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Abstract 
 
This paper studied the parameter associated with the risk adjusted non-

Linear Black-Scholes option pricing model which incorporates the transaction 
cost and the risk of the portfolio measures.The existence, uniqueness and 
continuous dependence of the weak solution of the risk adjusted Black–Scholes 
model are established.The existence of the optimal parameters is established. 
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1.0     Introduction 
Option price model for incomplete market proposed by [1]  looked at the case were  the volatility � of the underlying 
stock process is uncertain but bounded from bellow and above by given constants	�� < ��.The risk from the unprotected 
volatile portfolio is described by the variance of the synthetized portfolio.Transaction costs as well as the volatile 
portfolio risk depend on the time –lag between two consecutive transactions [2].Minimizing their sum yields the optimal 
length of the hedge interval –time lag.This leads to a fully nonlinear parabolic PDE.If transaction costs are taken into 
account perfect replication of the contingent claim is no longer possible.Modeling the short rate � = �(	) by a solution to 
a one factor stochastic differential equation[3]. �� = (�, 	)�	 + �(�, 	)��       (1.1) 
Where (�, 	)�	 represent a trend or drift of the process and �(�, 	) represents volatility part of the process. The risk 
adjusted Black-Scholes equation can be viewed as an equation with a variable volatility coefficient 

				��� + ��(�,�)
� �� �1 − (����)��� ���� + ����� − �� = 0,    (1.2) 

Where ��(�, 	) depends on a solution � = �(�, 	)and   = 3 �!�"�# �
�
�
, c is the transaction cost and R the portfolio risk 

measure. If  = 0 we recover the equation discussed in [4]. 

Taking �$�(�, 	) = ��(1 − (�����(�, 	))��, equation(1.2) becomes  

				��� + �%�
� ������ + ����� − �� = 0.      (1.3) 

By setting  � = &' , ((), 	) = �(&' , 	)*+�	ℎ(&') = -()), we obtain the following parabolic PDE . 
./(',�)

.� − 0 .�/
.'� − (Λ − α) ./(',�).' + Λ((), 	) = 0 ,(), 	) ∈ ℚ				, ((), 0) = -()) ∈ ℝ, (1.4) 

where-()) is the pay-off function. For 6 > 0, ℚ = ℛ × (0, 6), 0 = ��(�:;(�.<�=(�,�))
��

� 	*+�	> = �. 
In this paper we discuss the parameters that are leading the Risk adjusted Black-Scholes option pricing model such that 
equation (1.4) exhibits the desired behavior. More precisely, let   @AB = CD = (0, >) ∈ E0FGH, 0FA'I × E>FGH, >FA'IJ	, 
where 0FGH > 0	*+�>FGH > 0. 
Defined a functional K(D) by  

K(D) = ‖((D, 	) − MB‖N�(O,P;R)� ,                                 (1.5) 
where the data MB can be thought of as the desired value of ((D; 	). The parameter identification problem for (1.4) with 
the objective function (1.5) is to find  																D∗ = (0∗, >∗) ∈ @AB  
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satisfying K(D∗) = T+UV∈@WX K(D).                                            (1.6) 
Let D → ((D) 
from,@	in to Z(E0, 6I;[ be the solution map . In what follows, the existence and uniqueness of the weak solution of (1.4) 
is established in the next section.  Continuity of the solution with respect to data is established in section 3. 
 
2.0 Existence and Uniqueness of weak solution 
Since the type of equation in (1.4) do not belong to  \�(ℛ) we introduce weighted lebesgue and sobolev spaces 
 \]� (ℛ)and[]�(ℛ) for ̂ > 0 

as follows. 
 \]� (ℛ) = _( ∈ \`ab� (ℛ): (&:]|'| ∈ \�(ℛ)e      (2.1)   
  

Hg�(ℛ) = _( ∈ \`ab� (ℛ): (&:]|'| ∈ \�(ℛ), (h&:]|'| ∈ \�(ℛ)e.   (2.2) 
The respective inner products and norms are defined by 
((, i)Nj� (ℛ) = ∫ℛ(i&:�]|'|�),                                                                      (2.3) 

((, i)Rj�(ℛ) = ∫ℛ(i&:�]|'|�) + ∫ℛ(hih&:�]|'|�)	,(2.4) 

‖(‖Nj� (ℛ) = 								 l∫ℛ|(|�&:�]|'|�)m
�
�,(2.5) 

‖(‖Rj�(ℛ) = 								 l∫ℛ|(|�&:�]|'|�) + ∫ℛ|(h|�&:�]|'|�)m
�
�.                             (2.6) 

We define the dual space of Hg�(ℛ) as 

�[]�(ℛ)�∗ = _(\(: []�(ℛ) → ℛ	T�	oT+&*�	*+�	pq+	T+(q(�e.                               (2.7) 

The duality pairing between []�(ℛ) and�[]�(ℛ)�∗ is given by 

〈(, i〉 = ∫ℛ|(|�&:�]|'|�).                                                                              (2.8) 
In what follows, we state, 

Lemma1:letU = \]� (ℛ).For	∅ ∈ ZOu, �(vv∅ = (−1,1), ∫ ∅�	())�) = 1, *+�	∅w = �
w ∅�'w� ,	ℛ  

then ∅w ∗ U → U	T+	\]� (ℛ).	        (2.9) 

Proof: Suppose 	D = &:�]|'|, then we have (∅w ∗ U). D = l∅w ∗ (U. D) + (∅w ∗ U). D − ∅w ∗ (U. D)m.	   (2.10) 
Since	U. - ∈ \�	*+�		∅w ∗ (U. D)	T+	\� ,  it suffices to show that ‖-w‖N� = (‖(∅w ∗ U). D − ∅w ∗ (U. D)‖) → 0								Uq�		x → 0.	    (2.11) 
The fundamental theory of calculus for D gives 

-w()) = 	 ∫ ∅w() − y)U(y)lD()) − D(y)m�yℛ .					     (2.12) 

Using�(vv∅w = (−x, x), we get|-w())| ≤ ∫ |∅w() − y)||U(y)|(2x	�(v|Dh(	)|)�yℛ  

= ∫ |∅w() − y)||U(y)|(2x	�(v|Dh(y + �)|)�yℛ = -w|||()).(2.13) 
Since -w|||()) = \�uniformly,  and|-w())| ≤ 2x|-w|||())|, thus ‖-w())‖N� → 0as x → 0. 

Lemma 2: }(ℛ) the space of test function in ℛ, is dense in Hg�(ℛ). 
Proof .Let U ∈ []�(ℛ)		*+�	Φ ∈ Zusuch that 

�()) = �1, TU|)| ≤ 1
0, TU|)| ≥ 2�. 

Now we show that 

Uw = �U. �lx(. )m� ∗ �w ∈ ZOu, 

where 

�w = �
w� �'w� , Uw → Uin[]�(ℛ). ie 

Uw → U		*+�	∇Uw 	→ �U	T+	\]� (ℛ)       (2.14) 

�Uw = lU. �(x(. ))m ∗ �w + x �U.�lx(. )m� ∗ �w. (2.15) 
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It suffices to show     
lU. �(x(. ))m ∗ �w → U			T+	\]� (ℛ).       (2.16) 
By the Lebesgue Dominated convergence theorem [5],we get    U.�(x(. )) → U	T+	\]� (ℛ).        (2.17) 
Hence Lemma 1 concludes the proof.                                                                           
Since }(ℛ) is dense in []�(ℛ)		*+�	\]� (ℛ)	,	 the lemma follows immediately. 

Lemma 3:[]�(ℛ) ⊂ 	\]� (ℛ) ⊂ �[]�(ℛ)�∗,  from Gelfand triple. 

Note. Since }(ℛ) is dense in []�(ℛ),the definition of 〈. , . 〉 allows us to interprete the operator � as a mapping 

from []� → l[]�m∗. 
For our simplicity, we use 

� = []�(ℛ), �∗ = �[]�(ℛ)�∗and[ = \]� (ℛ) 
To use the variational formulation let us defined the following bilinear form on  � × � 
�(�,�)((, i) = 0∫ℛ(hih&:�]|'| + >∫ℛ(i&:�]|'|�) − (> − 0)∫ℛ(hi&:�]|'|�)						 (2.18) 
For0 > 0	*+�	> > 0	. 
One can show �(�,�)((, i)  is bounded and coercive in �  .Define linear operator �(�≡,�): }l�(�,�)m =_(: ( ∈ �, �(�,�)( ∈ �∗einto �∗ by �(�,�)((, i) = l�(�,�), (, im for all ( ∈ }l�(�,�)m for all i ∈ �. 

Definition 4.  Let X be a Banach space and *, � ∈ ^ with * < �, 1 ≤ v < ∞.Then \�(0, 6; �) and \u(0, 6	; �)denote the 
space of measurable functions (  defined on (*, �) with values in �   such that the function 	 → ‖((. , 	)‖�  is square 
integrable and essentially bounded. The respective norms are defined by 

‖(‖N�(O,P;�) = �∫ ‖((. , 	)‖���	�
A �

�
�     (2.19)  

‖(‖N�(O,P;�) = &��. �(vA����‖((. , 	)‖�.															     (2.20) 
Definition 5.A function (: E0, 6I → � is a weak solution of  (1.4) if  

 (i)	( ∈ \�(0, 6; �)and (� ∈ \�(0, 6; �∗); 
(ii) For every ∈ �, 〈(�(	), i〉 + �(�,�)(((	), i) = 0 ,for 		pointwise almost every (a.e.) in E0, 6I; ((0) = (O. 
Note .The time derivative (�  understood in the distributionsense.The following two lemmas are of critical 
importance for the existence and uniqueness of the weak solutions. 

Lemma 6.Let ↪ [ ↪ �∗	�U		( ∈ \�(0, 6; �) ,(h ∈ \�(0, 6; �∗) ,then( ∈ Z(E0, 6I; [). Moreover, for any i ∈ � ,the real 
–valued function 	 → ‖((	)‖R� is weakly differentiable in (0, 6) and satisfies �

�
B
B� C‖(‖�J = 〈(h, (〉        (2.21) 

For proof, see [6] 
Lemma 7.(Gronwall’s Lemma) Let �(	) be a nonnegative, summable function on E0, 6I which satisfies the integral 

inequality 

�(	) ≤ 	Z� ∫ �(�)�� + Z��
O ,        (2.22)                         

    
for constant Z�Z� ≥ 0 ,almost everywhere 	 ∈ E0. 6I.Then �(	) 	≤ Z�(1 + Z�	&!��)a.e on 0 ≤ 	 ≤ 6.     (2.23) 
In particular, if  

�(	) ≤ 	Z� ∫ �(�)��	�
O a.e on 0 ≤ 	 ≤ 6,then �(�) = 0	*. &	on E0, 6I.   (2.24) 

For proof, see E7I. 
Lemma 8.The weak solution of (1.4) is unique if it exists. 

Proof. Let (� and (� be two weak solution of (1.4). Let ( = (� − (�.To prove Lemma 8 it suffices to show that ( = 0 pointwise a.e.on E0, 6I.since 〈(�(	), i〉 + �(�,�)(((	), i) = 0 for any i ∈ �,we take i = ( ∈ � to get  〈(�(	), (〉 + �(�,�)(((	), () = 0       (2.25) 
(2.25) is true point wise a.s .on E0, 6I.Using (2.1) and the coercivity estimate, we have  1
2
�
�	 ‖(‖R� ≤ �‖(‖R� , ((0) = 0 

For some � > 0.By Lemma 7, ‖(‖R = 0 for all 	 ∈ E0, 6I.Thus ( = 0 pointwise a.e in E0, 6I. 
To show existence of the weak solution of (1.4) .we first show existence and uniqueness of approximation 
solution. Now we define the approximate solution of (1.4) 

Definition9. A function(F: E0, 6I → �� is an approximate solutions of (1.4) if 
(i)			(F ∈ \�(0, 6, ��)and )(F� ∈ \�(0, 6, ��); 
(ii)  for every i ∈ �F and 〈(��(	), i〉[ + �(�,�)((�(	), i) = 0 pointwise a.e in Eq, 6I 
(iii) (�(0) = ��� 
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To prove the existence of approximate solution, we take i = (F in  

 〈(�(	), (〉 + �(�,�)(((	), () = 0	 
to get following system of ODEs 

Z��
� + ∑ ���Z������ = 0	, Z�� (0) = -�											    (2.26) 

where 
Z�� ∈ [, Z��� ∈ [,for0 ≤ 	 ≤ 6,���(	) = *l�� , ��m,and-� = l-,��mRforZ: E0, 6I → ℛ , 

equation(2.26)can be written as  
Z¡�� + �(	)Z¡� = 0	, Z¡�(0) = -,¢¢¢¡       (2.27) 
since 
� ∈ \u(0, 6; ℛ�×�,forZ¡� = £lZ¡�m. 
Equation (2.27) can be written as 

£lZ¡�(	)m = -¡ − ∫ �(�)Z¡�(�)�
O ��.				      (2.28) 

The following lemma is immediate from contraction mapping theorem and (2.28). 
Lemma 10: For any ¤ ∈ ¥,there a unique approximate solution (F: E0, 6I → �F of  (2.28). 
The following theorem provides the energy estimate for approximate solutions. 

Theorem11.There exist a constant Zdepending only on 6	*+�	Ω such that the approximate solution (F satisfies ‖(F‖N�(O,P;R) + ‖(F‖N�(O,P;§) + ¨(F�¨N�(O,P;R) ≤ Z‖-‖R  (2.29) 

Proof: For every i ∈ (F we have〈(��(	), i〉[ + �(�,�)((�(	), i) = 0. Takei ∈ (F(	),then we have  
〈(��(	), i〉[ + �(�,�)((�(	), i) = 0,point wise a.e in (0, 6).    (2.30) 
Using (2.30) and the coercivity estimate, we  find that there exists constants © > 0, � > 0 such that  �
�
B
B� (&:�ª�‖(�‖R� ) + ©&:�ª�‖/«‖¬� ≤ 0.		      (2.31) 

Integrating (2.31) with respect to t, using the initial condition(�(0) = �F(-), and‖�F(-)‖R ≤ ‖-‖R,  
we get  	�
�

B
B� (&:�ª�‖(�‖R� ) + ©&:�ª�‖/«‖¬� .	(2.32) 

Taking the supremum over E0, 6I,we get  ‖(F‖N�(O,P;R) + ‖(F‖N�(O,P;§) ≤ Z‖-‖R.			�       (2.33) 
Since (��(	) ∈ ��∗ ,  we have 

¨(��(	)¨§∗ = sup=∈§«∗ l/«�(�),=mR‖=‖¬ , i ≠ 0	.      (2.34) 

Using the notion of approximate solution and boundedness of A we have  ‖(F‖N�(O,P;R) + ‖(F‖N�(O,P;§) + ¨(F�¨N�(O,P;R) ≤ Z‖-‖R   (2.35) 

To complete the proof of weak solution, we now show the convergence of the approximate solutions by using 
weak compactness argument.  

Definition 12: Let 	\�(0, 6; �∗) be the dual space of \�(0, 6; �).Let 	U ∈ \�(0, 6; �∗) and 	( ∈ \�(0, 6; �),then we say (� → (	T+	\�(0, 6; �)  weakly if  

∫ 〈U(	), (�(	)〉�	 → ∫ 〈U(	), ((	)〉P
O

P
O �			∀		U ∈ \�(0, 6; �∗)    (2.36) 

Lemma 13.A subsequence C(FJ  of approximate solutions (F  converge weakly in 	\�(0, 6; �∗)  to a weak solution ( ∈ Z(E0, 6I; [) ∩ 	\�(0, 6; �)of  (1.4)  with (�	∈ \�(0, 6; �∗).Moreover,it satisfies   ‖(‖N�(O,P;R) + ‖(‖N�(O,P;§) + ‖(�‖N�(O,P;R) ≤ Z‖-‖R					    (2.37) 
Proof. Theorem 11 implies that the approximate solutions C(FJ  are bounded in 	\�(0, 6; �) and their derivatives _(F�e are bounded in 	\�(0, 6; �∗). By the Banach-Alaoglu theorem [8], we can extract a subsequence C(FJ 
such that weakly, (F → (		T+	\�(0, 6; �), (F� → (�	GH	\�(0, 6; �∗)   (2.38)                    
Let ∅ ∈ ZOu (0,T) be a real-valued test function and � ∈ �   for some ¥ = ³ .Replacing i  by ´(	)�	T+	〈(��(	), i〉R + �(�,�)((�(	), i) = 0 
and integrating from 0 toT, we get. 

µ 〈(��(	), ´(	)�〉R�	 +µ �(�,�)((�(	), ´(	)�)�	
P
O

P
O

= 0	Uq�	¤ ≥ ¥ 

taking the limit as ¤ → ∞,we get 

∫ l(��(	), ´�mR�	P
O = ∫ 〈(�, ∅�〉P

O �										      (2.39) 

by using boundedness of �(�,�),we get  

∫ �(�,�)((�(	), ´(	)�)�	P
O = ∫ �(�,�)(((	), ∅(	)�)P

O �								  (2.40) 
using boundedness of �(¶,�| ),we get 〈(�(	), �〉 + �(�,�)((, �) = 0	       (2.41)   
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point wise a.e in (0, 6)since (2.41) is true for all � ∈ �� 																																																		·�∈³��and                                                                               (2.42) 
is dense in V,so (2.42) holds for all 		� ∈ � . Now it remains to show that ((0) = (O.Using (2.42),integrating by parts 
and using Galerkin approximation we have  〈((0), �〉 = 〈(O, �〉	*�		¤ → ∞								 
for every � ∈ ��.Thus ((0) = (O. 
 
3.0 Existence of Optimal Parameter 
Lemma 14 .Let				i ∈ � .Then the mapping (0, >) → �(�,�)i from  @AB = CD = (0, >) ∈ E0FGH , 0FA'I × E>FGH , >FA'IJinto�h is continuous. 
Proof . Suppose thatDH → D in ℛ� as			+ → ∞.We denote � = ��,� and �H = ��¸,�¸.We claim that ‖(�H − �)i‖§¹ → 0 
as + → ∞. Let � ∈ � with‖�‖ ≤ 1.Then  |〈(�H − �)i, �〉|�

≤ µ (|0H − 0||(h||�h|�))�
ℛ

+ ºµ |>H̅ − >||(||�|�)
ℛ

¼
�
+ ºµ |>H − >||(h||�|�)

ℛ
¼

+ µ (|0H − 0||(h||�|�))
ℛ

�
	

≤ 2|0H − 0|�µ |(h|())��)
ℛ

+ |>H − >|�µ |(h|())��)
ℛ

+ |>H − >|�µ |(h|())��)
ℛ

→ 0 

	*�	+ → ∞ 
Lemma 15.Suppose that 0H, >H → 0, >in ℛ�, and iH → i weakly in V as + → ∞.Then �HiH → �= weakly in ih. 
Proof.Let � ∈ �,then. ½〈�H,iH,�〉 − 〈�= , �〉½ = ½〈�H�, iH,〉 − 〈�¾i〉½ ≤ |〈�H − �〉�, iH| + |〈��, iH − i〉|								(2.43) 
Since a weakly convergent sequence is bounded, we have |〈�H − �〉�, iH| ≤ ‖�H� − ��‖�h‖iH‖ ≤ p‖�H� − ��‖�h → 0 
as+ → ∞	Lemma 14.The second term 
  ½〈�H,iH, − i〉½ → 0 
sinceiH → i weakly. 
Lemma16.Let DH ∈ 	@AB . Then the solution map D → ((D)  from @ into Z(E0, 6I; [) is continuous.  

Proof.Let DH → D  in DAB   as + → ∞.Since·(	; D) is the weak solution of (1.4) for anyD ∈ @AB  we have the 
following estimate. ‖(�(	; DH)‖N�(O,P;R) + ‖(�(	; DH), ‖N�(O,P;§) + ¨(��(	; DH)¨N�(O,P;R) ≤ Z‖-‖R	,(2.44) 

where C is constant independent of D ∈ 	@AB .  Estimate (2.44) shows that  ·(	; D)  is bounded in  À(0, 6).SinceÀ(0, 6) is reflexive.we can choose a sub-sequence ((	; DHÁ) weakly convergent to a function M in 
À(0, 6) .The fact that (�(	; DH)  is bounded in  À(0, 6)  implies that (�(	, DH)  is bounded in \�(0, 6; �),so ((	; DHÁ)weakly convergent to a function M	 in \�(0, 6;[).Since �  is compactly imbedded in		[ ,then by the 
classical compactness theorem[4] ((	; DH) → M in \u�(0, 6; [),.By  (2,44) the derivative (h(	; DHÁ) and		Mh are 

uniformly bounded in \u(0, 6; [) .Therefore functions _(l	; DHÁm, M	e���u
 are equicontinuous in 

Z(E0, 6I; [)..Thus	((	; DHÁ) → M  in Z(E0, 6I; [)…In particular ((	; DHÁ) → M(	) in H and ((	; DHÁ) → M weakly 
in V for any 	 ∈ E0, 6I.By lemma 15,�HÁI	((	; DH) → �M(	) weakly in �h .Now  we see that z satisfies the 
equation given in definition 5,ie it is the weak solution  ((D). The uniqueness of  the weak solution implies that  	((DH) → ((D)*�	+ → ∞   in  Z(E0, 6I; [) for the entire sequence ((DH) and not for its subsequence. Thus	((	; DH) → ((D) in Z(E0, 6I; [) 
as	DH → D in � as claimed. 

 
4.0 Conclusion 
The parameter associated with the risk adjusted Black-Sholes option model was studies where the existence and 
uniqueness of weak solution of the risk adjusted Black-Scholes option pricing model with variable volatility coefficient 

given as �$�(�, 	) = ��(1 − (�����(�, 	))��  was established. The study adjusted the volatility to incorporate both 
transaction cost and portfolio risk measures and continuity of the weak solution was discussed following the method in 
[4]. 
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