\mathrm{i}}+\Sigma \mathrm{a}^{2}{ }_{\mathrm{ij}} ;$ y $=$ experimentally-observed value; $\hat{\mathrm{Y}}=$ theoretical value; $\mathrm{t}=\mathrm{t}$-test statistic

## 3.4 t -Value From Table

The student's t-test had a significance level, $\alpha=0.05$ and $\mathrm{t}_{\alpha /(\mathrm{ve})}=\mathrm{t}_{0.005(9)}=3.69$ from the standard table [13]. This was greater than any of the $t$ values calculated in Table 4. Therefore, the regression equation for the unwashed gravel concrete was adequate.

### 3.5 F-Statistic Analysis

The sample variances $S_{1}{ }^{2}$ and $S_{2}{ }^{2}$ for the two sets of data were not significantly different (Table 5). It implied that the error(s) from experimental procedure were similar and that the sample variances being tested are estimates of the same population variance. Based on eqn.(10), we had that $\mathrm{S}_{\mathrm{K}}{ }^{2}=51.88 / 9=5.76, \mathrm{~S}_{\mathrm{E}}{ }^{2}=74.5 / 9=8.28 \& \mathrm{~F}=5.76 / 8.28=0.696$. From Fisher's table [13], $\mathrm{F}_{0.95(9,9)}=3.3$, hence the regression equation for the compressive strength of the unwashed gravel concrete was adequate.

Optimization of the Compressive... Etienne and Adinna J of NAMP
Table 5 F -Statistic For The Controlled Points, Granite Concrete Compressive Strength, Based On Osadebe's Second -Degree Polynomial

| Response symbol | $\mathrm{Y}_{\mathrm{K}}$ | $\mathrm{Y}_{\mathrm{E}}$ | $\mathrm{Y}_{\mathrm{K}^{-}} \breve{\mathrm{Y}}_{\mathrm{K}}$ | $\mathrm{Y}_{\mathrm{E}^{-}} \breve{\mathrm{Y}}_{\mathrm{E}}$ | $\left(\mathrm{Y}_{\mathrm{K}^{-}} \breve{\mathrm{Y}}_{\mathrm{K}}\right)^{2}$ | $\left(\mathrm{Y}_{\mathrm{E}^{-}} \mathrm{Y}_{\mathrm{E}}\right)^{2}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{C}_{\mathbf{1}}$ | 23.2 | 23.88 | 1.30 | 1.75 | 1.68 | 3.07 |
| $\mathbf{C}_{\mathbf{2}}$ | 22.64 | 22.61 | 0.74 | 0.49 | 0.54 | 0.24 |
| $\mathbf{C}_{\mathbf{3}}$ | 25.35 | 26.11 | 3.45 | 3.98 | 11.88 | 15.87 |
| $\mathbf{C}_{4}$ | 23.49 | 24.23 | 1.59 | 2.10 | 2.52 | 4.42 |
| $\mathbf{C}_{5}$ | 18.58 | 18.38 | -3.32 | -3.74 | 11.04 | 13.99 |
| $\mathbf{C}_{6}$ | 23.77 | 24.33 | 1.87 | 2.21 | 3.49 | 4.88 |
| $\mathbf{C}_{7}$ | 19.1 | 18.69 | -2.80 | -3.44 | 7.86 | 11.82 |
| $\mathbf{C}_{\mathbf{8}}$ | 19 | 18.29 | -2.90 | -3.83 | 8.43 | 14.69 |
| $\mathbf{C}_{\mathbf{9}}$ | 23.44 | 24.01 | 1.54 | 1.88 | 2.36 | 3.54 |
| $\mathbf{C}_{\mathbf{1 0}}$ | 20.46 | 20.72 | -1.44 | -1.41 | 2.08 | 1.98 |
| $\boldsymbol{l}$ | 219.03 | 221.25 |  | 51.88 | 74.5 |  |

Legend: $\breve{\mathrm{y}}=\Sigma \mathrm{Y} / \mathrm{n}$ where y is the response and n , the number of observed data (responses)
$\mathrm{Y}_{\mathrm{k}}$ is the experimental value (response)
$\mathrm{Y}_{\mathrm{E}}$ is the expected or theoretically calculated value(response)

### 3.6 Conclusion

The strengths (responses) of concrete were a function of the proportions of its ingredients: water, cement, fine aggregate and coarse aggregates. Since the predicted strengths by the model were in total agreement with the corresponding experimentally -observed values, the null hypothesis was satisfied. This meant that the model equation was valid.

## References

[1] Neville, A. M., Properties of Concrete, Third Edition, Pitman, London, 1995.
[2] Osadebe, N.N., Generalised Mathematical Modelling of Compressive Strength of Normal Concrete as a Multivariant function of the properties of its constituent components, Lecture, University of Nigeria, Nsukka, 2003.
[3] Biyi, A., Introductory Statistics, Abiprint \& Pak Ltd., Ibadan, 1975.
[4] BS 812: Part 1 Sampling, shape, size and classification. Methods for sampling and testing of mineral aggregates, sands and fillers. British Standards Institution Publication, London, 1975.
[5] BS 410 Specification for test sieves. British Standards Institution Publication, London, 1986.
[6] BS 812: Part 2 Methods for sampling and testing of mineral aggregates, sands and fillers. Physical properties. British Standards Institution Publication, London, 1975.
[7] ASTM. Standard C 131 Tests for Resistance to Abrasion of Small Size Coarse Aggregate by Use of the Los Angeles Machine. American Society for Testing and Materials Publication, New York, 1976.
[8] BS 882 Specification for aggregates from natural sources for concrete. British Standards Institution Publication, London, 1992.
[9] BS 3148 Tests for water for making concrete. British Standards Institution Publication, London, 1980.
[10] British Standard 1881: Part 108 Method formaking test cubes from fresh concrete. British Standards Institution Publication, London, 1983.
[11] British Standard 1881: Part 111 Method of normal curing of test specimens $\left(20^{\circ} \mathrm{C}\right)$. British Standards Institution Publication, London, 1983.
[12] British Standard 1881: Part 116 Method for determination of compressive strength of concrete cubes. British Standards Institution Publication, London, 1983.
[13] Nwaogazie, I.L., Probability and Statistics for Science and Engineering Practice, University of Port Harcourt Press, Port Harcourt, 2006

