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Abstract

We propose a mathematical model of an AIDS epidenmca homosexual
population. Asymptotic analysis of the model undbe prescribed parameters we
obtained the stability of the equilibrium state. €tsolution of the system and the
numerical simulation agrees with the existing liteture. However, the presence
of the homosexual factor and the differentiated retment rate makes the
reduction more realistic.

1.0 Introduction

In this paper, we propose a mathematical modehdhl®S epidemic in a homosexual population. Manyhef models
in the literature uses a two compartment approaaddidg the population into susceptible and infeas with different
infectivity and staged progressidn, [2], [3]. Some authorf4], [5], [6] have capture heterosexual activities of disease in
those communities where it spread by heterosexardhct.
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Infection by the virus HIV-1, the most common Véayiehas many highly complex characteristics moswvbite are still
not understood7], [8],[9]. HIV primarily infects a class of white blood celts lymphocytes, called CD4T-cells, but
also infects other cells such as dendritic cells.

Since the mid — 1980s numerous models, determingstd stochastic, have been developed to desdrbértmune
system and its interaction with HIV. Most modelsvéabeen deterministic such ER0], [6],[7] and example of
stochastic ig11].

Here we are interested in the development of ansAdpidemic in a homosexual population. Let us asstivere is a
constant immigration rate B of susceptible malés apopulation of siz&'(t), whereX(t), Y (t), A(t) andZ(t) denote
respectively the number of susceptible, infectimaes, AIDS patients and the number of HIV Positiveseropositive
men who are noninfectious.

We assume susceptible die naturally at agedad AIDS patient die at a rade

1.1  The Model Equation
The model equations are given by

X'=B-px—acX, 21=% 1)
Y'=2X - W+ py (2)
A =PvYy —(d+wA 3)
Z'=1-PY —uz 4)
NO=Xt)+Y®)+AQ) +Z() (5)
With the parameters given by

B — Recruitment rate of susceptible

u— Natural death rate (non-AIDS related)

A— Probability of acquiring infection from partner

B- Transmission probability

c— Number of sexual partners

d- Death rate for AIDS patients

p— Proportion of HIV positive who are infectious

Ry — Basic reproductive rate i.e. number of seconadections which arises from a primary infection
V- Rate of conversion from infection to AIDS

X(t) — Number of susceptible
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Y(t) — infectious males

A(t) — AIDS patients

Z(t) — HIV positive or seropositive men
N(t) — Population size

2.0  Solution of the Equations
When the epidemic starts, the system (1) — (5)vesolo a steady state with the solution given by

B _ _

X() = o [1— e W+ x (0)e U (6)
BA _ _

Y(t) = m[l —(1—x(0))e (u+1c)t][1 + e+t @)

An epidemic ensues if the basic reproductive Rgte- 0: that is the number of secondary infections wladse from a
primary infection is greater than 1. In (5)&f= 0 an infected individual is introduced into an othise infection free
population of the susceptible, we have initiall N and so near = 0.

d

= Be—v—pY =vRy -y ®)
Since the average incubation ti%\ﬁom infection to development of the disease is/vauch shorter than the average
life expectancy% of the susceptible: thatis>> u.

With solution

y(£) = y(0)e?Ro~DE = y(0)e™ - (9)
The intrinsic growth rate = v(R, — 1), is positive only if the epidemic exist®, > 0). Hence we replace equation (7)
by equation (9).
To solve for the AIDS patients, we substitute (8pi(3), to get,
4 = Pvy(0)e™ — (d + pA (10)

dt
Initially, in the epidemic there are no AIDS patieire. A(0) = 0 and so the solution is given by

ert_e—(d+u)t
A@©) = Poy O — 7 (11)
For the number of HIV patients or seropositive mea solve equation (4) to obtain
_ rt
2(t) = RO 1 4 oh) (12)
Z(0) = 0, since at = 0, there is no infection in the system.
Here we can get some interesting information frbenanalysis of the system suchlas ljv—y andv the rate of conversion
from infection to AIDS here taken to be constallngqual to D say, is then the average incubatioe tifithe disease.
. . BY . . . . .
(Actually, A here is more appropnat%but Ais considered small in comparison with N.
The model total population N(t) is not constant] as such, if we add equatiofiy — (5) we will get
—=B—-uN—-dA (13)
And the solution is given by
_ E ut _ _ e(T+#)f+ng 28—(u+d)t
N@ = 2(et = 1) - dpoy(0) [t + 22 4 N(O) (14)
Estimate for the parameters were calculated a$2hdnd the period of the epidemic outbreak watheforder of 30 to
40 years. It is unrealistic to think that the paetens characterizing the social behaviors assatciaith the disease
would remain unchanged over that time span. Tleedipectancy of people with HIV has dramaticallgrégased since
then due to new medicine such as AZT and protedsbiior. The estimates for the parameters arelésifs:

Ro=s15, B = 13333.3,V = 0.2, P = 0.3, N(0) = X(0) = 1000, Y(0) = 6875, = 2,51 = —, as in [3].

21 Characteristic Equation
An equilibrium point, of system of equations (1)5) is a steady solution, therefore the derivatiaes equal to zero.
Hence the characteristic values to satisfy the tmua

JU =SU
We determine the eigenvectors and eigenvalues.
u = [, v]" of 4 x 4 matrix, where
—(u+4c) O 0 0
J= Ac —(u+v) 0 0
0 pv —(d+pw 0
0 d1-pv O —u
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Therefore 0 = det(j — SI)

—(u+2c)-s O 0 0
0= Ac —(u+v)-—s 0 0
0 pU —-d+w-s O
0 (1-pw 0 —u—s

Solving and upon simplification, yields
s]—as?+Ps—-y=0 (15)
Where
a=Q@u+Ac+d+v)
B =vic +dAc + p? + 2uic — dv
y = (vd + 2u? + pud)(u + Ac)
Substitutings = y + % into (15) upon simplification we get,
Y t+py=4q . (16)
Wherep = @ andq = %
Sincep # 0,we set y = hz and multiply equation (16) through by k,
3

Whereh = /Mandk =—
3 hip|

Equation (16) reduces to one of the forms
473 +3z =cor4z® —3z=¢ 17)
Using trigonometric identity, i€ > 1,
Sinh 30 = 4Sinh30 + 3Sinh 6
Whencez = Sinh[%Sinh‘lc] (18a)
To solve the second equation¢if 1, we use
cosh30 = 4cosh36 — 3cosh,to get

z= Cosh[% Cosh™c] (18b)
Substituting back intp = hz
|a3+3ﬁ|
y = TS sinh[%sinh‘lc] (19a)
or
4|a3+3ﬁ|
=yl h[=cosh™* 19b
y = . cos [3 cosh™'c] (19b)
Hence
4|a3+3ﬁ| L
§=Y121sinh [— sinh‘lc] +=- (20a)
3 3 3
or
4|oz3+3B| L
§=Y12"1cosh [; cosh‘lc] + % (20Db)

Hence there is a linear stability if the eigenvego< 0) for all the eigenvalues i.e. #(u + Ac), —(v + ) and
—(d + u) < 0 and instability otherwise.
From the calculation, equation (20a) gives,

s = —(0.1396 + 0.08233i) (21a)
and equation (20b) gives
s = —(0.1396 + 0.8974i) (21b)

In both casess < 0 which show stability of the system.

3.0  Concluding Remarks
Numerical simulation using the given estimate & frarameters as in [3] for the model give a cleatupe of the
epidemic development after the introduction of Hi¥ into the susceptible homosexual population.. Rigghows that
HIV has some unfortunate unique properties evehimwihis retrovirus family such as using the mRNagessing of the
cell it invades to synthesize its own RNA. Howe\ét,have shown the dynamics of the viral replioatis very high in
vivo the immune system can counteract this replicatHence, the susceptible will battle from zevdbtyears before its
stabilizes which explains the graph in figure 1.
Infection by the virus HIV-1, i.e. when the infamiis males (Y-class) is introduce into the susckptilass, progression
can last more than 10years from the first day &dtion. Also, immune response can briefly contr@ HIV which
primarily infects a class of the white blood cetls lymphocytes, called CD4 T-cells. This account floe static
progression until after some time and increaseagnession is noticed in figure 2.
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In figures (3) and (4) we observétht after the window period, there is a sharp increatieeiprcogression for the gri
of AIDS patient and seropositive men as time progrea$ésh means that it is only the &retroviral therapy that ce
control or maintained the viral loads to bw [12]
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