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Abstract 
 
This paper presents a mathematical modeling of the temperature distribution 

set up at various cross-section of well bore during drilling operation by the 
weighted residual finite element method.  We present the numerical solution to 
the one-dimensional differential equation which describes the temperatures 
exerted on the drilling wellbore.  In conducting the analysis, we split the blank 
into a finite number of elements and apply the Bubnov-Galerkin weighted 
residual scheme to obtain the weighted integral form, the finite element method 
was then developed and solved to yield a three-parameter polynomial solution.  
Using a numerical example, the result showed that the weighted residual finite 
element method was capable of accurately predicting the temperature distribution 
in wellbore with fluid having constant properties. 

 

 Keywords:Well bore, temperature, Galerkin, drilling, finite element. 
Nomenclature 
Kf  :  Formation thermal conductivity (Btu/Ft- oF – hour) 

Fl :   Formation density (1b/gal) 

FC : Formation heat capacity (Btu/1b-oF) 

M: Mass flow rate of drilling fluid (1b/hr) 

ftC : Fluid heat capacity (Btu/1b.oF 

pr : Radius of drill pipe (ft) 

pU : Equivalent heat transfer coefficient across pipe wall (Btu/hr-ft2-oF 

h : Depth (ft) 

FsT :   Surface formation temperature (oF) 

Gxg : Geothermal gradient (oF/ft) 

pT : Temperature of drill pipe fluid as a function of depth (oF) 

 
1.0     Introduction 
A knowledge of temperature distribution of circulating drilling fluids in wellbore and the surrounding formation is 
required to calculate the frictional pressure drop and also to predict the transient thermal behvaiour of the well during 
drilling operation and completion.  This, information is useful for correct drilling job design execution and for deciding 
whether drilling should be stopped or continued.  This, inturn reflect in the final costs of the completed well drilled.  The 
determination of the transient temperature is a complex task because there are a number of influence variables that are 
continuously changing. 
A number of studies on drilling fluid temperature profile estimation exist in literature.  Arnold [1] determined the 
temperature variation in a circulating wellbore fluid. Beirute [2] estimated the circulating and shut-in well temperature 
profile.  Garcia et al [3]  an estimation of temperatures in geothermal wells during circulation shut-in in presence of loss  
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circulation. Romey [4] evaluated wellbore heat transmission.  Raymond [5] evaluated the temperature distribution in 
circulating drilling fluids.  Rommetveit and Bjorkevoll [6] estimated the temperature and pressure effects on drilling fluid 
Rheology and ECD in vary wells depth.  Takahashi et al [7] estimation of formation temperature from inlet and outlet 
mud temperature while drilling.  Traggaser et al [8] a method for calculating circulating temperature. Wooley [9] 
computed downhole temperature in circulation injection and production wells. 
It can be seen from the literature that the potential of the finite element method for obtaining solution temperature 
distribution problems have not been given attention.  In this paper, we present the application of the continuous Galerkin 
finite element method to the analysis of temperature distribution in wellbore during drilling operation and compare the 
solution obtained with that of analytical technique. 
 
2.0 Mathematical modeling  
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Equation (2.1) gives the governing differential equation 
The associated boundary conditions are given by: 

( ) ( ) qhq
dx

dT
ToT p

o === ',0,        (2.2) 

Where q is the heat flux and is given by the expression 
dx

dTpβ  

The following assumptions were made in developing this mathematical model thus: 
• Assume constant fluid properties 
• Heat generated by viscous forces, friction and changes in potential energy are negligible 
• The formation is radially symmetric and infinite with respect to heat flow 
• Heat flow within the wellbore is rapid compared to heat flow within the formation 
• Assume heat flow within and across the wellbore conduits to be steady state and while heat flow within the 

formation to be transient 
 
2.1   Materials and Methods 
The spatial domain of the wellbore was divided into a number of uniform linear elements with length X∆ .  Stiffness 
matrices were generated for each element using the finite element model to get the temperature at nodal points.  The 
stiffness matrices were assembled by enforcing continuity of the nodal degree of freedom to obtain the global system 
equations.  The Lagrenge quadratic interpolation functions were used to ensure an accurate solution.  A numerical 
analysis was done to compare the finite element results with the exact solution. 
 
2.2 Finite Element Modeling 
To determine the temperature distribution in wellbore during drilling operation, we first derive the weak form of the 
governing differential equation.  This we obtained by using the Galerkin weighted residual method.  Multiplying the 
residual of the equation by a weight function (w) and integrating over the domain enclosing an element with respect to X. 
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Let TF = TFs + gGx         (2.4) 
Substituting equation (2.4) into equation (2.3) gives 
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An examination of equation (2.6) reveals the solution and hence once differentiable with respect to X.  Thus the 
Lagrange quadratic functions of interpolation can be used satisfactorily.  Assuming an approximate solution for Tp in the 
form as follows:  
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Where, 
e
jψ  = Lagrange quadratic function of interpolation at the jth node 

e
pjT  = Temperature at the jth node of the element 

Since we are applying the Galerkin weighted residual finite element method in this study, we assume that the weight 
function is equal to the Lagrange function of interpolation 

( )xw e
jψ=

          (2.8) 
That is, 
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Substituting equation (2.7) and (2.9) into equation (2.6) gives 
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Equation (2.11) can be translated as: 
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Equation (2.12) is called the finite element model for the problem. 
Where 

{ }e e
ij jK Tp  =   Characteristic matrix 

{ }e
ij jM Tp  =   Mass matrix 

{ }e
ijF = Characteristic vector 

{ }e
ijQ  = Boundary vector 
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e
ijQ  = denote heat flow into the element at node. Using the Lagrange quadratic interpolation functions 
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To simplify the calculation of the element characteristic and mass matrix for different meshes we generate an expression 
for the entries of the element characteristic and mass matrix in terms of the depth of each element 'h .  Thus 
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Due to symmetry 
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Hence for one  Lagrange quadratic element will be 
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3.0 Numerical example 
Use the finite element method to find the temperature distribution in the wellbore during drilling operation.  The 
governing differential equation is given by: 
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Given: 

Well depth ( )'h =80ft, outer drill pipe radius ( )pr  = 0.208ft, Annulus radius ( )ar =0.354ft, circulation rate = 400bbl/hr, 

Circulation time(hr) = 5hrs, Surface formation temperature ( )FsT =60oF, Thermal conductivity (Kf) = 0.3Btu/ft-oF-hr, 

Specific heat capacity (Cf) = 0.21Btu/b-oF, Density ( )Fl =1651b/ft3, Geothermal gradient (gG) = 0.020 oF/ft, α =1.25 

and β =0.80, Inlet mud temperature ( )psT =120oF 

 
3.1   Solution: 
3.11   Quadratic element interpolation solution 
We seek the nodal temperature by using quadratic interpolation functions.  We computed the quadratic element 

characteristic matrix and mass matrix by substituting for βα , and 'h  in equations (2.13) and (2.14).  Thus we obtain: 
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In order to ensure high accuracy, we used a mesh of four quadratic elements (9 nodes).  Dividing the domain into four 1-
D quadratic finite elements and the finite elements model over an element is given as: 
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For a mesh of four I-D quadratic elements the assembled equations are: 
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For characteristic vector evaluation entries 
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Due to balance of internal influxes, it follows that 0! 4
1

3
3

3
1

2
3

2
1

1
3 =+=+=+ QQQQQQ  and 06

2
5
2

4
2 === QQQ  

Substituting the values of equations (3.1), (3.2) and (3.7) into equation (3.5) we obtain: 
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         (3.8) 

We apply row sum lumping technique and the mass matrix in equation (3.8) becomes 
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Substituting equation (3.9) into (3.8) gives 
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Since FT o
p 020.60

1
=  equation (310) condensed to becomes: 
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Since there are now eight unknown, 
[ ]{ } { } { }e
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[ ] [ ] { } { }e
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1Tp∴ =60.02oF, 2Tp  = 277.20oF,  3Tp =140.50oF, 4Tp = 359.32oF, 5Tp =-82.20oF, 6Tp  = 350.59oF, 7Tp =220.01oF, 8Tp =209.10Of, 
9Tp = 539.67oF. 

 
4.0 Exact solution 
Recall equation (2.1) 

GFsp
pp gTT

dx

dT

dx

Td
++−+ βαβ

2

2

        (4.1) 
( ) GFsGx

xyxy gTgCCxTp β−+++= 21
21 ll        (4.2) 

Where 

αβ
αβββ

2

42

1

++
=y          (4.3) 
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αβ
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2

42

2

+−
=y          (4.4) 

Substituting values of βα ,  into equation (4.3) and (4.4) gives 

677.0,477.1 21 −== yy  

From equation (4.2) 

G
xyy gCyCy

dx

dTp ++= 21
2211 ll

       (4.5) 

At 
( ) jTpxTpX == ,0

 

( ) ( )xTxTphX Fs== ,'
 

Where  

sTp = fluid temperature at drill pipe in let or at the surface (oF) 

'h  = the total vertical depth of the well (ft) 
Applying the boundary conditions, the following expressions were obtained for the constants C1 and C2 as: 
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Where 

( )GpsFs BgTTTdiff −−=  

 
Substituting equations (4.6) and (4.7) into equation (4.2) gives 
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 (4.8) 

 
5.0 Results and Discussion 
The temperature distribution at nodes for difference meshes using quadratic interpolation functions are shown in Table 
5.1.  The numerical values of the calculated nodal degree of freedom shows temperature variation in the wellbore.  Figure 
5.1shows the results obtained using the quadratic element and the exact, it can be seen that within the range of 2.0, -1.5, 
3.4, there is a marked difference between the solutions obtained using the analytical and quadratic finite element solution.  
The reason for this deviation is as a result of the fact that the gradient of solution within these ranges is very high.  It can 
be seen that the finite element solution is admirably close to the exact at all points along the domain. 
 
Table 5.1:  Showing nodal temperature distribution along wellbore for quadratic interpolation and exact solution  
Depth (ft) Nodal temperature for quadratic elements (oF) Exact nodal temperature (oF) 
0 60.02 60.00 
10 277.20 279.20 
20 140.50 141.00 
30 359.32 360.20 
40 -82.20 -83.10 
50 350.59 360.20 
60 220.01 221.10 
70 209.18 210.20 
80 539.67 540.15 
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Fig 5.1:  Graph showing temperature, distribution along wellbore during drilling 
 
6.0 Conclusion 
Finite element analysis of the temperature distribution in wellbore during drilling operation has been presented.  It has be 
shown that the present method can be used to predict the temperature distribution accurately with mesh re
finite element method has been shown to produce an accurate solution to the equations governing the temperature 
distribution in wellbore during drilling operation.  The potential of the finite element method has been successfully 
demonstrated. 
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