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Abstract

The ground state energies of the first row diatonmcolecules have been
calculated by applying the quantum Monte Carlo (QNICCASINO - code
simulations to solve the Schrédinger equation, vatit the use of any adiabatic
approximations. By employing the restricted Hartré®ck (RHF) scheme, two
different QMC techniques were used in this work: ethvariational quantum
Monte Carlo (VQMC) and the diffusion quantum MonteCarlo (DQMC)
techniques. The ground state energies of hydrogerd éhelium molecules for
different maximum distances from their origins arealculated using the two
different methods mentioned (VQMC and DQMC). Thersilations require that
the configurations must evolve on the time scalethé electronic motion, and
after equilibration, the estimated effective timéep be obtained. The ground state
energy for hydrogen molecule from VQMC calculation is

[-1.1697 (8} 0.00406(73]u.; and a more accurate result was obtained
from the DQMC calculation a§—1.17456(7} 0.000172(&l. Also, the

ground state energy of helium molecule from VQMC Icalation is
[-5.8067+ 0.000481&Ju., while a more accurate result is obtained from the

DQMC calculations asf{—5.808+ 0.0000545&Ju. The results from the

DQMC techniques of the calculations are found to peecisely approaching the
required order of accuracies.
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1.0 Introduction

The hydrogen molecule Hs the basic arena for the confirmation of theangl experiment in fundamental molecular
Physics [1]; and the determination of the grouratesenergies for molecular systems constituteahieliproblem of
general interest in theoretical condensed mattgsips [2]. Hydrogen is the simplest molecular systghich exhibits
such important effect as electron correlation, dbparation of electronic and nuclear motion, atated non-adiabatic
effects, as well as relativistic and radiative efég1].

There is a long history of increasingly accurateotetical calculations of the energy of hydrogenletde and
increasingly accurate experimental measurementheofionization potential and dissociation energlie Tmethod of
choice for theoretical prediction has most oftearbanalytical variational method, but the quantuoniéd Carlo method
has recently approached its accuracy for hydrogelecule. The history of accurate calculations oérgies for H
begins with one of the first successes in solvimg $chrédinger equation for the hydrogen molecuekd33 with the
work of James and Coolidge [3]; when all known eotions were included, the best estimate of thereligncies was -
1.1744 a.u as established by Kolos and Wolnieelgzwhich has been referred to be the exact valubeoground state
energy of the hydrogen molecule [5].

After hydrogen, helium is the most common elemeatiheé universe [6]. Hydrogen and helium share soorangon
properties.Both are very light and exhibit rich guan properties at low temperature.Helium is theoed least reactive
element and noble gas (after neon). Its low atomass, thermalconductivity, specific heat, and sapekd are greatest
after hydrogen.The study of stability of bound esafor atomic and molecular systems as a functighysical
parameters, such as nuclear charges, nuclear ahstais a subject of great interest.Multiple chdrgaions could be
unstable against ionization, and experimental &edreticalsearch of small stable multiple chargeidres is an active
research field [7]. On the otherhand, in the cddgghly ionized molecules, nuclear Coulombic regiomh turns these
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systemsunstable against dissociation. However, at/éme present time when we are able to makeedionk for many
body systems, like extremely large molecules, sproperties of smallmolecules are still being a geedject of study.
The ground state of simple molecules likethe hydrogolecule, the helium hydride molecular ion ahe kelium
molecular di-cation was studied with great det&#13].Helium molecule has been a subject of intdig¥sa long time,
and continues to attract the attention of manyaeteers. Davidson [14] discussed the restrictidasegul on the ground-
state potential energy of a diatomic molecule bg thequality 42 (R?E)/dR? <0, which leads to rather weak

smoothness conditions &(R). Schiff and Verlet [15] presented a variationalcalation of the ground-state energy of
liquid helium-3 and liquid helium-4 using, respeety, Jastrow- and Slater-Jastrow-type trial wawecfions. Kriger
[16] calculated the binding energy of the lowestiti state of threeidentical particles and predietediable tri-atomic
helium molecule with a binding energy of 0.4°K s Morse potential. Ceperley [17], Toennies aneéd6l [18] used
the Monte Carlo simulation techniques to simulaisdm systems and introduces the picture of a bssper fluid {He);
and showing the agreement between simulations aperienental measurements on liquid and solid helfamsuch
quantities as pair correlations, the superfluidsitgnthe energy, and the momentum distributioomére recent research
is the work of Feon and Serra [19],who studied of the ground stateabiour of two-electrondiatomic molecules; and
obtained the ground state stability diagram fortadidc moleculesin the Born—Oppenheimer approxinmaaod the
behaviour of the ground state near the stabilitg.li

We present in this paper, the quantum Monte CaA8IGIO code, for the simulation and calculation ke ground state
energy of diatomic molecules of some first row edais (hydrogen and helium) from two QMC methodsiat@mnal
quantum Monte Carlo (VQMC) and diffusion quantum ritéo Carlo (DQMC) methods. The ground state eneffgy o
hydrogen molecule was recently calculated by Swdeirand Ewa [2] using the VQMC/Path Integral Montarl@
(PIMC) method. Their calculated ground state enevgy -1.1736 a.u which differs from the exact vdi&] by 0.0008
a.u.Also recently, Ebomwonyi et al [20] using th&€MC method (CASINO-code) by employingthe unresgdct
Hartree-Fock (UHF) technique (open shell), hadlaevaf -1.168 a.u. This value differs from the exemlue by 0.0064
a.u, which is much more farther from the exact ®althe reason for this significant error differefmcéoth results could
be attributed to the fact that both authors [2288d the VQMC method which limits the accuracyhef ground state
energy due to the necessity of guessing the ti@@levfunction. On the basis of this, we have tackhedproblem here by
using the DQMC method which requires an optimizéad tvave-function as a sampling function.

2.0 Method (Quantum Monte Carlo Methods)

Quantum Monte Carlomethod encompasses severatatiffeechniques that relies on random samplinguonbers [21],
which involves the combination of quantum approicphysics with Monte Carlo procedures as appled system [2].
There are many different QMC methods, but this wookcentrates only on two: Variational quantum Mo@tarlo

(VQMC) and fixed—node diffusion quantum Monte Ca{QMC). Like all QMC methods, these are closelited to

Monte Carlo methods used in classical statisticacmnics [22]. In the VQMC method, expectation ealware
calculated via the Monte Carlo integration ové8imensional space of electron coordinates. Thezrsophisticated
DQMC is a projector approach in which a stochaistiaginary-time evolution is used to improve a $tartrial wave-

function. QMC has a number of desirable featurechyheven if the fermion sign problem is not solvédply the

method will still be useful [23].

2.2 Variational Quantum Monte Carlo(VQMC) Technique
The variational QMC technique is implemented in tise of the CASINO—code in this review, for thecoldtion of the
ground state energy of the hydrogen molecule, bpleying the RHF (Restricted Hartree-Fock) methodrahe UHF
(Unrestricted Hartree-Fock) method.
The RHF method involves where the atoms or moleacisle closed-shell system with all orbitals (atmi molecular)
doubly occupied. It is a variant of Hartree-Fockdty for open shell molecules. It uses doubly o@xipnolecular
orbitals as far as possible and then singly occlipibitals for the unpaired electrons. The fouratatf the RHF method
were first formulated by Roothaan [24] and therereded by other authors [25,26]. The RHF methocclosed shell
molecules, leads to Roothaan equations writteherfarm of a generalized eigen value problem.

FC=8SCr (2.1)
Where F is the Fock matrix (which is a function@Q)f C is a matrix of coefficient, S is the overlayatrix of the basis
functions andJ is the matrix of orbital energies.
The UHF method is the most common molecular orlitathod for open shell molecules where the numdbieesectron
of each spin are not equal. It uses different mdégcorbitals for thenx and3 electron. This has been called a different
orbitals for different spin (DODS) method. The rfeds a pair of coupled Roothaan equation knownttes Pople-
Nesbert-Berthier equation [27, 28]

FiC%= C[F (2.2)

FACP = sCPrP (2.3)
whereF“andF”are the Fock matrices for tioeandp orbitals,C”and C” are the matrices of coefficients for theandp
orbitals, S is the overlap matrix of the basis fiorg 0 and0® are the diagonal matrices of orbital energiesHen
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andf3 orbitals. The pair of equations is coupled becdlisd=ock matrix elements of one spin contain doiefits of both
spin as the orbital has to be optimized in the ayeiffield of all other electrons. The final regsila set molecular orbitals
and orbital energies for tleespin electrons and a set of molecular orbitals@bdal energies for thg electrons.

The UHF has one setback. A single Slater determiofadifferent orbitals for different spins is natsatisfactory eigen
function of the total spin operators, $he ground state is contaminated by excited stétéhere is one more electron of

a spin tharB spin, the ground state is a doublet. The averageewof $ i.e.(S?) = %G+ 1) = 0.75, but will actually

be rather more than this value as the doublet Eatentaminated by a quadruplet state. A triplateswith two excesa
electrons should havés?) = 1(1 + 1) = 2, but it will be larger as the triplet state is caminated by a quintuplet
state.When carrying out UHF calculations, it is @& necessary to check this contamination. For plgmvith a
doublet state, ifS?) = 0.8 or less, it is probably satisfactory. If it is 100 so, it is certainly not satisfactory and the
calculation should be rejected, then a differeqtraach taken.

An efficient QMC variant is the variational QMC meth(VQMC). Here the Rayleigh-Ritz quotient [29]

oW IH g _[eitrdr
Wilyn)  Jygar -

is evaluated with Monte Carlo integration. The gyeE is variational: B> E,. Usually, but not neces&‘,arily'/T2 is

sampled with the Metropolis algorithm [30]. In thiegem, VQMC was first used by Conroy [31] for smadblecules and
by McMillan[32]forthegroundstateofliquidhelium.IrghcurrentVQMCapplications, the generalized Metrigpalgorithm
[33] is used, thereby allowing directed finite timeeps such as diffusion step from the importameepted DQMC
algorithm. This not only increases the efficiendytlle VQMC method considerably, but it also makedNIC and
VQMC algorithms very similar, with VQMC being moeéficient and less accurate. Because of its eficye VQMC is

the method used for the largest QMC applicationseléctronic-structure calculations, the trial ftime ¢/ is often of

the same form as the guide functitsfy, in DQMC.

2.3 The Diffusion Quantum Monte Carlo(DQMC) Technique
The most widely used QMC method in Chemistry angisis isthe diffusion QMC method DQMC [22,34,35].id
based on the mathematical equivalence of the tiepeadent Schrodinger equation in imaginary time it :

awa(;r):ingﬂ(r,T)—V(r)l//(r,T), (2.5)
T 2m
with a generalized diffusion equation
w: DO%c(r,7) = k(r)c(r,7), (2.6)
14

Here D is identified as the diffusion constant ink/S second law and k(r) as the position-dependatet constant of a
first-order rate  equation. Fermi not only noticed e th equivalence between  Schrddinger’s
equationandthediffusionequation,butsuggestedalsottendom walk in which a particle diffuses and ianeously
multiplies based on the rate constant would evdigtgase the ground-state wave function [36]. Femmionclusion is
seen from the formal solution of the Schrddingeragigpn of (1.1) as follows[29]:

w(r,r)=e"y(r,0), (2.7)

where H :—LDZ—V(r)- (2.8)
2m

After expanding the initial wave function in eigemctions ofH,

W(r,0=> ao,, (2.9)

i
the time-dependent solution is obtained in termsigén-functions
— -E
l/’(r,T)—Zaie rcDi’ (2.10)
i

The contributions for a positive red, from higher states decay exponentially causing dtaes with the larger

eigenvalues to decay away, leaving the state wighstmallest eigenvalue (i.e., the ground statey &ing 7 . When a
random walk satisfying the diffusion equation is)\soucted, the ground-state wave function is obthiexactly after a
sufficiently long time, as a distribution of randamalkers.Quantum mechanical expectation valuebeasbtained as
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statistical expectation values.The importance samgiere is a technique used to improve the sigisaccuracy of the
simulation. To implement importance sampling, thact wave functiorn/ is multiplied by a trial wave functio to
obtain a new functionf [37,38]

f(r,r) =@ (r)y(r,7) (2.11)

In this form, the DQMC method can be applied toaobtzero-point energies and ground-state wave iumstof

vibrational Schrodinger equations. When this metisagpplied to electronic-structure problems, twfialilties are met;
the Coulomb singularities in the electronic Hanmlem prohibit an efficient simulation of the ratarp and the Pauli
principle leads to nodes in the wave function fer ground state of systems with more than two redast

The first problem is solved with an importance-singptransformation of the original Schrédinger atjon [37], in

which a guide functiord/; is introduced that guides the random walk towaetgons wheré// is large. The random
walk then consists of a diffusion step as befoneew drift step with a velocity.] Ys /l//G , and a reaction term with the

rate constant novE = Hy; /i [39].

The second problem, the node structure of theiphlyground-state wave function, is a manifestatibrihe
general fermion sign problem. An approximation ¢otfue ground state is obtained when the nodesneidal function
are imposedon the random walk—the FN-DQMC [40]. &isy a fixed-node(FN) energy is variational, that

EFN = E0 Typically, the importance-sampling guide functidfy serves also to define the nodest/f satisfies the

Pauli principle, then so too will the FN-DQMC scngllo. A more accurate, but less efficient solution barobtained

in principle when the nodes are released from fis@d locations in released node QMC [41].
The error caused by the fixed-node approximatiosmsaller when the guidefunction is closer to thaogground-state

function. In many DQMC calculationg//; is of the form
— Y
Ys =€” > ¢ det@), (2.12)
k

wheredet(@ )is a Slater determinant of HF or local densityragpmation (LDA) orbitals andUis a “Jastrow” term,
depending explicitly on the electron-electron dists

U =u [(rij )] , (2.13)
with i = ‘ri - ‘, to satisfy the electron cusp condition. Becausedymeamic electron correlation isaccounted for by

e“, one or only a fewdeterminants{lf; are used. The parametersafe optimized by variance minimization with

Monte Carlo methods [31].Withguide functions ofstliype,>90% of the correlation energy is routinely obtaiwed
FN-DQMC.

3.0 Computational Procedures

The CASINO code used in this work was run on a kimased operating system (Ubuntu environment) fggain
working Fortran 90 compiler.

In this work, the CASINO code simulations was getedt for a dual purpose, and thereby used for lediog the

ground state energies of hydrogen and helium midsdwy either VQMC or DQMC, or both at once, wite time step
(for dtdmc) set at 0.003. The VQMC step is an inpatameter to the DQMC, corresponding to the totahber of

particle configurations for which the energy isceddited. The correlated wave-function from VQMGQHen optimized
by DQMC using the variance minimization method bain an efficient and more accurate convergencheoénergy.

4.0 Results and Discussion

4.1 Hydrogen Molecule

The DQMC steps generated from the optimized VQMg&pst(which serve as an input to the DQMC simulative
rise to new configurations of electrons and nuateéach move and because of the difference in-pasgicle separation,
the energy valueof each of these configurationkheildifferent. The correct expectation value & émergy (for each of
the molecules in this work) is the average enefgh@usands of these configurations.

Figure 1, Figure 2 and Figure 3, show the graphieallts of a DQMC run for a hydrogen molecule,egated from
100,000 configurations. The number of equilibratstaps underwent is 2000 moves, at an imaginarg-§tep set to
0.003. The simulation took 10000 line of databetwaecepted configurations, and gave the best astioiaffective
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time-step to be 0.00299903.The ground state eneogy the output file is obtained at 8.30688737&which is the
maximum distance from origin), with an acceptanatoof 99.973%which is in good agreement as predidby
Equation (2.12) and Equation (2.13).

The results presented in Figure 1 and Figure 3 ghaithe more the DQMC steps simulated, the smtike error bar,
and the more likely that the calculated energy bélicloser to the exact ground state value, arsdvilue obtained was
in close agreement with the exact value [4].Theesponding ground state energy is obtained witreraar—bar as

[1.17456(7% 0.000172(@. for Hydrogen molecule using DQMC method.
Again at thesame time-step of 0.003, a VQMC run dase for the hydrogen molecule and the grounck gatrgy
obtained with an error — bar[s-1.1697(8)x 0.00406(73u.and with an acceptance ratio of 60.867%.

Nevertheless, the energy convergence in both agaeseached at a point when the continual increasee DQMC
steps and VQMC steps did not result in any sigaiftdurther increase in the energy of the hydragefecule as shown
in Figure 1 and Figure 2.The CASINO simulationsrirthe DQMC method show a significant improvementais the
exact value over the VQMC method in Figure 2; dnid tould be attributed to the stochastic gradagproximation
method used in DQMC. The energy difference betwibencalculated VQMC / DQMC method (from CASINO cpde
and the exact ground state energy obtained froner@d-unction Monte Carlo (GFMC) [42] and diffusibtonte Carlo
by applying the non-restricted method is 0.0116ttdar Another observation from the graphs is thatdround state
energy was obtained at a maximum distance of 813frmm the origin, which falls within the limits ¢he theoretically
obtained values; this indicates greater intenditthe lowest energy levels from configuration taigration at a small
inter-particle distances.

The results of the ground state energycalculated feg both DQMC and VQMC techniquesare inagreemetit the
work of other researchers shown in Table 1.

Table 1: Comparative analysis of the ground state energiethé hydrogen molecule calculated by differesesgchers

S/No | Author/ Reference Technique/ Method GSE (a.)
1 Kolos &Wolniewicz [4 Exact value (BO Approx -1.174«

2 Traynor, Anderson &Boghosian [42] DQMC / GFQMCofNRestricted) -1.1630
3 Chen & Anderson [1] GFQMC (Non-Restricted) -1872
4 K. W. Ho [43] VMC / DMC (BO) —1.175(

5 D. Martin [21] VMC /| GFMC -1.1660
6 Suleiman &Ewa [2 VQMC / PIMC (BO; -1.173¢

7 Ebomwonyi et al [20] VMC CASINO code (UHF) -1.168
8 This work VQMC (CASINO-code) -1.1697
9 This work DQMC (CASINC-code -1.174¢
GSE = Ground State Energy

1la.u. =27.2eV

From the output file the results of the acceptarat®s of 99.97% (for DQMC) and 60.87% (for VQMGhplies an

improved stability in the ground state energy ie tise of DQMC over VQMC methods. This indicateg tha chosen
time-step does not limit the number of accepted tél@arlo moves.

Figure 3 presents the reduction in the reblockedrdrar as the reblocking transformation numberNRE increased.
However, the standout points in the graph may ketdunclusion of unequilibrated data in the finseraged data which
will give a systematic bias to the averages obth[Ad].

Figure 4 is a graphical representation of a plasdawing the statistical accuracy of the standandadion of error—bar
at an increased block length. This result indicales, for large enough blocks, there should béstilbuted constant
value, which is the true standard error in the méiaalso indicates that the absence of a plateauldvbe a result of
insufficient data to estimate the standard errath&nenergy estimate [45]. Hence, as more configums are included,
the sampling is improved.

4.2 Helium Molecule
A VQMC CASINO code simulation was done for heliunolecule with 40000 configuration steps, and a moke
500equilibration steps at a time-step of 0.1 secdm@ number of attempts before accepted move 8. VQMC

output file gives an acceptance ratio of 53.3% withariance of local energf0.00573t 0.000048)u. The local

energy is discontinuous at cutoff, and the grouatesenergy was obtained at a maximum distancel &38a.u. from
the origin.
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DQMC run for a helium molecule was again generated 1661000 configurationsat an imaginary time-step set to 0.01
second. The number of attempts before accepted move is 4.e$hedtimated effective time-step from the output is
0.009949 second. The ground state energy from the odulpig Dbtained at 10.94a.u. which is the maximum distance
from origin, with an acceptance ratio of 99.64% whichniggood agreement as predicted by Equation (2.12) and
Equation (2.13). Theground state energies arecalculated \aith error—bar for DQMC method as

[-5.808+ 0.0000545&Ju.and VQMC method 4s5.8067+ 0.000481&Ju. for Helium moleculeand compared with
other results as shown in Table 2.

Table 2: Comparative analysis of the ground state energies fodittemic helium molecule calculated by different
researchers

S/No| Author/ Reference | Technique/ Method GSE (a.u.
1 Atkins [46] Experiment -7.1400

2 Schiff &Verlet [15] Variational wave-function -5.9500
3 Jstgaard [47 Brueckner theor! -5.900(

4 Pokrant [48] Molecular-dynamics —6.6300
5 This work VQMC (CASINO-code) -5.8067
6 This work DQMC (CASINO-code) -5.8080

Figure 5 and Figure 6 present the graphs of the ground state erfig¢rgyhelium molecule calculated using CASINO
code at maximum distances from their origin.Theresults ftbhengraphs obtained show a fast convergence of the
configuration moves to the ground state energy in using the ©O@thod over the VQMC method.This indicates that
when the number of configuration is few, the equilibratiogestaill take longer than usual. The observations from the
graphs show that the energy in Figure 5 converges at a maximameaigif 10.94 a.u. for DQMC at an effective time of
0.009949 seconds, while in Figure 6; it converges at a maxidistance of 11.34a.u. from the origin for the VQMC
method at a VQMC_time-step optimization of 1 second. likestn the case of the hydrogen molecule discussed above,
this is an indication that in DQMC calculations, a syst@&rtane-steperror which is always present may be dubeo t
approximation used for the Green’s function. Another observiitimt the possible changes in wave-function quality
as the system size and geometry changes may be cats#tieysystematic error.

Figure 7 is the combination of Figures 5 and 6, showing signtficaprovement in calculation from DQMC method
towards the exact energy value over the VQMC method. Thewaasenergy difference from Figure 7 is 0.0013 a.u.,
and it could be attributed to the stochastic method usB®MC.

The diffusion quantum Monte Carlo (DQMC) method simulatestithe—dependent Schrédinger equation, and thus
eliminates the problem of finite time step error, replacing it with a small cutoff of the repulsive potahtt small
distances necessary for the stability of the algorithimst as the DQMC method converges to the exact answeinahby

limit of small time step, it has also been used tfeating several excitonic systems involving coupled raucind
electronic motion without the Born-Oppenheimer approxiomaf23,25,50].
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Fig. 1:Graph of Ground State Energy versus DQMC number bsteps for H, molecule.
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molecule.

5.0 Conclusion

We have combined in this work, variational and diffusion quantumt&iGarlo techniques under the restricted Hartree—
Fock (RHF) scheme using quantum Monte Carlo CASINO-codelaiions to calculate the ground state energies of
hydrogen and helium molecules taking into account their manimistances from origin. These calculations yield the
total energies for the ground state of the two moleduntdading their coulomb interaction and local electron-éoergy.

The resultfor the ground state energy of the hydrogenaulel@ising the DQMC method was in good agreement with the
exact value. However, the result for that of the heliunlecule, though close to the results of other authors has a
significant difference from the experimental value. This ddaé as a result of the instability of the diatomic roolar
helium.
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