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Abstract

In this article, we proposed an optimal control meldthat includes constant
immigration of individuals into the susceptible pafation out of which a fraction is
infective. Seeking to minimize the number of infemis humans and mosquitoes, we
use controls to represent the screening of infectedmigrants coming into the
population, the use of prophylactic drugs on sustibje human and use of gametes
destroying drugs on infectious human. A characteation of the optimal control via
adjoint variables is established. The optimalitysssm is solved numerically using an
iterative method with Runge-Kutta fourth order same. Finally, numerical
simulations of the optimal control problem is caed out to investigate the
effectiveness of the proposed control measures.aRaater values have been taken
from available literature.
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1.0 Introduction

Over the years, malaria disease has always beesati@ncern of human kind. It is one of the legdiauses of death and
remains a major challenge for many countries inwleld. Malaria is a life-threatening disease caubg the parasite
plasmodium falciparum, this parasite are transmitted to people througtbiteeof infected female anopheles mosquitoes It i
only the female anopheles mosquito that feeds ananublood. This is because; the blood is needethéoproduction of
eggs. Malaria is endemic in 109 countries andtteres in tropical and sub-tropical regions, spagrall continents of the
world except Antarctica and Australia [1].

Human migration is present through the world; thas greatly affected the transmission dynamicsfettious diseases like
malaria. [2] asserted that, there is a close cdiorebetween vector-borne disease and movemergaylp. Immigration has
been known to play a key role in disease dynamicsthis has been linked to increases in the incidei malaria in some
countries.It has been shown in [3, 4] that malargadels that include a constant flow of infectiveniigrant cannot eliminate
the disease through any standard control measulaslly these control measures are based on the baseffective
reproduction number, which cannot be applied to ehadth a constant inflow of infective individuadénce the disease-free
equilibrium can never be achieved.[5] asserted tim#t of the reasons for the failure of strategeegrdicate infectious
disease is because of their neglect of the mohikityern of the host, and that the importance efrtte of human migration
is evident in the recent increase in malaria inoégenot only in the endemic areas, but also insandeere malaria had been
eradicated

Several models have been formulated to study tmamics of malaria. For example, [6] proposed a rhbgleincluding
constant immigration of susceptible human poputatiad exclude direct human recovery from the imbestto susceptible
class. The model does not include immigration dédtious humans, as they assume that sick peopleotdravel. [7]
proposed a mathematical model that tracks the disawf malaria disease. Their model incorporatemignation of
infective human and ignore vertical transmissioowidver, all these works did not put into considerathe optimality,
costs and cost-effectiveness of the treatmentgmtéon and vector control interventions, which ar@nly hampered by the
availability of resources. In view of this, [8] djgal optimal control to study the epidemiology odlaria. In their study, they
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used optimal control theory to investigate the mpgtistrategies for controlling the spread of malaisease using treatment,
insecticide, treated bed nets and spray of masdnsecticide as the system control variablesaf$jlied optimal control to
investigate the fundamental role of three type@ftml, personal protection, treatment and mosquthuction strategies in
controlling malaria. [10] applied optimal contral $tudy vector borne disease with a particularregiee to dengue disease.
[11] applied optimal control to a mathematical modith infected and infectious immigrants to invgate the role of inflow
of infected immigrants in malaria transmission.

In this paper, we proposed a model that includesrestant influx of immigrants into the susceptiblass out of which a
fraction p is considered infective. The model dgfdrom the model of [7] by excluding the directaogery from the
infectious class to the susceptible class whichevédent in [7]. The model will be extended to assine impact of the anti-
malaria control measures (immigrant screening, obeProphylactic drugs and gametocytes destroyinggsir by
reformulating the model as an optimal control peotl This will entail the use of three control fuoos namely;, immigrant
screening strategies, use of Prophylactic drugsgamdetocyte destroying drugs. Our goal is to minémthe number of
infectious human and infectious mosquitoes at drmim cost. Using analytical method, the existencarmooptimal control
and the optimality of the system will be provedeTumerical simulation of the optimal control modél be done using
MATLAB.

2.0 Modelformulation with Immigration of Infective

Let A(a constant) be the number of new members arriuitm the population in unit time with the fractioR of A
arriving infected with malaria such th&< p <1 We assume that the membe(ﬂs— p)Aare free from the malaria
disease. The new model is given below:

d |
d_Sj:/\h"'(l_ p)A"'thh_ﬁh—msq_.uhSw (1a)
t N,
dl ,Blm
d—t“= pA+“N—hS”-(ﬂh+yh+5h)lh (1b)
d
d_Rth:yhlh_(/'[h+ph)Rf| (1c)
dsm ﬂmlhsm
— M =A -T2 m_ 1d
dt " N, HinSh (1)
d, _B.1,S,
_m -"rm — | 1
dt N, Fonlm (1e)
where

A\, = birth rate of humans

N, = birth rate of mosquitoes

P, = rate of loss of immunity

B, = rate of transmission of infection from infectiom®squito to humans
V¥, = recovery rate of humans

0, = disease-induced death rate of humans

B, = of transmission of infection from infectious hums&to mosquitoes

M, = Natural death rate for humans

A = immigrant rate
P = fraction of infective immigrants

M., = natural death rate for mosquitoes

S, = Number of susceptible humans
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I\, = Number of infectious humans

R, = Number of immune humans

S,, = Number of susceptible mosquitoes
I, = Number of infectious mosquitoes
N, = Total Number of humans

N,,= Total Number of mosquitoes

The equation in (1) represents the rate of chanile respect to time, of the different compartments
Equation (1a) describes the rate of change of tkeeptible human population,;.She first term on the right hand side of

(1a) is the recruitment termd\, . The second term is the change in thep8pulation due to the influx of immigrants inteth

population. Since p represents the fractions ofigmamts (with a constant value A) having active amial parasite, then (1-p)
will be the fraction of A who are susceptible ahdrefore join the $class. The third term is the change in thep8pulation
due to the loss of immunity. That is, those in rezed population who lose immunity and return ® shisceptible class. The
fourth term of equation (1a) is the interactionvin the susceptible humap &nd the infectious mosquitogg that leads
to new cases of malaria in human. This leaves tiseeptible human class, @nd moves into the infective clasg, The

final term is the natural mortality rate for thesseptible clasgs, S, .

Equation (1b) describes the rate of change of tifieciious human class;.1 The first term on the right hand side is the
number of infective immigrant coming into the pagtidn. The second term represents the number ofnmalaria cases. The

last term of equation (1b) is the recovery rae, natural mortality ratg4, , and disease induced death radg, All these

reduce the infectious classg, |

Equation (1c) describes the rate of change ofehkewered class, R The first term on the right hand side is the namtf

infectious humans that recovered per unit time. Tast term represents those that lose immunity @atdrned to the
susceptible class and the natural death rate iretwvered class

Equation (1d) describes the rate of change of tiseeptible classy\Sfor mosquito populations. The first term on thghti

hand side is the recruitment term for mosquitdes,The second term of equation (1d) is the interastibetween the

susceptible mosquitoesy land the infectious humap that leads to new cases of infectious mosquitbbis leaves the
susceptible mosquito population to the infectioussquito class,. The last term of equation (1d) is the natural taliy
rate for susceptible mosquitoes.

Equation (1e) describes the rate of change ofrtfextions mosquito clasg. The first term represents the number of new
infectious mosquito cases and the last term is#tteral mortality rate for infectious mosquitoes.

3.0 Optimal Control Model Formulation

Here, we reformulate system (1) as an optimal cbpioblem.

The control functions, i), u(t), Us(t), are bounded,ebesgue integrable functions, where the contrg(tpis a control that
allows for medical testing/screening of new immigsacoming into the population. The contrg(tyis a control on

susceptible human that allows for the use of Prizuiig drugs by the susceptible individuals. Thatoml w(t) is a control

on infected humans that allows for the use of dthgsnot only treat the disease but prevent thedtion of gametocytes in
the human host.

The differential equation incorporating optimal t@hterms is given below

d h Im 1- 2t

d_s';:/\h +[1_(1—U1(t)) p]A"'thw_lB% l(\lh - ())_:uhsn (22)
%:(1—u1(t)) pA+'8hSn|m|(\11_u2(t)) =t + 1 + )1, (2b)
dd;?:yhlh_(/jh-'-ph)Rh (20)
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ds, . BuSla (1m0, )

=N - - 2d

e N, .S, (2d)

dl—m:ﬂmsmlh(l_U3(t))—,Um|m (26)
dt N,

The equations in (2) represent the rate of chanile,respect to time of the different compartmenith control terms.
In equation (2a), the tel‘lﬁ’!l_—(1— u, )) p] Arepresent the number of susceptible immigrants rgrinito the population in

the presence of a time dependent contrgt).urhe control y(t) is a control that allows for medical testingésning of new
immigrants coming into the population before they allowed into the population, while the coeffitid — y(t) is the effort
that sustains such a testing policy(tunear 0 indicates that the policy is “loose,tides not prevent the infected immigrants
from entering the population while(t) near 1, indicates a very strict testing polibgt prevents the infected immigrants
from increasing the size of the infected clags The control yt) is a drug controlthat prevent the malaria piéeasom
developing in susceptible human, after the useropl®lactic drugs. The coefficient 1 (i) is the effectiveness of the
drug;w(t) near O indicates that the specific prophylactiag does not prevent the infected mosquito frafedting the
susceptible individuals, whiles{f) near 1, indicate that the prophylactic drugieatively prevents the infected mosquito
from infecting the susceptible individuals followjia bite or blood meal. The controi(tl is a drug combination for treating
malaria and prevent the forming of gametocyteshan hiuman host that could be ingested by the masepiafter a blood
meal, thereby infecting the mosquitoes. The caeffic1-w(t) is the effectiveness of the gametocytes destgpgirug; u(t)
near 0, indicate that the specific drug does rfecathe formation of gametocytes in the body, @hi(t) near 1 indicate that
the drug is effective in preventing the forminggaimetes and hence reducing the likelihood of hawvifegted mosquitoes.
The objective function to be minimized is

N
J(ul,uz,u3)=j(lH +1, +%(clu§+czu22+cy23)jdt 3)
0
We minimize the infectious human and infectious mosquifmufadion. Hence we will minimize an objective functional of a
form that shows the trade-off we need in minimizing thmiper of infectious humans and mosquitoes, and the assdci
relevant cost of doing this. The associated relevant cost is mpaoiethe cost of immigrant screening, the cost on the use o
prophylactic drugs and cost of the use of gametocytesogigrjrdrugs. Here, we assume that the associated cost with
immigrant screening, the use of prophylactic drugs and waytes destroying drugs are nonlinear and take a quadratic
form. The coefficients ¢ C, and G are balancing cost factors due to the size and importance otisenpaking up the
objective functional.

We seek to find an optimal control triplq* ,u*z,u*3 such that
J(u{,u*z,u*s):minJ(ul,uz,US)DU (4)

Subject to the system describe in (2)
Where the control set is defined as

={(ul,u2,u3):ui ©0[0,],0<u ()< 1= 1,2,}3

4.0 A Note on the Transmission Dynamics of Malaria with Infective Immigrants

Before we analyse the optimal control model (2), we give the/sialf model (1)that has no time-dependent control.

The coupled system of ordinary differential equations whiebcdbe the progress of the disease with immigration of
infective is given by

B+ 1-p)ArpR -PaD oy

N,
E_p +ﬁthSn ( +yh+5)
R (5)
F:Vhlh_(luh*-ph)Rn
d_smz/\m_ﬁmlhsm _Iumsm
dt N,
dl ,3|hSm
—m—=/"mn"m __ |
G Nl
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A suitable domain for model (5) is
+ A
Ay Sy +1y < —/\m}

D={(S,.1,.,R,,S, I, JOR®:S, +1,, +R, <
{(sH RSl ) IR 15, +1, R, <27 -

It can be shown that the set D is positively invariant sdtaglobal attractor of this system. Hence a phase trajectory
initiated anywhere in the non-negative region of the spacewalbnenters the region D and remains in D afterwards

The rate of change of the total human populallhsb,mis given by

d:tH :(/\H +A)_IUH Ny =14

Without loss of generality, we can write that

d:tH < (/\H + A) — Ny

Since the right-hand side of the equation for the rate ofgenaf N, , is bounded b)(/\H + A) - Uy N, , a standard
comparison theorem can be used to show that

N, (t) < N, (0)e™“ +M (1-e*)

H

If NH (0) < w
H
Then N, () < (/\H—+A)
Hy

N
Similarly N, (t) < —
m

Thus, D is a positively invariant set under the flow desctiin system (5). Hence no solution path leaves through any
boundary of D. Since path cannot leave D, solutions ren@imegative for non-negative initial conditions. Timsans that
the solution exists for all positive time t. Therefore, thodel (5) is mathematically and epidemiologically well-pogE?],
For convenience and to simplify the analysis of our maoglelrewrite equation (5) in terms of the proportions divirdual
in each class.

, | . I
Lets, = E* Ay = NH Ty = E* Sy = N Ay = NM be the proportions for the classss, |, ,R,.S,andl,,,
H H H M M

respectively.

N
Let m=—""be the female mosquito-human ratio, that is, the numbemnudle mosquito per human host.
H

The ratiom =—""is a constant because a mosquito takes a fixed number of rokeaid per unit time independent of the
H
population density of the host. [13].

Alsolet B, = B, Ny =Ny ly = My Py = Pr By = B M = H i Ny =N,
Differentiating the above proportions with respect to tinweet have that

ds, _ 1 dS, s dN,

dt N, dt N, dt

di, _ 1 dl, i, dN,

dt N, dt N, dt
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d, _ 1 dR, 1, dN,
dt N, dt N, dt

ds, _ 1 dS, _ s, dN,
d N, d N, dt

(6)
di, _ 1 dl, _ iy dN,
dt N, dt N, dt
Using equation (6), the system (5) can be written as
ds, _ A, . A(l-p) A, +A . :
= = + +or. — +LBmi_—Ji
a N, N, Pl ] B.mi, = oy, s,
d . +A .
QTN A —("“M +yh+4:—cz|h}h
dr, . (A +A . ()
_t_yhlh_ N + 0, Gy |1 ds, A, _ h+ﬂi
" d N, (N o)
di, _ ..o Nin
E_ﬁmlh N

4.1 Existence of the equilibria of the malaria Model (7)

Since malaria can be introduced into the population by the meemi of infected immigrants, it is more realistic to consider
the malaria model with p > 0.

To findthe steady states of (7), we set the derivativesregihect to time in (7) to zero and using the fact that

dN,, _[/\h +A

. A A A, _
at N, —,uh—JhIhJNH =0, thatis T\I =W, + o, N——,um,sh+|h+rh=1,

H m

. A
+1,=land—=a
H

S

m

This yield the endemic equilibriure" = (31 Jdr,rs ,fm)

Where
_ Hy T Ol — PAt O,
My + B, (8a)

i = pA+ﬂhmim(1_ rh)

"ty * 0+ B (8b)
= Val

" #h +Ioh (80)

S

Sm Moo+ By (8d)

mlh

i:n:-—
ﬁmlh +:Bm (8e)
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4.2 Disease-Free Equilibrium point
In order to understand the implications of having a cohstdinx of infected immigrants on the dynamics of theteyn in
(7), we present conditions for the existence of positivelibgai with or without the infected immigrants.

Let E° = (s‘:l,‘: TS Ir‘;) be the disease-free equilibrium points of model (7)
In the absence of the disease, that is wher i, = p = 0, the model (7) reduces to
s =10, =0,r =0,s,=1andi_ =0
Therefore E° Z(S?,ir?,rho,s%,i;) :(1,0,0,1,()) 9)

This implies that at the disease-free equilibrium, the sugteptuman population is equal to the total human poipuland
the susceptible mosquito population is equal to the tataboito population.

But if lh=lp =0,p# oThe model (7) has no disease-free equilibrium, since therealithys be infected human
migration into the population.

Again if we substitute equations (8c) and (8e) into (8ke) hawve the following quadratic equationij:n
(BZBSﬂm + Bzﬁnim-'- Blmyh)ir:Z + (BZBQUm - BBm_ paB ﬁm)lr: - paB l’[m = O (10)
Where B, = 3, 5,,B, = th, + p,,B; = 4, + ), + 9,

Case 1(p = 0), in this case, equation (10) reduces to
(BZBZ%ﬂm + legrim"' Blmyh)iI:Z _(BlBJn_ Bﬁaum)i; =0

Which has two roots:

i: = 0, for which the disease is absent.( Disease-free equilibrium)

(11)

and
i = B,B,m-B,By,
" BlBZﬁm + BZﬂrim-'- Blmyh
o=BB,m-B,By, >0

for which the disease persists. This is positive provided

Now
Bm
. o0t ae(re
" BlBZﬂm + BZﬂn?]m-f- B1mJ/h BlB2ﬁm + Bzﬁnzwm-l- Bmyh
Where
.____MBG,
Foo (o * 10+ 0,)

If R, >1the disease will persists in the population.That ispi O, the model has a disease-free equilibrium and an
endemic equilibrium point, with the former existing whBy > 1 while the latter exists and is unique whig > 1
Case 2:p >0, in this, (10) can be re-written as
(B,B,B, +B,Bm+Bmy, )i’ - (0 + paB,B,)i" - paB ., =0 (12)
Clearly, there is no disease-free solution to equation ([Aead, (12) has one positive root given by
o+ paB,g, +\/(0'+ paB,s,)" + 4(BZB3,Bm +B,A2m+ Blmyh) paB .
W 2(B,B,B, + B,A2m+Bmy,)

(13)
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This means that fop = 0, there exist a disease-free equilibrium WH@@< land a unique endemic equilibrium point when

R) >1. However, if p > 0, There is no disease-free equilibrium, instead, an endemiibegui point exist.

5.0 Analysis of Optimal Control

The necessary conditions that an optimal corittqU, ,U, must satisfy comes from the Pontryagin’s maximum ppigci
[14]. This principle converts equations (2), (3) andii) a problem of minimizing pointwise a Hamiltonianwith respect
to U;,U,,U,.

The lagrangrian of the control problem is given by

1
L =1y 1y +5(quf +cu3 +cu) (14)
We seek for the minimal value of the Lagragrian. To do tésdefine the Hamiltonian H for the optimal control prohlem
ds, di dR, ds,, dl
H=L(1y, 1, U,U,,U) + A & +A, dtH +, & +A, & +A, d'? (15)

H =1+, +2 (o0 + o +cpd)

[ (1-u,(t
_AS ml(\l u, (t)) ‘,UhSn]

h

+A [/\h +|:1_ (l_ U, (t)) p] A+ p R,

+A

N

BSln (1-u, (1)
N

h

(1-u (1)) pA+ —(ﬂh+yh+5h)lh]

+A (16)

w

(yhlh _(:uh +ph)R1)

Nh
) ﬁmsm'“,gl_%(t))—umlm]

In order to find the optimal solution, we apply PontipgggMaximum Principle. We obtain the following theorem.
Theorem 4.1

There exists an optimal controui,u*z,u; and corresponding solutionﬁ,lL,&,SM,l*M that minimize

J(u,,u,,u;) DU . Furthermore, there exist adjoint functiofs A,,A;,4,,A-such that

/11| = (/11 _Az)ﬂh :\l_m(l_ Uz(t)) + A, (17a)
h
1-u,(t
/]2I =_1+/]2 (/Jh W +5h)_/]3yh +(/]4_/15) Igmsm (N ()) (17b)
h
/]3I = (/]3 _/]1) P+ A, (17¢)

Ay =(A, =) (17d)

m

ﬁmlh(]l;l_u3(t))+/14lj

h
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B.S, (1_ U, (t))
N

h
With transversality conditions

A)=0i=12,. ndN, =S, +I', +R,, N, =S, +I,
The following characterization holds

u (t) = min{l, max OMJ} (18a)
1

A ==1+(A,-4,) + AU (17e)

m

u;(t):min{l,max 0(A, )I)'BC“:SI‘\: ]} (18b)

U (t) = min{l, max O(A; —/]4)@]} (18c)

C,N,
Proof
When the Pontryagin’s Maximum principle is applied, we haa¢
A __oH | (t)=0
dt  aS,
%: oH A, (t)=0
a o,
%: oH A () =0
d R,
di, __oH =0
&t oS,
dh __oH =0
& o,

This, evaluated at the optimal contltail , u’;,u*3 and corresponding state, gives the results in (17).

Considering the optimality conditions,

au au 6u

And solving foru1 ,uz,u3, subject to the state variables, the characterization in equa8pis @btained.
This end the proof.

6.0  Numerical Results

The optimality screening, prophylactic drugs and gametocigssoying drugs strategy is obtained by solving thamagity
system which is made up of the state and adjoint equalibesoptimality system is solved using MATLAB with a Ren
Kutta fourth order scheme. The state system, with an iciiadlition, is solved forward in time, with a guess f@ tontrols
over the simulated time, while the adjoint system, with eslat final time T, is solved backward in time using theectirr
iteration solution of the state equations. The controls dated by using a convex combination of the previous cerdral

the value from the characterization. We shall repeat this procesbaitdration is stopped if the value of unknowns at the
previous iteration are very close to the ones at the presextidrefl5].

By varying the values of one parameter while keeping the othassart, we observe a corresponding change in the solution
of the system of differential equations. This shows thatsolution depends continuously on the parameter valuekisl

research, we experimented with two different values for sortteeqfarameters. For instance, we I@dd_ 0.022 adjusted
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to S, =0.00022and S, = 0.028adjusted tof3,, = 0.0002€ .The different solutions where shown and explained.

For the bounds on the control, we have fat 14 <1, 0< i, <land0< p, < 1.

We have assumed that the weight factogsa@l G associated with controls and y is greater than or equal tq @hich is
associated with controhuThis is because the cost associated witis made up of screening and testing of immigrants, and
most times, the immigrant may bear the cost; hence theypobkers as well as public health officials may have litle
spend in this regards. The cost associated withiluentail giving prophylactic drugs to susceptible hunsiawhile the cost
associated withauwill entails the distribution of gametocytes destroyitnggs to infected humans.

6.1 Numerical Results of model (2)

We explore model (2) that includes immigration of infectivéhwimmigrant screening, the use of Prophylactic drugs and
gametocytes destroying drugs, as control measureq)dy #te effects of control practices on the transmissionadania.
Parameters used for the simulation were obtained from [16]T &de 1.

Table 1: Parameters, their Symbols and Values used Simulating model 2.

Parameter | Description Value
Ch Birth rate of humans 0.00011
P Proportion of infective immigrants 0.7
A Rate of Immigration 0.033
o Rate of loss of immunity 0.000055
Bn Rate of transmission of infection from infected mosquith022
to susceptible human
Uy Natural death rate for humans 0.00001¢
Vi Recovery rate of humans 0.0035
Cm Birth rate of mosquitoes 0.13
Bm Rate of transmission of infection from infective human 100.0028
susceptible mosquitoes
Un Natural death rate of mosquitoes 0.033

6.1.1 Results with A=0
In this section, the three controls are used for the simoatieor the numerical results presented here, we assumed that ther
are no immigrants coming into the taraet population

20

m

< B0z [ g B,=0.022
= =]
518 B,=0.00022 Z4 B,=0.00022
5 =
S B
o a
RS z 2
E e 5
5 gl="
0 50 100 0 &0 100
Time (days) Time (days)
., 3000 L 1D
2 B,=0.022 2
ES L = g
5 20001, B,=0.00022 =
2 . a
@ E B
£ 1000 = B,=0.022
2 5 A _
4 —— 2 B,=0.00022
| — 2 :
il A0l 100 il B 100

Time (days) Time (2ays)
Fig 1. Optimal control strategy when A = @, varied, initial conditions §0) = 1000, §(0) = 10,
Rn(0) = 0, $(0) = 2400, E{0) =500 and,(0) = 5. Other parameters are stated in Table 1
We use the three controlsg, w, and y to optimize the objective functional J. Figure 1 represemiesof the epidemiological
classes after the optimal strategy was implemented, with thefatrogression of humans from the susceptible stateeto th
infectious state8,, reduced from 0.022 to 0.00022.
Figure 2 shows the controls plotted as a function of fondoth values off,. Observe in figure 10 that the contrglis
zero, this is true since there are no infective immigrants comiogthe population. To minimize the total number of
infectious human, we observed in figure 9 that the contrategies resulted in a decrease in the numbers of infectious
human. ) and infectious mosquitoeg |
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Fig.2:Control u, W, and 4 when A = 0 angb}, varied.
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Fig 3:Optimal control strategy when A = B,, varied, initial conditions §0) = 1000, 4(0) = 10, R(0) = 0, $(0) = 2400,
E,(0) =500 and,{0) = 5. Other parameters are stated in Table 1.

From the control profiles shown in Figure 2, the ressitggest that using this strategy, the contichnd y were at its
lowest bound. This means that, in the absence of infectivagirants coming into the population, a strict on the use of
prophylactic drugs and gametes destroying drugs can drastiedilce the spread of malaria in the target population. Figure
3, shows the optimal control strategy when the rate ofress@n of mosquitoes from the susceptible state to theiorfect
state,Snm, is reduced from 0.028 to 0.00028. This strategy it decrease in the number of infectious mosquitoes. From
the control profile in Figure 4, we observe that the conkr@las at its lowest bound while contraldecreases from 0.1 to its
lowest at time t = 90. This suggests that withoutinflex of infective immigrants into the target populatienreduction in

the value of3,, can drastically reduce infectious mosquitoes
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Fig.4:Control uy, w, and 4 when A = 0 angb,, varied.

6.1.2 Results with A>0.

In this section, the three controls are used for the simatatieor the numerical results presented here, we assumed that ther

is a constant influx of immigrants coming into the pagioh.
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Fig 5: Optimal control strategy when A > @, varied, initial conditions §0) = 1000, }(0) = 10,
Rn(0) = 0, S(0) = 2400, E{0) =500 and,(0) = 5. Other parameters are stated in Table 1
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We use all the controls;u, and 4 to optimize the objective functions. Figure 5, shows théespiological classes with
infective immigrant after the optimal strategy was implet@emwith S, reduced from 0.022 to 0.00022. We observe that in
figure 5, even whegl, was reduced, the infectious human class still has a consigply sof infective humans, this is
Figure shows the control profile plotted, that is, contrdistted as a

attributed to the influx of infective immigrants.

function of time. The results suggest that using thieteyyy, the control efforts, decreases from 0.05 till t = 100, while
u,decrease from 0.25 till t = 90 and were at its lowest bound whehis varied. The same result was also obtained when

B was varied.
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Fig.7: Optimal control strategy when A > B,, varied, initial conditions {0) = 1000, }(0) = 10,
Rn(0) = 0, S(0) = 2400, E{0) =500 and,[0) = 5. Other parameters are stated in Table 1

Journal of the Nigerian Association of Mathematic&hysics Volume 28 No. 1, (November, 2014), 1636 1

174



A Model for the Transmission Dynamics... lyare, Okuonghaeand OsagiedeJ of NAMP

@ s — B, =0.028
E oost = . B g
I B,,=0.00028
Z

D 1 1 1 1 1 1 1 1 = i——

0 10 20 30 40 50 60 70 a0 a0 100

Time (days)
0.4 T
— B,=0.028

B, =0.00028 |

contral u2
o}
[gu]

0 10 20 30 40 a0 &0 70 a0 a0 100

Tirne (days)
! —B,=0.028
=i 4
= B,,=0.00025
=]
o

70 a0 a0 100

Fig.8:Control u, w, and 4 when A > 0 angB,, varied.

7.0  Conclusion

In this work, we apply Optimal Control theory to a mottedt includes a constant influx of immigrants into thesc®ptible
class, out of which a proportion of the immigrant is ade®d infective. The model is analysed for the existence of diseas
free and endemic equilibrium points. It was found thahére is an influx of infective immigrants into the populatia
steady state with a positive fraction of infective always exiftdés means that the model does not have disease-free
equilibrium point and has only the endemic disease equitibgwint in which the disease persist in the population.
According to [7], human migration plays an importaneroi the transmission and spread of malaria. It congghta the
transmission and spread of malaria infection and expos@®ithEnmune to the risk of infection and complicates the obntr
measures. It was also found out that the influx of infedtiwmigrants into the population does not alter the vailtleobasic
reproduction number, R That is, R is irrelevant and has limited application in the eradicatiomaifiria when there is an
influx of infective immigrant into the population.The nabdvas extended to assess the impact of the anti-malaria lcontro
measures (immigrant screening, use of Prophylactic drugsaametgcytes destroying drugs) by reformulating the model as
an optimal control problem. Using analytical method, thetemce of an optimal control and the optimality of the syste
was proved. The simulation of the optimal control mode$ Wane using MATLAB. Numerical results agree with our
analytical result that if there is a constant influx of indectimmigrant, the model does not have disease-free equililitium
was also found that infected immigrant may not havengtimpact in the spread of malaria if there is a strict policyhe

use of prophylactic drugs and gametocytes destroying didgaever, the combination of the three controls, that is,
screening/medical testing of immigrants, the use of prophyldaigs and gametocytes destroying drugs, gave a better an
efficient result in controlling the spread of malaria. This rsetliat control programmes that use these three strategies can
effectively reduce the spread of malaria in the target community
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