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Abstract

This paper presents a mathematical modeling of tamperature distribution
set up at various cross-section of well bore duringilling operation by the
weighted residual finite element method. We pres#dme numerical solution to
the one-dimensional differential equation which deibes the temperatures
exerted on the drilling wellbore. In conducting ¢hanalysis, we split the blank
into a finite number of elements and apply the BubnGalerkin weighted
residual scheme to obtain the weighted integralrfgrthe finite element method
was then developed and solved to yield a three-peat@r polynomial solution.
Using a numerical example, the result showed thhe tweighted residual finite
element method was capable of accurately predictimg temperature distribution
in wellbore with fluid having constant properties.
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Nomenclature
K; : Formation thermal conductivity (Btu/FF — hour)

f:  Formation density (1b/gal)

C:: Formation heat capacity (Btu/2F)
M: Mass flow rate of drilling fluid (1b/hr)
Cy: Fluid heat capacity (Btu/1i5

r.: Radius of drill pipe (ft)
U Equivalent heat transfer coefficient across pipdl (Btu/hr-f-°F
h: Depth (ft)

Te:  Surface formation temperatufé&)

Oox: Geothermal gradienfR/ft)

T,: Temperature of drill pipe fluid as a functiond&pth {F)

1.0 Introduction

A knowledge of temperature distribution of circudat drilling fluids in wellbore and the surroundirfigrmation is

required to calculate the frictional pressure daog also to predict the transient thermal behvaaduhe well during
drilling operation and completion. This, infornmaatiis useful for correct drilling job design exdontand for deciding
whether drilling should be stopped or continuedhisTinturn reflect in the final costs of the coeteld well drilled. The
determination of the transient temperature is aptermtask because there are a number of influeadables that are
continuously changing.

A number of studies on drilling fluid temperatureofile estimation exist in literature. Arnold [Hetermined the
temperature variation in a circulating wellboreidluBeirute [2] estimated the circulating and shutvell temperature
profile. Garcia et al [3] an estimation of terrgtteres in geothermal wells during circulation simuia presence of loss
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circulation. Romey [4] evaluated wellbore heat sraission. Raymond [5] evaluated the temperatuséildition in
circulating drilling fluids. Rommetveit and Bjorkell [6] estimated the temperature and pressurecesffon drilling fluid
Rheology and ECD in vary wells depth. Takahastdld¥] estimation of formation temperature fronteinand outlet
mud temperature while drilling. Traggaser et dl 8method for calculating circulating temperatuvéooley [9]
computed downhole temperature in circulation inggctnd production wells.

It can be seen from the literature that the poaéérdgf the finite element method for obtaining smiottemperature
distribution problems have not been given attentibnthis paper, we present the application ofdbetinuous Galerkin
finite element method to the analysis of tempegadistribution in wellbore during drilling operatiand compare the
solution obtained with that of analytical technique

2.0 Mathematical modeling

dsz dTp
aﬁ dX2 + ﬂa =Tp _TFS ~ Oox (2.1)
Where
MC
o= and f=—"
0.Cp 2m U,

Equation (2.1) gives the governing differential atippn
The associated boundary conditions are given by:

dT
T(0)=T,, =0 q(h)=q (2.2)

Where q is the heat flux and is given by the emm@
X

The following assumptions were made in developinig tathematical model thus:

. Assume constant fluid properties

. Heat generated by viscous forces, friction and gharin potential energy are negligible

. The formation is radially symmetric and infinitetivrespect to heat flow

. Heat flow within the wellbore is rapid comparecdat flow within the formation

. Assume heat flow within and across the wellboredaits to be steady state and while heat flow wittia

formation to be transient

2.1 Materials and Methods

The spatial domain of the wellbore was divided iataumber of uniform linear elements with Iengﬁfx . Stiffness
matrices were generated for each element usindirite element model to get the temperature at hpdants. The
stiffness matrices were assembled by enforcingimoity of the nodal degree of freedom to obtain ¢ghebal system
equations. The Lagrenge quadratic interpolatianctions were used to ensure an accurate solutidmumerical
analysis was done to compare the finite elemeniteewith the exact solution.

2.2 Finite Element Modeling

To determine the temperature distribution in wekbduring drilling operation, we first derive theeak form of the
governing differential equation. This we obtaingd using the Galerkin weighted residual method. Itidlying the
residual of the equation by a weight function (W)l éntegrating over the domain enclosing an elemattit respect to X.

2
j:w{a/»’ ddXTz” +/3% —T, + T + ngde =0 (2.3)
Let TF = TFS + Oox (24)
Substituting equation (2.4) into equation (2.3)egiv
Ihw{aﬂdZTp AL ]dx:O 2.5)
dx? ax P F
jh[waﬁdsz +W’3ﬂ—wT +WwT, ]dx=0 (2.6)
dx? dx P F

An examination of equation (2.6) reveals the solutand hence once differentiable with respect to Kaus the
Lagrange quadratic functions of interpolation carused satisfactorily. Assuming an approximatatsmi for T, in the
form as follows:
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=3T0(x) @7
i=1

Where,
l,l/}e = Lagrange quadratic function of interpolatiorite jth node

T;]T' = Temperature at the jth node of the element

Since we are applying the Galerkin weighted redidinite element method in this study, we assune the weight
function is equal to the Lagrange function of iptgation

w= z//j (X) 2.8)
That is,
dwdx _ d¢f dx
dx dx (2.9)
Substituting equation (2.7) and (2.9) into equa(iZnﬁ) gives
o 4y ¢/
Zj ,B[T ,3ij jdx e[ (T, +T, Jax=0
(2.10)

oo (dgt  dys dy?
I [Tp® — + ByTpe — —
,Z‘I aﬁ( S OPT— L+ ByTR

(2.11)
Equation (2.11) can be translated as:

[<efroet+[mefroet={Fr +{cc) (2.12)

Equation (2.12) is called the finite element mddelthe problem.
Where

l//?l'pjl,[/f]dx+.|.h4[/j&|'FdX—WQ(h') -wQ(o0) =

F”e} Characteristic vector
Q:"} = Boundary vector
Where
b dyt dy
KS=| ap| —=0GO—=+wiys |dx
ij .[ 'B( dx dx v wjj
dl//
c=[ gy ="
:I [//ieTFdX

Q”e = denote heat flow into the element at node. Utlieg_agrange quadratic interpolation functions

gl

h' h'
X 2X
e - 1__
/8 h'( h'J

To simplify the calculation of the element charastee and mass matrix for different meshes we geieean expression
for the entries of the element characteristic aagsymatrix in terms of the depth of each elent@nt Thus
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e — dwl d¢’1
Ki = _L [aﬁ dx  dx +‘//1w1jdx
_rap 2N

3h 15
e b d ° d > e, /e
K= {aﬁ%%wlwzjdx

_8aB N
3 15

Ke=[" [aﬁd—‘/’fd—‘”;+wfw§de

dx dx
a,B h'
3 30

e - b dl//Ze dw]_e e, e
K21 - _L [GEFF 'H//z‘//l jdx

_-8ap I

3h' 15

e — d‘/’z dl//Z
Ks=]] (aﬁ S +z/fzz/fzJ

_api6 160

3n' 30
dy, d¢/
K=\ | aB—>2 3+
= I(ﬁ o wzwsj
8ag N
3h  1E
Due to symmetry
-af N
Ki=-Kg=—"-+—
13 31 3h| 30
o e _8a h'
K12=_K32_3_rf_1_5
e e _— 1 2h'
K11=K33‘3—h.lg_E

For the mass matrix

dlﬂl _3B
I ,3401 _?

d 2
My, = I,Bw1 ‘//2 :?’B

d
Mg = ﬁwf%}ﬁ

6
e _ N dys 2
MZFL/J’%%:—FE

d
Mg, = J,sz ‘//2:
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s _ 28

e b’ e
My, :L By; dx 3

Due to symmetry

e E_Bﬂ
M33__M11_?

e 9_418
M32__M12_?

e — e_ﬁ
M31__M13_€

Hence for one Lagrange quadratic element will be

7 -8 1) 4 2 -1
[Kif]:g—ﬁ -8 16 -8|+--| 2 16 -8 (2.13)
1 -8 7 -1 2 4
-3 4 -1
[M if]:g -4 2 4 (2.14)
1 -4 3

3.0 Numerical example
Use the finite element method to find the tempeeatdistribution in the wellbore during drilling ogion. The
governing differential equation is given by:

apd’T, AT,
dx? dx

= Tp _TF - gG
Given:
Well depth (h) =80ft, outer drill pipe radius{rp) = 0.208ft, Annulus radiuéra):o.354ft, circulation rate = 400bbl/hr,

Circulation time(hr) = 5hrs, Surface formation te}Tmure(TFS):GOOF, Thermal conductivity (¥ = 0.3Btu/fthr,
Specific heat capacity (C= 0.21Btu/f, Density(ﬁF )21651b/f?, Geothermal gradient ¢y = 0.020°7ft, d =1.25
and £3=0.80, Inlet mud temperatur(é'ps):lzo’F

3.1 Solution:

3.11 Quadratic element interpolation solution
We seek the nodal temperature by using quadratgrgalation functions. We computed the quadratament

characteristic matrix and mass matrix by substigifor a, 3 and h in equations (2.13) and (2.14). Thus we obtain:
2785 1201 - 0650]

[ke]=| 1201 10940 1201 (3.1)

- 0650 1201 2785 |

- 0399 0532 - 0133]

[Me]=|-0532 0 0532 (3.2)

0133 -0532 0399 |

In order to ensure high accuracy, we used a meftuofjuadratic elements (9 nodes). Dividing tendin into four 1-
D quadratic finite elements and the finite elementslel over an element is given as:

Ki Ki K
Ki? =Kz K Kz (3.3)
Ka Ko Kg
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My My Mg
Mi? =|M; M3, Mgz (3.4)
Mz M3 Mg
For a mesh of four I-D quadratic elements the abkmirequations are:

(KL K% 0 0 0 0 o 0o o0 ]|™
K3 K3 K3 0 0 0 0 0 O Tp,
Ki Kp Ki+KL K5 K 0 0 0 0 Tps
o 0 K, K, Ki 0o 0 0 o ||P
0 0 K& KE  KiKEKE K 0 0|
0 0 0 0 K: K Kj 0 O Tp5
0 0 0 0 Ki  KLKL+KSG Kb Kl g
Y 0 0 0 0 Kz Kz Ka Tp,
L Y 0 0 0 0 Kar Ks K§37 Tpy

(ML M} 0 0 0 0 0 0o 0 ||™
ML ML ML, 0 0 0 0 0 0 ||TP
M;l M;z M111+M§3 M122 M123 0 0 0 0 Tp3
0o 0 ML M3 ML 0 O 0 0 Ip‘*
0 0 ML ML MA+MML ML 0 0 || ls
0 O 0 0 M3 M3, M3, 0 O Tp5
0 0 0 0 M3 MELMS+ME M My |
0 0 0 0 0 0 Mj Mg M|,
|00 0 0 0 0 My Mg Mg
C R 1l g

F Q

Fo+F | | Qs+Qf
FA+F°| Q0 +Q7
F+R* Q) +Q
F+F°|[QF+Q7
Fo+R°| |Q5+Q7
F 0

L R L@

For characteristic vector evaluation entries

e u
R = L WiTedx
Where T = Tes + g5 = 60+0.020 = 60.026, h' = 80ft

2X
°T-d 1-— |1-— [T.d
N

3h

=X3x 2X T dx hT
2h' 3h21 6

o ' 4x X
jsz ax= [ (1 WjTFolx

=2x NG Td 2hT
h' 3h21 3

(3.5)
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Fo=[ wsTodx=] _Tf((l— %)TF dx
2 3 '
{ 2ﬁ'+ ::leTFdX -5
| Fll 1]
le 4
Fsl + F12 2
Faz + Fl3 5
F=|F23+F!|=8002 > (3.7)
F34 + F15 5
F,+F° 2
2 4
RS 1]

Due to balance of internal influxes, it follows tH@} +Q7 = Q2 +Q’ =Q3 + Q' =0 andQ; =Q3 =Q5 =0
Substituting the values of equations (3.1), (3.2) and (3.@)eiquiation (3.5) we obtain:

[ 2785 1201 -0650 O 0 0 0 0 0 ] P,
1201 10940 1201 0 0 0 0 0 0 TP,
- 0650 1201 5570 1201 - 0650 0 0 0 0 Isz
0 0 1201 10940 1201 0 0 0 0 Tp,
0 0 - 0650 1201 5570 1201- 0650 O 0 Tp, +
0 0 0 0 1201 10940 1201 0 0 Tp,
0 0 0 0 - 0650 1201 5570 1201 - 0650 Tp,
0 0 0 0 0 0 1201 10940 1201 ™,
0 0 0 0 0 0 -0650 1201 2785
- = L TP |
[- 0399 0532 -0133 O 0 0 0 0 0 TP,
- 0532 0 0532 0 0 0 0 0 0 P,
0133 - 0532 0 0532 - 0133 0 0 0 0 -IT-[FJ)j
0 0 -0532 O 0532 0 0 0 0 o, |
0 0 0133 - 0532 0 0532 - 0133 O 0 Tp, =
0 0 0 0 - 0532 0 0532 0 0 Tp,
0 0 0 0 0133 -0532 0 0532 - 0133 Tp,
0 0 0 0 0 0 -0532 O 0532 T,
| O 0 0 0 0 0 0133 - 0532 0399 | TP,

1
1
1
1

(3.8)
8002 =

AN ODNDODN NP
+
O O O O o o o

1] Qs
We apply row sum lumping technique and the mass matriguat®n (3.8) becomes
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Substituting equation (3.9) into (3.8) gives

SinceT

[M iie]:

OO O O o oo o
OO O O O © O o

0 0

OO0 O O o oo o

0

O OO O O O © O o
OO0 O O O © © o
OO0 O O O © © o

0 0

OO O O O © O o

0

O OO O O © © ©o o
O OO O O O © O o

0
0
- 0650
1201
5570
1201
- 0650
0

0

Oviawe, Osite, Wilkie and MomoduJ of NAMP

0 0 0
0 0 0
0 0 0
0 0 0

1201- 0650 O
10940 1201 O

1201 5570 1201 - 0650
0 1201 10940 1201

0 -0650 1201

equation (310) condensed to becomes:

Since thére are now eight unknown,
[k, fr.}={Fet+{osd
)= 1k, [ {met+{er)

Tp, = 6002
Tp, = 27720
Tp, = 14050
Tp, = 35932
Tp, = -8220
Tp, = 35059
Tp, = 22001
Tp, = 20918
Tp, = 53967

[ 2785 1201 -0650 O
1201 10940 1201 O
- 0650 1201 5570 1201
0 0 1201 10940
0 0 - 0650 1201
0 0 0 0
0 0 0 0
0 0 0 0
) 0 0 0
= 60020° F
(10940 1201 0 0
1201 5570 1201 - 0650
0 1201 10940 1201
0 -0650 1201 5570
0 0 0 1201
0 0 0 - 0650
0 0 0 0
0 0 0 0

0

0

0
1201
10940
1201

0
0

0

0

0
- 0650
1201
5570

1201
- 0650

o O O o

0
1201

10940
1201

© oo oo

0

2785 |

o O O o

0
- 0650

1201
2785

—

©
1

-
1]

-
2

o
%

o
3

-
3

—

k-]
&

\U_|
R

TP,
Tp,
Tps
Tps
Tp,
Tps

T,

LTPs |

=8002

P AN OGN OONDMNPE

16004
40010
16004
40010
16004
32008
16004

32008)[

(3.9)

(3.10)

(3.11)

O0Tp=60.02%, TP: = 277.26F, TP:=140.56F, TP:= 359.35F, TPs=_82 207, TP = 350.5¢F, TP=220.02F, TP=209.1¢"
TPs= 539 677,

4.0

Where

Exact solution
Recall equation (2.1)

dT
dx?

aB

dT,
. +ﬁT;_Tp +Te + 95

Tp(X) = G0 +C 0% + g, + T — Ao

Y1

_B+\B*+4ap

2aB3

(4.1)
(4.2)

(4.3)
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_ﬁ_vﬁ2+4aﬂ (4.4)

Yo = '
2apB

Substituting values ofr, 8 into equation (4.3) and (4.4) gives

y, = 1477y, =— 0677

From equation (4.2)

daTp = y,Cl " +y,C 0 + g
dx (4.5)
. X =0 Tp(x)=Tp,

X =h', Tp(x) =T (x)
Where
Tp,= fluid temperature at drill pipe in let or at the suwé {F)

h' = the total vertical depth of the well (ft)
Applying the boundary conditions, the following expressiorsenobtained for the constants&d G as:

g — VM Taiff

yoh' _ pyih’
¢ 2 4 Y1

1=

(4.6)
0! yyj“'Tdiff
27Ty
et n 4.7
Where
Tdiff = (T - T, —Bgs)
Substituting equations (4.6) and (4.7) into equation (4.2) gives
_ 9% _E;Sﬁﬂhl-rdiff wrr, ~ 9o +€§f77thdiﬁ - 0677
TP(X) - 0BT _ j1a77h 08T _ LT 4 +0s +Tes = o (4.8)
Y2 Y1 Y2 Y1

5.0 Results and Discussion

The temperature distribution at nodes for difference messieg quadratic interpolation functions are shown in Table
5.1. The numerical values of the calculated nodal degrizeasfom shows temperature variation in the wellborgurgi
5.1shows the results obtained using the quadratic element aexaitteit can be seen that within the range of 2.0, -1.5,
3.4, there is a marked difference between the solutionsneltaising the analytical and quadratic finite element swluti
The reason for this deviation is as a result of the Fettthe gradient of solution within these ranges is very higban

be seen that the finite element solution is admirablyecto the exact at all points along the domain.

Table 5.1: Showing nodal temperature distribution along wellbore f@dyatic interpolation and exact solution

Depth (ft) Nodal temperature for quadratic elements(°F) Exact nodal temperature {F)
60.0z 60.0(
10 277.20 279.20
20 140.50 141.00
30 359.32 360.20
40 -82.20 -83.10
50 350.5¢ 360.2(
60 220.0: 221.1(
70 209.18 210.20
80 539.67 540.15
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Fig 5.1: Graph showing temperature, distribution along vellbore during drilling operation

6.0
Finite element analysis of the temperature distributiorellbore during drilling operation has begnesented. It has |
shown that the present method can be used to predict thertnre distribution accurately witith mesfinement. The
finite element method has been shown to produce an accwlat®rs to the equations gooverning tmeperature
distribution in wellbore during drilling operation. The pdtehof the finite element methood hasrbeuccessfull
demonstrated.

Conclusion
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