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Abstract 
 
This paper presents two-dimensional mathematical model describing the 

transport of a conservative contaminant through a homogeneous finite aquifer 
under transient flow. We assume the aquifer is subjected to contamination due to 
the time-dependent source concentration. Both the sinusoidally varying and 
exponentially decreasing forms of seepage velocity are considered for the 
purposes of studying seasonal variation problems. The model is solved 
analytically using parameter-expanding method and direct eigenfunctions 
expansion technique. The results are presented graphically and discussed. Our 
results showed that the contaminant concentration decreases along longitudinal 
and lateral directions as initial dispersion coefficients and initial groundwater 
velocities increases. This concentration decreases as time increases in the 
domain. 
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1.0     Introduction 
Many constituents present in the surface water eventually find their way into the ground water through unsaturated zones. 
The movement of water and solutes through the unsaturated zone has been of importance in traditional applications of 
ground water hydrology, soil physics, and agronomy. In recent years, the need to understand the behavior of hazardous 
waste and toxic chemicals in soils has resulted in a renewed interest in this subject. One of the primary concerns is that 
dissolved contaminants may migrate through the unsaturated zone, reach the saturated zone, and contaminate the ground 
water. 
Contaminant transport in aquifers has become of arising interest in the last few years for scientist working in 
environmental engineering, hydrology and chemical engineering. These include Winter et al. [1] who defined one- and 
two-dimensional formation analytically, relate the dispersion parameter to the statistics of the hydraulic conductivity 
spatial distribution. Batu [2] discussed time-dependent linearized two-dimensional infiltration and evaporation from non-
uniform and non-periodic strip source. Latinopoulos et al. [3] studied the chemical transport in two-dimensional aquifer. 
Aral and Liao [4] examined solutions to two-dimensional advection-dispersion equation with time-dependent dispersion 
coefficients. In particular, they developed instantaneous and continuous point source solutions for constant, linear, 
asymptotic, and exponentially varying dispersion coefficients.  
Stenbacka et al. [5] employed a two-dimensional analytical model for estimating the first-order degradation rate constant 
of hydrophobic organic compounds (HOCs) in contaminated groundwater under steady-state conditions. Massabo et al. 
[6] gave some analytical solutions for a two-dimensional advection equation with anisotropic dispersion. Chemical decay 
or adsorption-like reaction inside the liquid phase is considered. Essa et al. [7] investigated the dispersion of pollutants 
from a point source, analytically taking into consideration the vertical variation of both wind speed and eddy diffusivity. 
Shapiro and Bedrikovetsky [8] proposed a new approach to transport of the suspensions and tracers in porous media. 
In this paper, two-dimensional analytical solution for prediction of concentration distribution in shallow aquifer is 
presented. Aquifer is considered homogeneous, isotropic, finite and non-reactive. Both (longitudinal and lateral) 
dispersion coefficients and flow velocities are considered as time-dependent. Seepage velocities, which are the average 
fluid velocities within the pores, are function of time. Time-dependent source concentration is considered at origin. 
Initially the domain is not solute free. Dispersion is proportional to seepage velocity. First order decay term which is 
proportional to dispersion coefficient and retardation factor are also considered. To simulate the flow analytically using  
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Parameter-expanding Method and Eigenfunctions Expansion Technique, we assume there is no solute flux at end of both 
boundaries.  
 
2.0 Model Formulation  
Let the contaminant invades the groundwater level from point source in a homogeneous finite aquifer of length L  and 
depth H . The contaminant being of a significantly higher density than the groundwater moves towards the bottom of the 
shallow aquifer along vertically downward, from its each point the contaminant is bound to spread in the horizontal plane 
along the transient groundwater flow. It is assumed that initially (i.e., at time 0=t ), the aquifer is not clean (i.e., the 

domain is not solute free). Let ic be the initial contaminant concentration in the aquifer describe the distribution of the 

concentration at all points of the flow domain. The time-dependent source concentration is assumed at the origin (i.e., 
0=x , 0=y ) of the aquifer. At the end of both boundaries (i.e., Lx = , Hy = ), we assumed there is no solute flux.  

Let ( ), ,c x y t  be the contaminant concentration in the aquifer at position ( )yx,  and time t , u and v  the component of 

horizontal and lateral (transverse) flow velocity of the medium transporting the contaminants, and xD  and yD  the 

dispersion coefficients along longitudinal and lateral direction respectively. Then, a two-dimensional problem with first 
order decay can be mathematically formulated as follows: 
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where R  the retardation factor, which isdefined as 

n
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+= 1                                                                                                                          (2)  

dk  is distribution coefficient which is defined as ratio of the adsorbed contaminant concentration to the dissolved 

contaminants, dρ  is dry unit weight of soil, n  is porosity, σ  is first-order decay term or first-order chemical 

transformation term.  
Here, we made following assumptions:  

1.  Fluid is of constant density and viscosity.  
2.  Solute is subject to first-order chemical transformation (i.e., 0≠σ ). 

3.  No adsorption, 0=dk . 

4.  σ  is time-dependent. 
Let  

( ) ( ) ( ) ( )tfvtvtfutu 00 , == ,                                                                    (3)  

where 0u  and 0v  are initial velocity components along x and y axes respectively.  

Based on the above assumptions, (1) reduces to 
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As initial and boundary conditions, we choose 
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where 

ic  is the initial contaminant concentration in the aquifer, 0c  is the solute concentration and q  is the parameter like flow 

resistance coefficient. 
 
3. 0 Method of Solution 
Ebach and White [9], have established that the dispersion coefficient vary approximately directly to flow velocity, for 

different types of porous medium. Here, we let ( )tauDx =  and ( )tavDy =  in (4), where a  is the dispersivity that  
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depends upon the pore geometry. Also, first order decay term which is proportional to dispersion coefficient and 
retardation factor is considered. Using (3), we get  

( ) ( ) ( ) ( ) ( )tfttfDtDtfDD yyxx 000 ,, σσ === (6) 

where 00 auDx =  and 00 auDx =  are initial dispersion coefficient components along the two respective directions 

and 0σ  is the first order decay constant.  

Using (6) and combining (3) and (4), we obtain 
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Consider the temporally dependent forms of solute dispersion. Let ( ) ( )tvtf = , ( )tv  is the seepage velocity. Then, (7) 

becomes 
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Here, in order to account for the seasonal variation in a year on tropical regions ( )tv  will be considered in two forms:  

1. A sinusoidal varying form,  ( ) mttv sin1−=  and 

2. An exponentially decreasing form,  ( ) ( ) 1,exp <−= mtmttv , 

where m  is the flow resistance coefficient.  
We introduce a new time variable [10]: 
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Let us introduce a new space variable as: 
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3.1 Non-dimensionalisation 
We non-dimensionalised (14) and (15) using the following set of dimensionless variables: 
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For both the expressions of ( )tv , the non-dimensional time variable τ  may be written as: 
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So that for  

1. A sinusoidal varying form,  ( )( )2
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2. An exponentially decreasing form,  ( )( )2
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3.2  Solution by Parameter-expanding Method 

Suppose the solution 
( ),c z τ

 and the constant U  in (17) can be expressed as 
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where ... toh  read “higher order terms in 0
σ

. In our analysis we are interested only in the first two terms. 
Substituting (22) and (23) into (17) and (18), and processing, we obtain: 
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Transform (24) to an inhomogeneous equation with homogeneous boundary conditions and seek a direct eigenfunctions 
expansion, we obtain 
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 For the sinusoidally varying velocity, we substitute (20) into (26) and (27) while for the exponentially decreasing 
velocity, we substitute (21) into (26) and (27). 
The computations were done using computer symbolic algebraic package MAPLE.  
 
4.0 Results and Discussion 
Analytical solutions given by (26) and (27) are computed for the values of 0200, 1.0,ic c= = ( )0.2 / ,q day=

( ) ( )0 01, 2, 4 / , 0.1, 0.2, 0.4 / ,u km day v km day= =

( ) ( )2 2
0 01.5, 3.0, 4.5 / , 0.15, 0.30, 0.45 / ,x yD km day D km day= = 1 ,l km= ( )2 /m day=   (for 

sinusoidally varying velocity) and ( )daym /9.0=  (for exponentially decreasing velocity). The concentration values 

are depicted graphically in Figures 1 – 10.  
The contaminant concentration distribution behaviors along transient groundwater flow for sinusoidally varying velocity 

are shown in Figures 1 – 5. Figure 1 depicts the graph of ( ), ,c x y t against x  and y  for different values of 0xD . It is 

observed that the contaminant concentration decreases along longitudinal and lateral directions as initial dispersion 

coefficient along longitudinal direction increases. Figure 2 depicts the graph of ( ), ,c x y t against x  and y  for 

different values of 0yD . It is observed that the contaminant concentration increases and later decreases along 

longitudinal and lateral directions as initial dispersion coefficient along lateral direction increases.  
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Figure 3 depicts the graph of ( ), ,c x y t against x  and y  for different values of 0u . It is observed that the 

contaminant concentration increases along longitudinal and lateral directions as initial velocity along longitudinal 

direction increases. Figure 4 depicts the graph of ( ), ,c x y t against x  and y  for different values of 0v . It is observed 

that the contaminant concentration increases along longitudinal and lateral directions as initial velocity along lateral 
direction increases. 
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Figure 5 depicts the graph of ( ), ,c x y t against x  and y  for different values of t . It is observed that the contaminant 

concentration decreases along longitudinal and lateral directions with increasing time.  

 
The contaminant concentration distribution behaviors along transient groundwater flow for exponentially decreasing 

velocity are shown in Figures 6 – 10. Figure 6 depicts the graph of ( ), ,c x y t against x  and y  for different values of 

0xD
. It is observed that the contaminant concentration decreases along longitudinal and lateral directions as initial 

dispersion coefficient along longitudinal direction increases. Figure 7 depicts the graph of ( ), ,c x y t against x  and y  

for different values of 0yD . It is observed that the contaminant concentration increases and later decreases along 

longitudinal and lateral directions as initial dispersion coefficient along lateral direction increases. 
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Figure 8 depicts the graph of ( ), ,c x y t against x  and y  for different values of 0u . It is observed that the 

contaminant concentration increases along longitudinal and lateral directions as initial velocity along longitudinal 

direction increases. Figure 9 depicts the graph of ( ), ,c x y t against x  and y  for different values of 0v . It is observed 

that the contaminant concentration increases along longitudinal and lateral directions as initial velocity along lateral 
direction increases. 
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Figure 10 depicts the graph of ( ), ,c x y t against x  and y  for different values of t . It is observed that the contaminant 

concentration decreases along longitudinal and lateral directions with increasing time. 

 
It is worth pointing out that the effect observed in Figures 5 and 10, is an indication that as time increases in an aquifer, 
contaminant concentration decreases. 
 
5.0 Conclusion 
A two-dimensional solute transport model with time dependent source concentration formulated to predict contaminant 
concentration along transient groundwater flow in a homogeneous finite shallow aquifer is solved analytically using 
parameter expanding method and direct eigenfunctions expansion technique. The governing parameters of the problem 

are the initial dispersion coefficient along longitudinal direction ( 0xD ), initial dispersion coefficient along lateral 

direction ( 0yD ), initial groundwater velocity along longitudinal direction ( 0u ) and initial groundwater velocity along 

lateral direction ( 0u ). It is discovered that the contaminant concentration distribution is significantly influenced by the 

parameters involved. This concentration decreases as time increases in the domain.   
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