Hermite Series Expansion for Solving Perturbed Quantum Harmonic Oscillator Problems

J.F Omonile ${ }^{1}$, D.J Koffa ${ }^{2}$, S.X.K Howusu ${ }^{1}$
${ }^{1}$ Department of Physics, Kogi State University, Anyigba
${ }^{2}$ Department of Physics, Federal University Lokoja, Lokoja

Abstract

Abstract

It is obvious that all harmonic oscillators in the universe are affected by perturbation such as friction or defects in the elastic potential. In this paper, we determine the eigenenergies of the perturbed quantum harmonic oscillator by method of Hermite series expansion. The first notable result of the work in this paper is the discovery of the indefinitely fine revisions of thewell known sequence of Schrödinger's quantum mechanical eigenenergies due to a quartic perturbation potential..

Keywords: Hermite series expansion, eigenenergies, perturbation, oscillators

1.0 Introduction

Method of Hermite Series Expansion had been employed to derive the eigenenergies and their corresponding Eigenfunctions of the relativistic quantum linear simple harmonic oscillator [1] with kinetic energy operator \widehat{T} given by [2-4]

$$
\begin{equation*}
\widehat{T}=m_{0} c^{2}-\frac{\hbar^{2}}{2 m_{0}} \frac{\partial^{2}}{\partial x}-\frac{\hbar^{4}}{8 m_{0}^{3} c^{2}} \frac{\partial^{4}}{\partial x^{4}}-\cdots \tag{1}
\end{equation*}
$$

and potential energy V given by

$$
\begin{equation*}
V(x)=\frac{1}{2} m_{0} \omega_{0}^{2} x^{2} \tag{2}
\end{equation*}
$$

In this paper we show how to apply this method to a perturbed quantum harmonic oscillator.

2.0 Theoretical Analysis

Consider a given entity of non-zero rest mass m_{0}, in the one dimensional Hooke's field under the influence of friction having natural frequency, ω_{0}, under a quartic perturbation potential energy V given by:

$$
\begin{equation*}
V(x)=\frac{1}{2} m_{0} \omega_{0}^{2} x^{2} \pm \epsilon x^{4} \tag{3}
\end{equation*}
$$

where $\boldsymbol{\epsilon}$ is a small constant. The perturbed quantum mechanical energy wave equation is given by:

$$
\begin{equation*}
i \hbar \frac{\partial}{\partial t} \Psi(x, t)=\left\{-\frac{\hbar^{2}}{2 m_{0}} \frac{\partial^{2}}{\partial x^{2}}+\left(\frac{\mathbf{1}}{\mathbf{2}} \boldsymbol{m}_{0} \omega_{0}^{2} \boldsymbol{x}^{2} \pm \boldsymbol{\epsilon} \boldsymbol{x}^{4}\right)\right\} \Psi(x, t) \tag{4}
\end{equation*}
$$

where $\Psi(x, t)$ is the quantum mechanical wave function, which is subject to the condition of uniqueness and regularity everywhere and continuity across all boundaries and normalization.
Now the variables may be separated as:

$$
\begin{equation*}
\Psi(x, t)=U(x) \exp \left[\frac{-i E t}{\hbar}\right] \tag{5}
\end{equation*}
$$

where E is quantum mechanical energy and U is the quantum mechanical energy wavefunction which satisfies the equation:

$$
\begin{equation*}
0=\frac{\hbar^{2}}{2 m_{0}} U^{\prime \prime}(x)+\left[E-\frac{\mathbf{1}}{\mathbf{2}} \boldsymbol{m}_{\mathbf{0}} \boldsymbol{\omega}_{0}^{2} \boldsymbol{x}^{\mathbf{2}} \pm \boldsymbol{\epsilon} \boldsymbol{x}^{4}\right] U(x) \tag{6}
\end{equation*}
$$

Let ξ be a new independent variable defined by:

$$
\begin{equation*}
\xi=\left(\frac{m_{0} \omega_{0}}{\hbar}\right)^{\frac{1}{2}} x \tag{7}
\end{equation*}
$$

Then quantum mechanical energy wave equation for the perturbed quantum harmonic oscillator (6) transforms as:

$$
\begin{equation*}
0=U^{\prime \prime}(\xi)+\left[\lambda-\xi^{2} \mp \frac{2 \epsilon \hbar}{m_{0}^{2} \omega_{0}^{2}} \xi^{4}\right] U(x) \tag{8}
\end{equation*}
$$

Corresponding author:J.F OmonileE-mail: osijute@ yahoo.com, Tel.: +2347031663871
Journal of the Nigerian Association of Mathematical Physics Volume 28 No. 1, (November, 2014), 339 - 342

Hermite Series Expansion for...

Where

$$
\begin{equation*}
\lambda=\frac{2 E}{\hbar \omega_{0}} \tag{9}
\end{equation*}
$$

Next, let us seek the solution of (8) in the form:

$$
\begin{equation*}
U(\xi)=\exp \left[-\frac{1}{2} \xi^{2}\right] F(\xi) \tag{10}
\end{equation*}
$$

Then the function F satisfies the equation

$$
\begin{equation*}
0=F^{\prime \prime}(\xi)-2 \xi F^{\prime}(\xi)+\left[(\lambda-1) \mp \frac{2 \epsilon \hbar}{m_{0}^{2} \omega_{0}^{3}} \xi^{4}\right] F(\xi) \tag{11}
\end{equation*}
$$

Toward the solution of (11), let us note that the state of perturbed harmonic oscillator is contained within the space $L_{2}(-\infty, \infty)$ of all square integral functions over the interval $(-\infty, \infty)$. Also, the Hermite Polynomials constitute a sequence of complete orthogonal function in the space. It therefore follows that there exist constants A_{n} such that

$$
\begin{equation*}
F(\xi)=\sum_{n=0}^{\infty} A_{n} H_{n}(\xi) \tag{12}
\end{equation*}
$$

Hence simplifying by using the well known recurrence properties of the Hermite Polynomials, we obtain the following:

$$
\begin{align*}
& F^{\prime}(\xi)=\sum_{n=0}^{\infty} 2(n+1) A_{n+1} H_{n}(\xi) \tag{13}\\
& F^{\prime \prime}(\xi)=\sum_{n=0}^{\infty} 2^{2}(n+1)(n+2) A_{n+2} H_{n}(\xi) \tag{14}\\
& \xi F^{\prime}(\xi)=\sum_{n=1}^{\infty} n A_{n} H_{n}(\xi)+\sum_{n=0}^{\infty} 2(n+1)(n+2) A_{n+2} H_{n}(\xi) \tag{15}\\
& \xi^{4} F(\xi)=\sum_{n=4}^{\infty} \frac{1}{16} A_{n-4} H_{n}(\xi)+\sum_{n=2}^{\infty} \frac{1}{8}(n+1) A_{n-2} H_{n}(\xi)+\sum_{n=2}^{\infty} \frac{1}{8} n A_{n-2} H_{n}(\xi)+\sum_{n=0}^{\infty} \frac{1}{4}(n+1)(n+2) A_{n} H_{n}(\xi) \\
&+\sum_{n=2}^{\infty} \frac{1}{8}(n-1) A_{n-2} H_{n}(\xi)+\sum_{n=0}^{\infty} \frac{1}{4}(n+1)^{2} A_{n} H_{n}(\xi)+\sum_{n=0}^{\infty} \frac{1}{4} n(n+1) A_{n} H_{n}(\xi) \\
&+\sum_{n=0}^{\infty} \frac{1}{2}(n+1)(n+2)(n+3) A_{n+2} H_{n}(\xi)+\sum_{n=3}^{\infty} \frac{1}{8}(n-2) A_{n-2} H_{n}(\xi)+\sum_{n=1}^{\infty} \frac{1}{4} n(n+1) A_{n} H_{n}(\xi) \\
&+\sum_{n=1}^{\infty} \frac{1}{4} n^{2} A_{n} H_{n}(\xi)+\sum_{n=0}^{\infty} \frac{1}{2}(n+1)(n+2)^{2} A_{n} H_{n}(\xi)+\sum_{n=2}^{\infty} \frac{1}{4} n(n-1) A_{n} H_{n}(\xi) \\
&+\sum_{n=0}^{\infty} \frac{1}{2}(n+1)^{2}(n+2) A_{n+2} H_{n}(\xi)+\sum_{n=1}^{\infty} \frac{1}{2} n(n+1)(n+2) A_{n+2} H_{n}(\xi) \\
&+\sum_{n=0}^{\infty}(n+1)(n+2)(n+3)(n+4) A_{n+4} H_{n}(\xi)
\end{align*}
$$

Now substituting (12)-(16) into (11) we obtain:

$$
\begin{align*}
0=\sum_{n=0}^{\infty} 2^{2}(n+1) & (n+2) A_{n+2} H_{n}(\xi)-2 \sum_{n=1}^{\infty} n A_{n} H_{n}(\xi) \mp \alpha \sum_{n=4}^{\infty} \frac{1}{16} A_{n-4} H_{n}(\xi) \mp \alpha \sum_{n=2}^{\infty} \frac{1}{8}(n+1) A_{n-2} H_{n}(\xi) \\
& \mp \alpha \sum_{n=2}^{\infty} \frac{1}{8} n A_{n-2} H_{n}(\xi) \mp \alpha \sum_{n=0}^{\infty} \frac{1}{4}(n+1)(n+2) A_{n} H_{n}(\xi) \mp \alpha \sum_{n=2}^{\infty} \frac{1}{8}(n-1) A_{n-2} H_{n}(\xi) \\
& \mp \alpha \sum_{n=0}^{\infty} \frac{1}{4}(n+1)^{2} A_{n} H_{n}(\xi) \mp \alpha \sum_{n=0}^{\infty} \frac{1}{4} n(n+1) A_{n} H_{n}(\xi) \mp \alpha \sum_{n=0}^{\infty} \frac{1}{2}(n+1)(n+2)(n+3) A_{n+2} H_{n}(\xi) \\
& \mp \alpha \sum_{n=3}^{\infty} \frac{1}{8}(n-2) A_{n-2} H_{n}(\xi) \mp \alpha \sum_{n=1}^{\infty} \frac{1}{4} n(n+1) A_{n} H_{n}(\xi) \mp \alpha \sum_{n=1}^{\infty} \frac{1}{4} n^{2} A_{n} H_{n}(\xi) \\
& \mp \alpha \sum_{n=0}^{\infty} \frac{1}{2}(n+1)(n+2)^{2} A_{n} H_{n}(\xi) \mp \alpha \sum_{n=2}^{\infty} \frac{1}{4} n(n-1) A_{n} H_{n}(\xi) \mp \alpha \sum_{n=0}^{\infty} \frac{1}{2}(n+1)^{2}(n+2) A_{n+2} H_{n}(\xi) \\
& \mp \alpha \sum_{n=1}^{\infty} \frac{1}{2} n(n+1)(n+2) A_{n+2} H_{n}(\xi) \\
& \mp \alpha \sum_{n=0}^{\infty}(n+1)(n+2)(n+3)(n+4) A_{n+4} H_{n}(\xi) \tag{17}
\end{align*}
$$

Hermite Series Expansion for...

where

$$
\begin{equation*}
\alpha=\frac{2 \epsilon \hbar}{m_{0}^{2} \omega_{0}^{3}} \tag{18}
\end{equation*}
$$

From the coefficients of $H_{0}(\xi)$ we obtain the recurrence equation:

$$
\begin{equation*}
0=\left[(\lambda-1) \mp \frac{3}{4} \alpha\right] A_{0} \mp 6 \alpha A_{2} \mp 24 \alpha A_{4} \tag{19}
\end{equation*}
$$

Next taking the coefficient of $H_{1}(\xi)$ we obtain the recurrence equation:

$$
\begin{equation*}
0=\left[(\lambda-1)-2 \mp \frac{15}{4} \alpha\right] A_{1} \mp \frac{51}{2} \alpha A_{3} \mp 140 \alpha A_{5} \tag{20}
\end{equation*}
$$

Next from the coefficient of $H_{2}(\xi)$ we obtain the recurrence equation:

$$
\begin{equation*}
0=\left[(\lambda-1)-4 \mp \frac{39}{4} \alpha\right] A_{2} \mp \frac{3}{2} \alpha A_{0} \mp 84 \alpha A_{4} \mp 360 \alpha A_{6} \tag{21}
\end{equation*}
$$

Generally, from the coefficient of $H_{n}(\xi)$ we obtain the recurrence equation:

$$
\begin{gather*}
{\left[(\lambda-1)-2 n \mp \frac{3}{2} \alpha\left(n^{2}+n+\frac{1}{2}\right)\right] \mp \frac{\alpha}{4}(2 n-1) A_{n-2} \mp 2 \alpha(n+1)\left(n^{2}+3 n+2\right) A_{n+2}} \\
\mp \alpha(n+1)(n+2)(n+3)(n+4) A_{n+4} \tag{22}
\end{gather*}
$$

(22) Is the general recurrence relation.

3.0 Results and Discussions

3.1 Ground Energy Level

For the ground level of the perturbed quantum harmonic oscillator, we choose the coefficient of A_{0} in the recurrence equation (19) to vanish:

$$
\begin{align*}
& \quad(\lambda-1) \mp \frac{3}{4} \alpha=0 \\
& \lambda=1 \pm \frac{3}{4} \alpha \tag{23}
\end{align*}
$$

or explicitly using (9) and (18)

$$
E_{0}=\frac{1}{2} \hbar \omega_{0} \pm \frac{3}{4} \frac{\epsilon \hbar^{2}}{m_{0}^{2} \omega_{0}^{2}}(24)
$$

E_{0} is the quantum mechanical energy of the ground level.

3.2 First Energy Level

For the first level of the perturbed quantum harmonic oscillator, we choose the coefficient of A_{1} in the recurrence equation (20) to vanish:

$$
\begin{align*}
& (\lambda-1)-2 \mp \frac{15}{4} \alpha=0 \\
& \lambda=3 \pm \frac{15}{4} \alpha \tag{25}
\end{align*}
$$

Or explicitly using (9) and (18)

$$
E_{1}=\frac{3}{2} \hbar \omega_{0} \pm \frac{15}{4} \frac{\epsilon \hbar^{2}}{m_{0}^{2} \omega_{0}^{2}}(26)
$$

E_{1} Is the quantum mechanical energy of the first level.

3.3 Second Energy Level

For the second level of the perturbed quantum harmonic oscillator, we choose the coefficient of A_{2} in the recurrence equation (21) to vanish:

$$
\begin{align*}
& (\lambda-1)-4 \mp \frac{39}{4} \alpha=0 \\
& \lambda=5 \pm \frac{39}{4} \alpha \tag{27}
\end{align*}
$$

or explicitly using (9) and (18)

$$
E_{2}=\frac{5}{2} \hbar \omega_{0} \pm \frac{39}{4} \frac{\epsilon \hbar^{2}}{m_{0}^{2} \omega_{0}^{2}}(28)
$$

E_{2} is the quantum mechanical energy of the second level.

3.4 General Energy Level

For the general level of the perturbed quantum harmonic oscillator, we choose the coefficient of A_{n} in the recurrence equation (22) to vanish:

Hermite Series Expansion for...

$$
\begin{align*}
& (\lambda-1)-2 n \mp \frac{3}{2} \alpha\left(n^{2}+n+\frac{1}{2}\right)=0 \\
& \lambda=2 n+1 \pm \frac{3}{2} \alpha\left(n^{2}+n+\frac{1}{2}\right) \tag{29}
\end{align*}
$$

or explicitly using (9) and (18)

$$
E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega_{0} \pm 3\left(n^{2}+n+\frac{1}{2}\right) \frac{\epsilon \hbar^{2}}{m_{0}^{2} \omega_{0}^{2}}(30)
$$

E_{n} is the quantum mechanical energy of the nth level.
Carefully observing each level of the quantum mechanical eigenenergies of the perturbed quantum harmonic oscillator, it may be noted that E_{n} ishitherto unknown to the best of our knowledge. Equation (30) is ageneralisation of the unperturbed quantum mechanical eigenenergies of the linear simple harmonic oscillator, given by;

$$
\begin{equation*}
E_{n}=\frac{1}{2}(2 n+1) \hbar \omega_{0} \tag{31}
\end{equation*}
$$

4.0 Conclusion

This work can now be extended to the derivation of the exact Eigen energies of all perturbed linear harmonic oscillators having potential energy correctionsof the form $\pm \in x^{n} ; \mathrm{n}=3,4, \ldots$

References

[1] D.J Koffa, J.F Omonile, S.X.KHowusu: Methods of Hermite Series Expansion for Solving The Relativistic linear Quantum Simple Harmonic Oscillator Problems;Archivesof Physics Research, 2013, 4(6): 41-49
[2] S.X.K, Howusu,2004,Special Relativity and Electromagnetism, Jos, Jos University Press Ltd, pp:11-15.
[3] A.S, Davydou, 1972,Quantum Mechanics; Pergamon Press, New-York, pp: 90-112.
[4] F.B, Hildebrand, 1962,Advanced Calculus for Application, Prentice-Hall, Englewood Cliff, pp: 209-221,

