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Abstract

Boundary element method (BEM) has been used in sitedy of engineering
materials such as alumina, iron steel, mild steklyw carbon steel, stainless steel,
concrete, silica glass and PVC. Special crack-tiigreent method was used to
evaluate stress intensity factor for centre, singldge and double-edge crack for
various values of specimen size (geometry), micxggtiral parameter and
volume fraction. Materials behaviour increases eqentially with increase in
specimen size in the range of

0.1< a/w <0.8. The response is high for aluminaw for low carbon steel,
mild steel, iron and stainless steel showing highdalow resistance to crack
growth. The asymptotic behaviour of concrete, slliglass and PVC gives rise to

1
crack growth at 0.105'\/I Pam? and 0.2 specimen geometry. The ratio of shear
modulus at (-0.2-1.1) x1
(0 to -2 )x1F, -1.46 x10* to -2 x10°, respectively for concrete, silica glass
and PVC exhibited brittle fracture (failure) whileat 1.03 to 1.39, 1.04 to 1.39,
1.07 to 2.23 for low carbon steel, iron steel andldnsteel, stainless steel and
alumina was characterized with ductile fracture.

Keywords:Engineering materials, specimen geometry, streésssity factor, crack-tip etc.

1.0 Introduction

Engineering materials are very important in theedgwgment of any society as they are used in thestoastion of
structures such as buildings, communication mdsidges, flyovers, automobile, power plants, raiieg etc. It is
observed that most structures are collapsing oly d@eisis. This has attracted the attention of thiterént tiers of
government, companies, non-governmental organizmtitNGO), Nigeria Society of Engineers (NSE), Coalufar
Regulation of Engineering in Nigeria (COREN) ardestist as a whole. Some people have blamed thadaon
engineers who design and supervise such projether®are of the opinion that the engineering neteused for the
construction are substandard while some other relses have attributed the problem to crack failarengineering
materials. In a bid to address the problem, COREMN made it mandatory for all Nigerian engineerbeaimng to the
professional body. However, no matter the ingenextyibited by engineers and scientist in the deaigh construction,
failure of machine parts and structures must oasugach machine member has its life span.

The study of fracture mechanics began in earngstglWorld War 1 by English aeronautical enginéeaniffith [1] who
used his theory to explain the failure of brittkaterials. However, Griffith's approach was toartive for engineering
applications and is only good for brittle materidtsr ductile materials, the milestone that wasge®riffith [1] did not
come true. Because of this setback Griffith worlseagely ignored by the engineering community.

Griffith's theory provides excellent agreementshwéixperimental data for brittle materials such Esg For ductile
materials such as steel, his experiments showedhharoduct of the square root of the flaw len@hand the stress at

fracture (O ) was nearly constant, which is expressed by eguati

o.~Ja=C¢C )

where C is a constant
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He later found an expression for the constant @ims of the surface energy of the crack by soltheg elasticity
problem of a finite crack in an elastic plate.
Griffith found that
2E
C = _y 2)
ia

where (E) is the Young's modulus of the material af}/) is the surface energy density of the materiak $hrface

energy (V) predicted by Griffith's theory is usually unresially high for ductile materials and even in evils that

appear to be brittle.
Onuu and co-woeker[2 - 4] investigated methodsfedicting growth rate of cracks in solids. Varialider procedures
with different validity criteria are used to studgd characterize crack growth resistance in sflid</]

1.1 Boundary Element Method

The boundary element attempts to use the givendsynconditions to fit boundary values into theegral equation,
rather than values throughout the space definea Ipartial differential equation. Once this is doire,the post-
processing stage, the integral equation can tharsée again to calculate numerically the solutimeadly at any desired
point in the interior of the solution domain.

BEM is applicable to problems for which Green'sdiion can be calculated. These usually involved§ein linear
homogenous media. This places considerable réstricbn the range and generality of problems tociwhioundary
element can usefully be applied. Nonlinearities loarincluded in the formulation, although they wiinerally introduce
volume integrals which then require the volume ¢adiscretised, before solution can be attemptedopveng one of the
most often cited advantages of BEM. BEM has emeegea powerful alternative to the finite elementhrod. The most
important features of BEM is that it reduces timaahsionality of the problem by one, resulting israaller system of
equations and a considerable reduction in theragtaired for the analysis.

2.0 Similar Methods and Formulation

2.1  J-integral method
The use of J-Integral method to investigate grovette of cracks in solids reveals that specimen aim geometry

(%,) has effect on the critical values of fracture togss ,.) whereW is the width of the crack. Onuu [8]

showed thatK,c decreases with decrease(%). According to Onuu [8] for a given geometr{,. depends on both
specimen width and initial crack length and théttégral values increases as the applied load asexefor all specimen

geometry except fo(%/) = 0.21, where the unbroken ligament was so smatlahvery small force is needed to bring
about fracture. Linear elastic fracture mechanidsHM) and secant intercept procedure have beed bgeéOnuu and
Ajepong [3] to determine the critical value of fraie toughnessK ), critical elastic-energy release rate per cragk-t

extension,GlC, and the plastic-zone radius (for mode | loadifgg)the ST 60 Mn steel in their estimation of plane

strain fracture mechanics parameters for this rizdter
The investigation on plane stress fracture meckamarameter of locally produced steel using crapkenig
displacement (COD) approach by Onuu and Adjepohw§$ to predict full-scale structural behaviour.

For the steel specimen examined, critical vaIuetthOD( COD;, O, ) at the tip of the crack for various crack-
lengths to net-width ratios of the test piece wdgrmined. This ranged from 0.09 to 0.85mm cowoedjng to crack-
length to net-with ratio that varied from 0.92 t®™, respectively. This investigation has shown fba a fixed net-

width, cop it decreases with crack-length or increases with wirdigament. The critical value of COD could be a
measure of the resistance of a material to fradtitiation and propagation.
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Table 1 Some materials constants, Ashby and J&jes [

Materials Young's Poissor Expansior Fracture toughne
modulus Ratio coefficient E
E/GNm_Z I/ K*1x10*6 IVINm

Alumina 39C 0.2t 7.C 3-5

Iron 190 0.30 13.0 150

Low alloy steel 200-210 0.30 15.0 50

Stainless steel 190-200 0.30 11.0 30

Mild stee 19¢€ 0.3C 15.C 14C

Silica glass 94 0.16 0.50 0.0008-0.0048

Aluminium & alloys  6S-79 0.3t 2.2C 20-50

Concrete 45-50 0.3 10.0 10-15

(reinforced)
0.003-0.01 0.41 70.0 2.0-4.7
PVvC

2.2  Crack-Tip element method (CTEM)

The ultimate task in fracture mechanics analysishes calculation of the stress intensity factoriolhis a local

parameter. The most common methods of evaluatierirer J-integral method and the near-tip displacémmethod as
mentioned above. The later is much preferred coatipually since the calculation is straight forwaktbwever, to

obtain accurate results, the singularity naturthefcrack displacement has to be modelled correctly

The required singularity can be achieved by plasipecial elements at crack-tips [10 - 11]. Disawnius quarter-point
crack-tip element was used in the present formanaflhe stress intensity factors are calculated as

G 2
= = Au, (r (3)
= s, ()
where K =3 =4V for plane strain problems, r is the distance faack-tip to the nearest node on the upper craok-fa
Au, (r ) and Au, (r) denote the relative normal and tangential dispresrg at r. The results show that the inclusion

of the special crack-tip elements led to improvecusacy and efficiency in the stress intensitydacalculation.
The fracture in a cracked body can be in any odeéhmodes, or a combination of two or three modessider a crack
problem in an infinite domain, the stress composieah be expressed as [12 - 13]

_ K, 0 .8 .39\ K, .86 6 36
o, = cos—|1-sin—sin— |- Sin—| 2+ cos—cos— 4)
Jorr 2 27 2) Jam 2 272
O, = K, cosg 1+singsin% + K singcosgcos% (5)
“? Jam 2 2 2) om0 2 2 2
g, = K, singcosgcosy+ Ky cosg(l—sinesinggj (6)
25 w2 2 2 am 2 2 2

where K| and K|, are the stress intensity factors correspondinghéodpening mode and the in-plane shear mode,

respectively, and the size of r is much smallenttie crack length. Integrating equations (4),a(%) (6) using the strain
displacement and stress-strain relations, theatisphent components in the vicinity of the crackatip

1 g 30 .6 .30
u, =4G\/T27T{K' [(ZK —])co&2 —cosz} +K,, {(Z(+ 38IFF2 +SIHE}} @)
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u, = 1\F{K| {(ZK - ])sing —si&} -K, [(Zk —3)00&'9 + cosgﬁ}} ®)
4G\ 2T 2 2 2 2

K r .(8
=41 el 9
% G Vzns"{zj ©)

where Ku is the stress intensity factors corresponding ¢odtlt-of-plane shear mode.
We avoided using the interpolating polynomial fuoiston the crack-tip element in this analysis beeaof theo (\/r_)
behaviour of the near tip displacement field. etethe displacement be represented by

U =Br. (10)
Besides the unknown displacement of the collocatimes, an unknown constaBti needs to be obtained. Let r add

polar coordinate system with origin at the cragk-siuch that? = + 71 defines the crack faces.
The relative displacement near a traction freeketgcfrom equations 7, 8, and 9 can be written as

Aux:uX(H:ﬂ)—uX(H:—7'[):%&”/2L (11)
Vs

Auy=uy(6?:77)—uy(6:—71)=k(;rlKI ;—” 12)

By, =u,(0= m)-u,(0=-m)=* T, (13)

As r—»0 the leading terms in the displacenagmroaches infinity, while other terms remaintéror approaches zero.
Calculation of the Mode Il Stress Intensity Fadigar tip displacement extrapolation is used tduata the numerical
values of the stress intensity factor. The relatigplacements of the crack surfaces are calcllaséng the Double
boundary element method DBEM and are used in &a& arack-tip stress field equations to obtaindiness intensity
factor.

Due to singular behaviour of the stress aroundcifaek tip, it is reasonable to expect a betterr@pmation by
replacing the normal discontinuous quadratic eleémeit a transition element possessing the sameraflsingularity
at the crack-tip. The stress intensity factorsgiven by

K, :Bx£\/2ﬁ

k+1
(14)
. G
K, =B,—+2n
k+1
(15)
KIII = BZE 27‘
4
(16)

where G is the Shear modult‘é/,) is the Poissoris rat

k' =3=4V for plane strain.

B, = Compliance constant for Centre Crack (CC)

B,= Compliance constant for Single-edge Crack (SEC)
B,= Compliance constant for Double-edge Crack (DEC)

where (%V) = crack size (specimen geometry)

a=crack length, w=crack width/T=3.142
The compliance constants are;

B, =[1+ 050(%,)” + 2046(3,)° + 8172, )°| a7
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B, = 112- 02d;,)+ 10553;,)* - 21713, )° + 30343,)* (18)
B, = 112+ 041(3;,) - 478(3¢,)* + 1544(3;, )’ (19)

Shear moduli were calculated by solving two fundatal boundary value problems using the valueaimtl from
Table 1 for Young's modulus (E) and Poissc(lv)s ratio in the different materials as shown in eprest

- E
G = sany (20)
Eischen [14] developed BEM used to calculate theeuand lower shear modulus boundaries of the mfers shown

in equations.
-1

(,,(,,(1_ 1 J
G = <1>_ G, G (lower bound) 1)
G 1
&)
1 1)
212 Gi - E
663) = <G > - 2 ! (upper bound) (22)

)+ (),
where GL(J3) = upper bound shear modulus
GE3) = lower bound shear modulus

G = average shear modulus
G, =

~ highest value of the shear modulus
G,

~ lowest value of the shear modulus
G = shear modulus of a particular material

%= material volume fraction (set values 0.1-0.85)

G- material volume fraction

(G)

2.3 Microstructural parameter 77,

7= shear modulus as a function of the microstrutpasameter

The microstructural parameteﬁ@) was calculated using the boundary element metmtl the three-point bound
formulas for the effective shear modulus as shawthé equation

2
_[80(6,-G)"_5
n.= Sa e (8- - @)
? ( (G)-GP % /6-6)
Crack configurations for centre, single-edge andbti-edge crack for the different modes is showhigs. 1, 2 and 3,
respectively, where a is the crack IendN, is the crack width andJ” is the applied stress.

Afgfii

=2
—
g

FIG.1: Centre crack for material under mode | logdi
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FIG.2: Single-edge Crack for material under mddedding

2 £ 21

FIG.3: Double-edge Crack for material under mdteading

3.0 Results and Discussion

Figure 4 shows that the plot of normalised stietensity factor for alumina, low carbon steelnisteel, mild steel and
stainless steel increases exponentially with iregdain specimen size (geometry). This is a strorideace for the
resistance effect of centre crack growth for th@seerials. Concrete, and PVC show asymptotic respon specimen

1
size (geometry) but with crack initiation at 0.10dPam? and 0.2 specimen size for silica glass.
Figures 5 and 6 show the comparative differencéhéneffect of stress intensity factor on materialgh single and
double edge crack. These materials behave in likener. Low carbon steel, iron, mild steel and #&aB steel
superpose each other in behaviour.

stress intensity factor,K for centre edge crack in MPam1/2

—+— ALUMINA

| | —— IRON

—A— STAINLESS

| | —*%— LOW CARBON

—— SILICA GLASS

| | —+— CONCRETE

A PVC

Fig.4: Normalised stress intensity factor of materialthwientre-crack

stress intensity factor,K for single edge crack in MPam1/2

120

10+

'
—4— ALUMINA
—u— IRON
—A— STAINLESS

—— CONCRETE
* PVC

O LOW CARBON
—— SILICA GLASS

Fig.5: Normalised stress intensity factor of materialswsitngle-edge crack
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—+— ALUMINA
IRON
6 --@--+ STAINLESS

O LOW CARBON
—#— SILICA GLASS

5t —%— CONCRETE
A pvC

stress intensity factor,K for double edge crack in MPam1/2

A A A
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
alw

Fig.6: Normalised stress intensity factor of materialgwdouble-edge crack

Results for the eight different materials at volufrections in the rangd).1< ¢, < 0.85 are shown in Fig.7. This

figure shows that microstructural parameter inaedsearly with increase in volume fractiogg() for the materials.

Specifically, the increase rate is high for alumimeé moderate in lowcarbon steel, mild steel, irmg concrete. Similar
results were obtained in the study of elastic behawf composites by boundary element method tsglign, [14] who
found that microstructural parameter rises in rgsrthree-point bounds on the effective shear nuzddlhe agreement
with this result is extremely good, thus providioanpfidence in the new results for microstructuralgmeter. Dependent
of the ratio of shear modulus (lower to upper ba)rah the microstructural parameter such as giainis shown in Fig.
8. The curve for alumina shows a high logarithmizrément to that of low

—+— ALUMINA
LOW CARBON

500 —e— IRON

—&— MILD

+ STAINLESS

400 —s— CONCRETE

—w— SILICA GLASS
PVC

Microstructural parameter for different materials
N
5]
3

100 /Q/Q// ]

100 L L L L L L L
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Material volume fraction

Fig.7: Effect of microstructural parameter to volume fia for different materials.

—%— ALUMINA
LOW CARBON

S— IRON
MILD
—4— STAINLESS
—4— CONCRETE

SILICA GLASS
—4+— PVC

100+ / —
b L]
-100

-0.5 0 0.5 1 15 2 25
Ratio of lower to upper shear modulus

FIG.8: Effect of microstructural parameter to the bouafishear modulus for different materials.

Microstructural parameter for different materials
N
8
8
.

carbon steel, iron steel, mild steel and staintéss| while the plot for concrete, silica glassvadl as PVC is different.
As the grain size gets smaller, fracture becomeerbattle. This is due to the fact that in smaldgains, dislocation
have less space to move before they hit a graindsry. Thus, the material's fracture is more lexittvhile low carbon
steel, iron steel, mild steel and stainless steebtain size is larger when compared to PVC arngpb$t in alumina.
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4.0

Conclusion

The following conclusions are drawn from the respitesented here:

There is relevance of boundary element method &sokfor studying fracture characterization of some

engineering materials under plane-strain conditiork = 3 — 4v

The results show that alumina, iron and stainlésel {Figure 4, 5 and 6) values were higher thadrerot
materials under study. This outcome verified thaté was an effect of specimen size and geometmantes |,
Il and Il stress intensity factor for centre, dexg@dge, and double-edge crack for a fixed net-tbmm).
Stress intensity factor increases with crack-leragtt the ratio of lower to upper bounds shear madat well
as material volume fractions.

The result of microstructural parameter to sheaduhe bounds obtained from this study shows thateffect
of microstructural parameter on metals was quieint from ceramics.

V. The ratio of lower to upper bounds shear moduluséncrete at (-0.2-1.1)xT0silica glass at 0 to -2 xfoand
PVC at -1.46 x10 to -2 x10° exhibited brittle fracture (failure), while at0B to 1.39, 1.04 to 1.37, 1.07 to 2.23
for low carbon steel, iron steel and mild steehirdess steel as well as alumina exhibited dudtdeture
(failure).
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