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Abstract

This paper studied the parameter associated witle ttisk adjusted non-
Linear Black-Scholes option pricing model which ineporates the transaction
cost and the risk of the portfolio measures.The s®rince, uniqueness and
continuous dependence of the weak solution of thekradjusted Black—Scholes
model are established.The existence of the optipadameters is established.
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1.0 Introduction
Option price model for incomplete market proposgdl] looked at the case were the volatibtyf the underlying
stock process is uncertain but bounded from beflod above by given constamts< o,.The risk from the unprotected
volatile portfolio is described by the variance the synthetized portfolio.Transaction costs as weslithe volatile
portfolio risk depend on the time —lag between twasecutive transactions [2].Minimizing their suielgs the optimal
length of the hedge interval —time lag.This leaas tfully nonlinear parabolic PDE.If transactiorstoare taken into
account perfect replication of the contingent clémo longer possible.Modeling the short rate r(t) by a solution to
a one factor stochastic differential equation[3].
dS = u(s,t)dt + o(s,t)dw (1.1)
Whereu(S, t)dt represent a trend or drift of the process a(f) t) represents volatility part of the process. Thé ris
adjusted Black-Scholes equation can be viewed a&sgjaation with a variable volatility coefficient
2 1
0.V + 72257 (1 - pu(S95V)3 ) 92V + rsdsV — 1V = 0, (1.2)
1
, L
Whereo?(s,t) depends on a solutidh=V(s,t)and u =3 (%)3, c is the transaction cost and R the portfolid ris
measure. Iz = 0 we recover the equation discussed in [4].
1
Taking82(s,t) = a2(1 — u(S02v (S, t))3, equation(1.2) becomes
=2
atV+%52652V+r565V—rV =0. (1.3)
By setting S = e*, u(x,t) = V(e*, t)and h(e*) = g(x), we obtain the following parabolic PDE .
2
D) _ g0 (A=) YD 4 Ay, ) = 0 (5, ) €Q ,u(x,0) = g(x) ER, (1.4)

at dx2 dx

1
204 _ 2 3
o7 A-p($5v(st)3 and A =r.

whergy(x) is the pay-off function. Faf > 0,Q = R x (0,T),a =
In this paper we discuss the parameters that adénlg the Risk adjusted Black-Scholes option pgaimodel such that
equation (1.4) exhibits the desired behavior. Mmexisely, let

Paa =1{q = (@, 1) € [amin, Amax] X [Amin, Amax]},
where

Upmin > 0 and Ay, > 0.
Defined a functional(q) by

J@) = llu(@, ) = zallZ o) (1.5)
where the data, can be thought of as the desired value(@f; t). The parameter identification problem for (1.4}wi
the objective function (1.5) is to find

q" = (a",A") € Pyq
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satisfying

J(@") = infoep 4] (@) (1.6)
Let

q = u(q)

from,P in to C([0, T]; H be the solution map . In what follows, the exiseand uniqueness of the weak solution of (1.4)
is established in the next section. Continuityhef solution with respect to data is establisheskition 3.

2.0  Existence and Uniqueness of weak solution
Since the type of equation in (1.4) do not beland2(R) we introduce weighted lebesgue and sobolev spaces
Lz (R)andHg (R) for B > 0

as follows.

L (R) = {u € L}, (R):ue P € I2(R)} (2.1)
HE(R) = {u € Li,(R):ue P € [2(R),u'e P € 12(R)}. (2.2)
The respective inner products and norms are defiged

(u, v)L%(R) = [Luve ?Fldx, (2.3)
(u, U)H},(R) = [puve P¥ldx + [ u'v'e 2Pl dx (2.4)
1
llull 22y = (Jzlul?e 2l dx)? (2.5)
1

||u||Hé(R) = (fje|u|2e_2mx|dx + fR|u’|2e—2f”'"'dx)2. (2.6)
We define the dual space Iebg(ﬂe) as

(H& (R)) = {u\u: Hg(R) - R is linear and continuous}. 2.7)

The duality pairing betweet (R) anc(Hé (32))* is given by
(u,v) = fRIuIZe‘Zm"'dx. (2.8)
In what follows, we state,

Lemmaliletf = L3(R).For@ € CF°, supp® = (-1,1), [, 0d (x)dx = 1,and 9. =0 (%),
then
Be* f = f in Lz(R). (2.9
Proof: Supposey = e 2f1*l, then we have
(Qe *f)q = (Qe * (fCI) + (Qe *f)q - (De * (fQ)) (2-10)
Sincef.g € L? and @, = (f.q) in L? , it suffices to show that

lgellz = ((@e * ).q = P * (f-I) >0 for e > 0. (2.11)
The fundamental theory of calculus tpgives

9 = [ 0 = MO (a() — q(»))dy. (2.12)
Usingsupp®. = (¢, €), we getge ()| < [, 10 Cx = MIIf )1 (2€ suplq’ () )dy
= [ 180G = NI OI(2€ suplq’ (v + )Ddy = ge(x)(2.13)
Sinceg, (x) = L?uniformly, andg.(x)| < 2€|g:(x)|, thus
[[ge(x)l,2 = Oase — 0.
Lemma 2 D(R) the space of test function®) is dense irHé(ﬂz).
Proof .Letf € H;(R) and ® € C*such that

1, iflx]| <1
¢ = {0, i;:x: >2
Now we show that
fo=(f.@(e0))) s @ € €3,
where
o =20 (%), f, > finHZ(R). ie
fe = f and Vf, - Vf in L3(R) (2.14)

Vfe = (f-9(()) * @ + € (f.2(())) * @e. (2.15)
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It suffices to show

(f.o€()) * @ > f inL3(R). (2.16)
By the Lebesgue Dominated convergence theorem ¢5jat
f-®(e()) - fin L5(R). (2.17)

Hence Lemma 1 concludes the proof.
SinceD(R) is dense iz (R) and L3(R), the lemma follows immediately.

Lemma 3:H;(R) © L3(R) © (HE(R))*, from Gelfand triple.
Note. SinceD(R) is dense irH;(R),the definition of.,.) allows us to interprete the operatdras a mapping
from H} - (H})".
For our simplicity, we use
V=HyR),V" = (Hé(ﬂz))*and-l = I3(R)
To use the variational formulation let us definbe following bilinear form onV x V
AW, v) = af qu'v'e 2P 4 A uve=2P¥ldx — (A — ) [ ju've?FI*ldx (2.18)
Fora > 0and A > 0.
One can showag, ) (u,v) is bounded and coercive ¥ .Define linear operatod = a):D(Aw.) =
{wu €V, Agpu € V3}into V' byag ., v) = (A, u,v) for allu € D(Ay) forallv e V.
Definition 4. Let X be a Banach space and € § witha < b,1 < p < «.ThenL?(0, T; X) andL®(0, T ; X)denote the

space of measurable functiomslefined on(a, b) with values in/ such that the function— ||u(.,t)||x is square
integrable and essentially bounded. The respentivens are defined by
1

el e = (f; TG, OlFde)? (2.19)
lulloor;x) = ess. supasespllul, Ollx- (2.20)
Definition 5.A functionu: [0, T] — V is a weak solution of (1.4) if
() u € L2(0, T; V)andu, € L2(0,T; V*);
(ii) For everye V, (u.(t),v) + a2 (u(t), v) = 0 for t pointwise almost every (a.e.) [, T]; u(0) = u,.
Note .The time derivativa, understood in the distributionsense.The followimg lemmas are of critical
importance for the existence and uniqueness ofviiak solutions.
Lemma 6leto H o V*If u € L?(0,T;V) ,u' € L>(0,T;V*) thenu € C([0, T]; H). Moreover, for any € V ,the real
—valued functiort - ||u(t)|l,” is weakly differentiable ir0, T) and satisfies

S {lul?} = @' u) (2.21)
For proof, see [6]
Lemma 7(Gronwall’'s Lemma) Let(t) be a nonnegative, summable function[0jT] which satisfies the integral
inequality

£ < € [ E(s)ds + Gy, 2.22)

for constant; C, = 0 ,almost everywhere€ [0.T].Then
&) <C,(1+Cite“Haeom <t <T. (2.23)
In particular, if
&) < €, [, &(s)ds a.e on0 < t < T thené(s) = 0 a.e on[0,T]. (2.24)
For proof, se¢7].
Lemma 8The weak solution of (1.4) is unique if it exists.
Proof. Letu, andu, be two weak solution of (1.4). Let= u,; — u,.To prove Lemma 8 it suffices to show that
u = 0 pointwise a.e.of0, T].since(u,(t), v) + a1 (u(t), v) = 0 for anyv € V,we takev = u € V to get

(ue (), u) + agg (), u) =0 (2.25)
(2.25) is true point wise a.s .0, T].Using (2.1) and the coercivity estimate, we have

1d 5 5
g Il < vilully, u(0) =0
For somey > 0.By Lemma 7|u|ly = 0 for allt € [0, T].Thusu = 0 pointwise a.e iff0, T].
To show existence of the weak solution of (1.4) fiwst show existence and uniqueness of approxonati
solution. Now we define the approximate solutiorflo#)
Definition9. A functionu,,: [0, T] — V,, is an approximate solutions of (1.4) if
(i) um € L*(0,T,Vy)and W, € L2(0,T, Vyy);
(i) for everyv € V;, and(uy, (t), v)H + a(q 4 (uy (t), v) = 0 pointwise a.e irfo, T]
(iii) up (0) = Py
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To prove the existence of approximate solutiontakev = u,, in

(ue (0, u) + a0 (u(®),u) =0
to get following system of ODEs
Cor, + T, 5l = 0,61 (0) = g (2.26)
where
Cx € H,Ck_ € Hfor0 < t < T,a*(t) = a(wj, wy),andg’ = (g, wj)HforC: [0,T] - RV,
equation(2.26)can be written as
Cu, + A()Cy = 0,Cy(0) =7, (2.27)
since
A € L°(0,T; RM™M forCy, = y(Cy).
Equation (2.27) can be written as
Y(Cu () = § = [ AG)Cn(s) ds. (2.28)
The following lemma is immediate from contractioapping theorem and (2.28).
Lemma 10: For anyf € N,there a unique approximate solutiap: [0, T] - V;,, of (2.28).
The following theorem provides the energy estinfiatepproximate solutions.

Theorem11There exist a consta@idepending only off and Q such that the approximate solutioy) satisfies
”um”LZ(o,T;H) + |Ium||L°°(0,T;V) + ”umf”LZ(O,T;H) < C"g“H (2-29)
Proof: For every € u,,, we havéuwy, (t), v)H + a(q ) (un(t), v) = 0. Taker € u,,(¢),then we have
(up, (8), VIH + agg,a) (uy (t), v) = 0,point wise a.e if0, T). (2.30)
Using (2.30) and the coercivity estimate, we fihalt there exists constamis> 0,y > 0 such that
3a (€ Tunllf) + pe=2relmly < o, (231)
Integrating (2.31) with respect to t, using thdiaticonditioru,,(0) = P,(g), and|B, (Dl < llgllx,
we get
—= (e luylI3) + pe~?rthumlly, (2.32)
Taking the supremum ovéd, T],we get
”um”Lz(o,T;H) + “um“Lz(o,T;V) <Cligllz. (2.33)
Sinceuy, (t) € Vy, we have

(ua, (D.0)H
[ %v #0. (2.34)

Using the notion of approximate solution and bowm#ss of A we have
el oy + Mtz oy + ttmll 2 gy < Cllglli (2.35)
To complete the proof of weak solution, we now stthes convergence of the approximate solutions liygus
weak compactness argument.
Definition 12: Let 12(0, T; V*) bethe dual space df(0,T;V).Let f € L2(0,T;V*) and
u € L2(0,T; V),then we saw,, — u in L>(0,T; V) weakly if
L@, un(@)dt - [, u®)dt ¥ f € L2(0,T;V7) (2.36)
Lemma 13A subsequencéu,,} of approximate solutions,, converge weakly inL?(0,T;V*) to a weak solution
u € C([0,T]; H) n L2(0,T;V)of (1.4) withu, € L?(0,T; V*).Moreover,it satisfies
”u”L°°(0,T;H) + ”u”LZ(o,T;V) + “ut”Lz(o,T;H) < Cliglly (2.37)
Proof. Theorem 11 implies that the approximatetgmis {u,,,} are bounded ir?(0,T; V) and their derivatives
{umt} are bounded in2(0,T; V*). By the Banach-Alaoglu theorem [8], we can extractubsequende,,}
such that weakly,
Uy = u N L2(0,T; V), Uy, = Upin L2(0,T; V) (2.38)
Let @ € Cy° (0,T) be a real-valued test function andeVy for some N =N .Replacingv by
P(Ow in (up, (0, V)y + agn Un (), v) =0
and integrating from 0 toT, we get.

j (1upg, (©), (OWpdlt + f Qe (un (6), $(OW)dE = 0 for M = N
0 0

taking the limit ag¥ — oo,we get

J+ = SUPyev;,

Jy (upg, (0, w)  dt = [ (u,, Bw) dt (2.39)
by using boundedness af, 4),we get

1y e Qun (£), pOW)dE = [ agg ) ((t), B()w) dt (2.40)

using boundedness ofy z),we get

(ue (), w) + a@g(w,w) =0 (2.41)
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point wise a.e irff0, T)since (2.41) is true for alv € Vy,
Uy, Vuand (2.42)
is dense in V,so (2.42) holds for alb € V . Now it remains to show that0) = u,.Using (2.42),integrating by parts
and using Galerkin approximation we have
(u(0),w) = (ug,w)as M - o
for everyw € V,,.Thusu(0) = u,.

3.0 Existence of Optimal Parameter

Lemma 14 .Let v € V .Then the mappinfx, A) = Ay 4yv from

Paa = {q = (@, ) € [@min, Umax] X [Amin, Amax]}iNtOV' is continuous.

Proof . Suppose thgt — g in R? as n » «.We denoted = 4, 4, and4,, = Ag, 1,-We claim that
14, = A)vllyr = 0

asn - oo. Letw € V with||w|| < 1.Then

(4, — A, w)?

2
sf (|an—a||u'||w'|dx)2+<f |A‘n—A||u||w|dx) +(f |An—A||u'||w|dx)
R R R
2
+f (lan — allu'[Iwldx)
R

<2|a, — alzf [w'|(x)?dx + | A, —Alzf [u'|(x)?dx + |A, —Alzf [u'|(x)%dx - 0
3 ® ®

asn —
Lemma 15.Suppose that, 4,, —» a, Ain R?, andv,, —» v weakly in V as — o.Then4, v, - A, weakly inv'.
Proof.Letw € V then.
|<An,vn,w> - (Avrw)| = |(AnW! vn,) - <va)| < |(An - A>W! vnl + |<AW! Un — U)l (243)
Since a weakly convergent sequence is boundedawe h
{An — Aw, vy | < |[Apw — AW[[V' |lv, || < cllApw — AW|IV" - 0
as — o Lemma 14.The second term
|(An,vn, - V)l -0

sincey,, - v weakly.
Lemmal6letq, € P,4. Then the solution magp — u(q) from®P into C([0, T]; H) is continuous.

Proof.Letq, —» q in q,q asn — «.Sincel/(t; q) is the weak solution of (1.4) for apy¥ P,, we have the

following estimate.

1w (& @)oo,y + 1w (65 @), 2oy + ”th(ti qn)||L2(O’T;H) < Cliglly.(2.44)

where C is constant independent @fe P,,. Estimate (2.44) shows thatU(t;q) is bounded in
w(0,T).Since/ (0, T) is reflexive.we can choose a sub-sequer(eeq,,) weakly convergent to a functianin

W(0,T).The fact thatu,(t; q,) is bounded in W(0,T) implies thatuy(t,q,) is bounded in.2(0,T;V),so

u(t; qn, )weakly convergent to a functionin L?(0,T; H).SinceV is compactly imbedded i/ ,then by the

classical compactness theoremid}; g,) — z in L*?(0,T; H),.By (2,44) the derivative'(t; q,,) and z' are
uniformly  bounded in L*(0,T;H) .Therefore functions {u(t;qy, ),z }:;1 are equicontinuous in
C([0,T]; H)..Thusu(t; gn,) = z inC([0,T]; H) ...In particularu(t; g,,) — z(t) in H andu(t; q,,) — z weakly

in V for anyt € [0,T].By lemma 154, ] u(t; g,) — Az(t) weakly inV’.Now we see that z satisfies the
equation given in definition 5,ie it is the weakwtmn u(q). The uniqueness of the weak solution implies that
u(gqn) » u(qlasn > in
C([0,T]; H) for the entire sequenedq,) and not for its subsequence. Thus; q,)) = u(q) in C([0,T]; H)
asq, — q in P as claimed.

4.0 Conclusion
The parameter associated with the risk adjustec¢kB&holes option model was studies where the existeand
uniqueness of weak solution of the risk adjusteatBIScholes option pricing model with variable vitity coefficient

1
given asé?(s,t) = a2(1 — u(S02v(S,t))s was established. The study adjusted the volatilityincorporate both
transaction cost and portfolio risk measures amdiaity of the weak solution was discussed follogvthe method in

(4].

Journal of the Nigerian Association of Mathematic&thysics Volume 28 No. 1, (November, 2014), 4694 4

473



Existence of Optimal Parameters... Osuand OlunkwaJ of NAMP

References

[1]
(2]

(3]
(4]

M.Avellaneda,A. Levy and A.Paras ,Pricing aHeédging derivative securities in markets and u@gert
Volatilities.Applied Mathematical Finance,2(19953-88

G.Barles and H.Soner ,Option Pricing with saation costs and a nonlinear Black-Scholes Equdtilmance
Stochast.2(1998),369-397

B.K. Oksendal , Stochastic Differential EquatsoAn Introduction with Applications.Springer (2003

N. Thapal, J., Ziegler and C. Moen, ExistenteOptimal Parameters for the Black-Scholes Op#tuiting
model .International Journal of Pure and Appliediéanatics, vol8 ,No 4 (2012),523-534.

J.L. Lions, Optimal Control of Systems Goveinby Partial Differential Equations, Springer-VeylaNew
York-Berlin (1971).

R. Temam, Infinite-Dimensional Dynamical Syse in Mechanics andPhysics, Applied Mathematical
Sciences, 68, Springer-Verlag, New York(1988)

L.C. Evans, Partial Differential Equations, @uate Studies in Mathematics Volume 19, AMS, Rience,
Rhodes Island (1998), 243- 285.

L.V. Kantorovich and G.R. Akilov, Functionalnmalysis, Second Edition, Pergamon Press (1982)

Journal of the Nigerian Association of Mathematic&hysics Volume 28 No. 1, (November, 2014), 4694 4
474



