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Abstract 
 
Boundary element method (BEM) has been used in the study of engineering 

materials such as alumina, iron steel, mild steel, low carbon steel, stainless steel, 
concrete, silica glass and PVC. Special crack-tip element method was used to 
evaluate stress intensity factor for centre, single-edge and double-edge crack for 
various values of specimen size (geometry), microstructural parameter and 
volume fraction.  Materials behaviour increases exponentially with increase in 
specimen size in the   range of  

 0.1< a/w <0.8. The response is high for alumina, low for low carbon steel, 
mild steel, iron and stainless steel showing high and low resistance to crack 
growth. The asymptotic behaviour of concrete, silica glass and PVC gives rise to 

crack growth at 0.105 
2
1

MPam and 0.2 specimen geometry. The ratio of shear 
modulus at  (-0.2-1.1) x10-5, 

 (0 to -2 )x10-6, -1.46 x10-4  to -2 x10-6, respectively for concrete, silica glass 
and PVC exhibited brittle fracture (failure)  while at 1.03 to 1.39, 1.04 to 1.39, 
1.07 to 2.23 for low carbon steel, iron steel and mild steel, stainless steel and 
alumina was characterized with  ductile fracture. 

 

 Keywords:Engineering materials, specimen geometry,  stress intensity factor,  crack-tip etc. 
 
1.0     Introduction 
Engineering materials are very important in the development of any society as they are used in the construction of 
structures such as buildings, communication masts, bridges, flyovers, automobile, power plants, refineries, etc. It is 
observed that most structures are collapsing on daily basis. This has attracted the attention of the different tiers of 
government, companies, non-governmental organizations (NGO), Nigeria Society of Engineers (NSE), Council for 
Regulation of  Engineering in Nigeria (COREN) and scientist as a whole. Some people have blamed the failure on 
engineers who design and supervise such projects. Others are of the opinion that the engineering materials used for the 
construction are substandard while some other researchers have attributed the problem to crack failure in engineering 
materials. In a bid to address the problem, COREN  has made it mandatory for all Nigerian engineers to belong to the 
professional body. However, no matter the ingenuity exhibited by engineers and scientist in the design and construction, 
failure of machine parts and structures must occur as each machine member has its life span.  
The  study of fracture mechanics began in earnest during World War 1 by English aeronautical engineer, Griffith [1] who 
used his theory to explain the failure of  brittle materials. However, Griffith's approach was too primitive for engineering 
applications and is only good for brittle materials. For ductile materials, the milestone that was set by Griffith [1] did not 
come true. Because of this setback Griffith work was largely ignored by the engineering community. 
Griffith's theory provides excellent agreements with experimental data for brittle materials such as glass. For ductile 
materials such as steel, his experiments showed that the product of the square root of the flaw length (a) and the stress at 

fracture ( fσ ) was nearly constant, which is expressed by equation 

  Caf ≈σ       (1) 

where C is a constant  
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He later found an expression for the constant C in terms of the surface energy of the crack by solving the elasticity 
problem of a finite crack in an elastic plate. 
Griffith found that 

 
a

E
C

π
γ2=       (2) 

where (E) is the Young's modulus of the material and  (γ ) is the surface energy density of the material. The surface 

energy (γ ) predicted by Griffith's theory is usually unrealistically high for ductile materials and even in materials that 

appear to be brittle. 
Onuu and co-woeker[2 - 4] investigated methods for predicting growth rate of cracks in solids. Various older procedures 
with different validity criteria are used to study and characterize crack growth resistance in solids [5 - 7] 
 
1.1 Boundary Element Method  
The boundary element attempts to use the given boundary conditions to fit boundary values into the integral equation, 
rather than values throughout the space defined by a partial differential equation. Once this is done, in the post-
processing stage, the integral equation can then be used again to calculate numerically the solution directly at any desired 
point in the interior of the solution domain. 
BEM is applicable to problems for which Green's function can be calculated. These usually involve fields in linear 
homogenous media. This places considerable restrictions on the range and generality of problems to which boundary 
element can usefully be applied. Nonlinearities can be included in the formulation, although they will generally introduce 
volume integrals which then require the volume to be discretised, before solution can be attempted, removing one of the 
most often cited advantages of BEM. BEM has emerged as a powerful alternative to the finite element method. The most 
important features of  BEM is that it reduces the dimensionality of the problem by one, resulting in a smaller system of 
equations and a considerable  reduction in the data required for the analysis. 
 
2.0 Similar Methods and Formulation 
2.1 J-integral method 
The use of J-Integral method to investigate growth rate of cracks in solids reveals that specimen size and geometry 

( )W
a  has effect on the critical values of fracture toughness  ( IcK ) where W  is the width of the crack. Onuu [8] 

showed that IcK  decreases with decrease in( )W
a . According to Onuu [8] for a given geometry, IcK  depends on both 

specimen width and initial crack length and that J-Integral values increases as the applied load increases for all specimen 

geometry except for ( )W
a  = 0.21, where the unbroken ligament was so small that a very small force is needed to bring 

about fracture. Linear elastic fracture mechanics (LEFM) and  secant intercept procedure have been used by Onuu and 
Ajepong [3] to determine the critical value of fracture toughness ( IcK ), critical elastic-energy release rate per crack-tip 

extension, cG1 , and the plastic-zone radius (for mode I loading) for the ST 60 Mn steel in their estimation of plane 

strain fracture mechanics parameters for this material.   
The investigation on plane stress fracture mechanics parameter of locally produced steel using crack opening 
displacement (COD) approach by Onuu and Adjepong [4] was to predict full-scale structural behaviour.  
For the steel specimen examined, critical values of the COD ( )ccritCOD δ,  at the tip of the crack for various crack-

lengths to net-width ratios of the test piece were determined. This ranged from 0.09 to 0.85mm corresponding to crack-
length to net-with ratio that varied from 0.92 to 0.67, respectively. This investigation has shown that for a fixed net-
width,

critCOD decreases with crack-length or increases with unbroken ligament. The critical value of COD could be a 

measure of the resistance of a material to fracture initiation and propagation.  
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Table 1 Some materials constants, Ashby and Jones [9] 
Materials Young's 

modulus 
2−GNmE

 

Poisson 
Ratio 

ν  

Expansion 
coefficient

61 10−− ×K  

Fracture toughness 

2
1

MNm  

Alumina 390 0.25 7.0 3-5 
Iron 190 0.30 13.0 150 

Low alloy steel 200-210 0.30 15.0 50 

Stainless steel 
 

190-200 0.30 11.0 30 

Mild steel 
 

196 0.30 15.0 140 

Silica glass 
 

94 0.16 0.50 0.0008-0.0048 

Aluminium & alloys 
 

69-79 0.35 2.20 20-50 
 

Concrete 
(reinforced) 

45-50 0.3 10.0 10-15 

 
PVC 

0.003-0.01 0.41 70.0 2.0-4.7 

 
 
2.2 Crack-Tip element method (CTEM) 
The ultimate task in fracture mechanics analysis is the calculation of  the stress intensity factor which is a local 
parameter. The most common methods of evaluation are the J-integral method and the near-tip displacement method as 
mentioned above. The later is much preferred computationally since the calculation is straight forward. However, to 
obtain accurate results, the singularity nature of the crack displacement has to be modelled correctly.  
The required singularity can be achieved by placing special elements at crack-tips [10 - 11]. Discontinuous quarter-point 
crack-tip element was used in the present formulation. The stress intensity factors are calculated as 

( )ru
rk

G
K tnn ,

2

1
∆

+
= π        (3) 

where 3 4k v= −  for plane strain problems, r is the distance from crack-tip to the nearest node on the upper crack-face. 

( )nu r∆  and ( )tu r∆  denote the relative normal and tangential displacement at r. The results show that the inclusion 

of the special crack-tip elements led to improved accuracy and efficiency in the stress intensity factor calculation. 
The fracture in a cracked body can be in any of these modes, or a combination of two or three modes. Consider a crack 
problem in an infinite domain, the stress components can be expressed as [12 - 13]  
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where IK and IIK are the stress intensity factors corresponding to the opening mode and the in-plane shear mode, 

respectively, and the size of r is much smaller than the crack length. Integrating equations (4), (5) and (6) using the strain 
displacement and stress-strain relations, the displacement components in the vicinity of the crack-tip are 
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where IIIK is the stress intensity factors corresponding to the out-of-plane shear mode. 
We avoided using the interpolating polynomial function on the crack-tip element in this analysis because of the ( )ro  

behaviour of the near tip displacement field.  we let the displacement be represented by 

  rBU Ii ≈ .        (10) 

Besides the unknown displacement of the collocation nodes, an unknown constant iB  needs to be obtained. Let r andθ  

polar coordinate system with origin at the crack-tip, such that πθ ±=  defines the crack faces. 
The relative displacement near a traction free crack-tip from equations 7, 8, and 9 can be written as 
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π
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As   r      0 the leading terms in the displacement approaches infinity, while other terms remain finite or approaches zero.  
Calculation of the Mode III Stress Intensity Factor Near tip displacement extrapolation is used to evaluate the numerical 
values of the stress intensity factor. The relative displacements of  the crack surfaces are calculated using the Double 
boundary element method  DBEM and are used in the near crack-tip stress field equations to obtain the stress intensity 
factor. 
 Due to singular behaviour of the stress around the crack tip, it is reasonable to expect a better approximation by 
replacing the normal discontinuous quadratic element with a transition element possessing the same order of singularity 
at the crack-tip. The stress intensity factors are given by 

        (14) 

        (15) 

        (16)  

where G is the Shear modulus,  is the Poisson's ratio,   

 for plane strain. 
 By = Compliance constant for Centre Crack (CC) 
 Bx= Compliance constant for Single-edge Crack (SEC) 
 Bz= Compliance constant for Double-edge Crack (DEC) 

 where  = crack size   (specimen geometry) 
 a=crack length,    w=crack width,   π = 3.142 
The compliance constants are; 

 ( ) ( ) ( )[ ]2
1

642 72.8146.2050.01 W
a

W
a

W
a

yB +++=    (17) 
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 ( ) ( ) ( ) ( )432 38.3071.2155.1023.012.1 W
a

W
a

W
a

W
a

xB +−+−=    (18) 

( ) ( ) ( )32 44.1578.441.012.1 W
a

W
a

W
a

zB +−+=      (19) 

Shear moduli were calculated  by solving two fundamental boundary value  problems using the values obtained from 

Table 1 for Young’s modulus (E) and Poisson’s( )v  ratio in the different materials as shown in equations  

( )v
EG += 12 .         (20) 

Eischen [14] developed BEM used to calculate the upper and lower shear modulus boundaries of the materials as shown 
in equations.   

( )

12

12
21

3

~
1

11

1

−





















+









−

−=

η

φφ

G
G

GG

G
G L

 (lower bound)     (21) 

( )

2

12
21

3
~

11

η

φφ

GG

GG
GG U

+









−

−=        (upper bound)     (22) 

where   ( )3
UG = upper bound shear modulus 

( )3
LG = lower bound shear modulus 

 =G
~

 average  shear modulus 

 =2G  highest value of the shear modulus 

 =1G  lowest value of the shear modulus 

 =G  shear modulus of a particular material 

 2φ =  material volume fraction (set values 0.1-0.85) 

 1φ =  material volume fraction  

 ηG
=  shear modulus as a function of the microstructural parameter 

 

2.3 Microstructural parameter 2η  

The microstructural parameter (2η ) was calculated using the boundary element method and the three-point bound 
formulas for the effective shear modulus as shown in the equation  

( )
( ) ( )12

1

2

3
1221

2

~
GGGG

GG

GG

u
−




−−







−
−= φφη      (23) 

Crack configurations for centre, single-edge and double-edge crack for the different modes is shown in Figs. 1, 2 and 3, 

respectively, where a is the crack length,w is the crack width and σ  is the applied stress.  
 

a2

W2

σ

σ  
FIG.1: Centre crack for material under mode I loading 
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FIG.2:  Single-edge Crack for material under mode II loading 

σ

W2

σ

a a

 
FIG.3:  Double-edge Crack for material under mode III loading 

 
3.0 Results and Discussion   
Figure 4  shows that the plot of normalised stress intensity factor for alumina, low carbon steel, iron steel, mild steel and 
stainless steel increases exponentially with increased in specimen size (geometry). This is a strong evidence for the 
resistance effect of centre crack growth for these materials. Concrete, and PVC show asymptotic response to specimen 

size (geometry) but with crack initiation at 0.105 2
1

MPam and 0.2 specimen size for  silica glass.  
Figures 5 and 6 show the comparative difference in the effect of stress intensity factor on materials with single and 
double edge crack. These materials behave in like manner. Low carbon steel, iron, mild steel and stainless steel 
superpose  each other in behaviour.      
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 

Fig.4: Normalised stress intensity factor of materials with centre-crack  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5: Normalised stress intensity factor of materials with single-edge crack 
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Fig.6: Normalised stress intensity factor of materials with double-edge  crack 

 

Results for the eight different materials at volume fractions in the range 85.01.0 2 ≤≤ φ are shown in Fig.7. This 

figure shows that microstructural parameter increases linearly with increase in volume fraction (2φ ) for the materials. 

Specifically, the increase rate is high for alumina but moderate in lowcarbon steel, mild steel, iron, and concrete. Similar 
results were obtained in the study of elastic behaviour of composites by boundary element method by Eischen, [14] who 
found that microstructural parameter rises in rigorous three-point bounds on the effective shear modulus. The agreement 
with this result is extremely good, thus providing confidence in the new results for microstructural parameter. Dependent 
of the ratio of shear modulus (lower to upper bounds) on the microstructural parameter such as grain size is shown in Fig. 
8. The curve for alumina shows a high logarithmic increment to that of low 
 

 
Fig.7: Effect of microstructural parameter to volume fraction for  different materials. 

 

 
FIG.8: Effect of microstructural parameter to the bounds of shear modulus for different materials. 

 
carbon steel, iron steel, mild steel and stainless steel while the plot for concrete, silica glass as well as PVC is different. 
As the grain size gets smaller, fracture becomes more brittle. This is due to the fact that in smaller grains, dislocation 
have less space to move before they hit a grain boundary. Thus, the material's fracture is more brittle, while low carbon 
steel, iron steel, mild steel and stainless steel the grain size is larger when compared to PVC and largest in alumina.  
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4.0 Conclusion 
The following conclusions are drawn from the results presented here: 

I. There is relevance of boundary element method as a tool for studying fracture characterization of some 
engineering materials under plane-strain condition for 3 4k v= −  

II.  The results show that alumina, iron and stainless steel (Figure 4, 5 and 6) values were higher than other 
materials under study. This outcome verified that there was an effect of specimen size and geometry on modes I, 
II and III stress intensity factor for centre, single-edge, and double-edge crack for a fixed net-with (10mm). 
Stress intensity factor increases with crack-length and the ratio of lower to upper bounds shear modulus as well 
as material volume fractions. 

III.  The result of microstructural parameter to shear modulus bounds obtained from this study shows that the effect 
of microstructural parameter on metals was quite different from ceramics.  

IV.  The ratio of lower to upper bounds shear modulus for concrete at (-0.2-1.1)x10-5, silica glass at 0 to -2 x10-6  and 
PVC at -1.46 x10-4 to -2 x10-6  exhibited brittle fracture (failure), while at 1.03 to 1.39, 1.04 to 1.37, 1.07 to 2.23 
for low carbon steel, iron steel and mild steel, stainless  steel as well as alumina exhibited ductile fracture 
(failure). 
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