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Abstract 
 
In this article, we proposed an optimal control model that includes constant 

immigration of individuals into the susceptible population out of which a fraction is 
infective. Seeking to minimize the number of infectious humans and mosquitoes, we 
use controls to represent the screening of infected immigrants coming into the 
population, the use of prophylactic drugs on susceptible human and use of gametes 
destroying drugs on infectious human. A characterization of the optimal control via 
adjoint variables is established. The optimality system is solved numerically using an 
iterative method with Runge-Kutta fourth order scheme. Finally, numerical 
simulations of the optimal control problem is carried out to investigate the 
effectiveness of the proposed control measures. Parameter values have been taken 
from available literature. 
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1.0     Introduction 
Over the years, malaria disease has always been a great concern of human kind. It is one of the leading causes of death and 
remains a major challenge for many countries in the world. Malaria is a life-threatening disease caused by the parasite 
plasmodium falciparum, this parasite are transmitted to people through the bite of infected female anopheles mosquitoes. It is 
only the female anopheles mosquito that feeds on human blood. This is because; the blood is needed for the production of 
eggs. Malaria is endemic in 109 countries and territories in tropical and sub-tropical regions, spanning all continents of the 
world except Antarctica and Australia [1]. 
Human migration is present through the world; this has greatly affected the transmission dynamics of infectious diseases like 
malaria. [2] asserted that, there is a close connection between vector-borne disease and movement of people. Immigration has 
been known to play a key role in disease dynamics and this has been linked to increases in the incidence of malaria in some 
countries.It has been shown in [3, 4] that malaria models that include a constant flow of infective immigrant cannot eliminate 
the disease through any standard control measures. Usually these control measures are based on the basic or effective 
reproduction number, which cannot be applied to model with a constant inflow of infective individuals since the disease-free 
equilibrium can never be achieved.[5] asserted that one of the reasons for the failure of strategies to eradicate infectious 
disease is because of their neglect of the mobility pattern of the host, and that the importance of the role of human migration 
is evident in the recent increase in malaria incidence not only in the endemic areas, but also in areas where malaria had been 
eradicated 
Several models have been formulated to study the dynamics of malaria. For example, [6] proposed a model by including 
constant immigration of susceptible human population and exclude direct human recovery from the infectious to susceptible 
class. The model does not include immigration of infectious humans, as they assume that sick people do not travel. [7] 
proposed a mathematical model that tracks the dynamics of malaria disease. Their model incorporates immigration of 
infective human and ignore vertical transmission. However, all these works did not put into consideration the optimality, 
costs and cost-effectiveness of the treatment, prevention and vector control interventions, which are mainly hampered by the 
availability of resources. In view of this, [8] applied optimal control to study the epidemiology of malaria. In their study, they  
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used optimal control theory to investigate the optimal strategies for controlling the spread of malaria disease using treatment, 
insecticide, treated bed nets and  spray of mosquito insecticide as the system control variables. [9] applied optimal control to 
investigate the fundamental role of three type of control, personal protection, treatment and mosquito reduction strategies in 
controlling malaria. [10] applied optimal control to study vector borne disease with a particular reference to dengue disease. 
[11] applied optimal control to a mathematical model with infected and infectious immigrants to investigate the role of inflow 
of infected immigrants in malaria transmission. 
In this paper, we proposed a model that includes a constant influx of immigrants into the susceptible class out of which a 
fraction p is considered infective. The model differs from the model of [7] by excluding the direct recovery from the 
infectious class to the susceptible class which was evident in [7]. The model will be extended to assess the impact of the anti-
malaria control measures (immigrant screening, use of Prophylactic drugs and gametocytes destroying drugs) by 
reformulating the model as an optimal control problem. This will entail the use of three control functions namely;, immigrant 
screening strategies, use of Prophylactic drugs and gametocyte destroying drugs. Our goal is to minimize the number of 
infectious human and infectious mosquitoes at a minimum cost. Using analytical method, the existence of an optimal control 
and the optimality of the system will be proved. The numerical simulation of the optimal control model will be done using 
MATLAB.  
 
2.0 Modelformulation with Immigration of Infective 
Let A (a constant) be the number of new members arriving into the population in unit time with the fraction p  of A  

arriving infected with malaria such that 0 1p≤ ≤  We assume that the members ( )1 p A− are free from the malaria 

disease. The new model is given below: 

( )1h h m h
h h h h h

h

dS I S
p A R S

dt N

βρ µ= Λ + − + − −     (1a) 

( )h h m h
h h h h

h

dI I S
pA I

dt N

β µ γ δ= + − + +      (1b) 

( )h
h h h h h

dR
I R

dt
γ µ ρ= − +        (1c) 

m m h m
m m m

h

ds I S
S

dt N

β µ= Λ − −        (1d) 

m m h m
m m

h

dI I S
I

dt N

β µ= −         (1e) 

where 

hΛ = birth rate of humans 

mΛ = birth rate of mosquitoes 

hρ = rate of loss of immunity 

hβ = rate of transmission of infection from infectious mosquito to humans 

hγ  = recovery rate of humans 

hδ = disease-induced death rate of humans 

mβ = of transmission of infection from infectious humans to mosquitoes 

hµ = Natural death rate for humans 

 A = immigrant rate 
 P = fraction of infective immigrants    

mµ = natural death rate for mosquitoes 

hS = Number of susceptible humans 
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hI = Number of infectious humans 

hR = Number of immune humans 

mS = Number of susceptible mosquitoes 

mI = Number of infectious mosquitoes 

hN = Total Number of humans 

mN = Total Number of mosquitoes 

 
The equation in (1) represents the rate of change, with respect to time, of the different compartments.  
Equation (1a) describes the rate of change of the susceptible human population, SH. the first term on the right hand side of 
(1a) is the recruitment term  hΛ . The second term is the change in the SH population due to the influx of immigrants into the 

population. Since p represents the fractions of immigrants (with a constant value A) having active malaria parasite, then (1-p) 
will be the fraction of A who are susceptible and therefore join the SH class. The third term is the change in the SH population 
due to the loss of immunity. That is, those in recovered population who lose immunity and return to the susceptible class. The 
fourth term of equation (1a) is the interaction between the susceptible human SH and the infectious mosquitoes IM that leads 
to new cases of malaria in human. This leaves the susceptible human class, SH and moves into the infective class, IH. The 
final term is the natural mortality rate for the susceptible class h hSµ . 

Equation (1b) describes the rate of change of the infectious human class IH. The first term on the right hand side is the 
number of infective immigrant coming into the population. The second term represents the number of new malaria cases. The 
last term of equation (1b) is the recovery rate,hγ  , natural mortality rate, hµ   , and disease induced death rate, hδ .  All these 

reduce the infectious class, IH. 
Equation (1c) describes the rate of change of the recovered class, RH. The first term on the right hand side is the number of 
infectious humans that recovered per unit time. The last term represents those that lose immunity and returned to the 
susceptible class and the natural death rate in the recovered class        . 
Equation (1d) describes the rate of change of the susceptible class SM for mosquito populations. The first term on the right 
hand side is the recruitment term for mosquitoes,mΛ .The second term of equation (1d) is the interactions between the 

susceptible mosquitoes, IM and the infectious human IH that leads to new cases of infectious mosquitoes. This leaves the 
susceptible mosquito population to the infectious mosquito class, IM. The last term of equation (1d) is the natural mortality 
rate for susceptible mosquitoes. 
Equation (1e) describes the rate of change of the infections mosquito class IM.  The first term represents the number of new 
infectious mosquito cases and the last term is the natural mortality rate for infectious mosquitoes. 
 
3.0 Optimal Control Model Formulation  
Here, we reformulate system (1) as an optimal control problem. 
The control functions, u1(t), u2(t), u3(t), are bounded, Lebesgue integrable functions, where the control u1(t) is a control that 
allows for medical testing/screening of new immigrants coming into the population. The control u2(t) is a control on 
susceptible human that allows for the use of Prophylactic drugs by the susceptible individuals. The control u3(t) is a control 
on infected humans that allows for the use of drugs that not only treat the disease but prevent the formation of gametocytes in 
the human host. 
The differential equation incorporating optimal control terms is given below 

( ) ( )2
1

1 ( )
1 1 ( ) h h mh

h h h h h
h

S I u tdS
u t p A R S

dt N

β
ρ µ

−
= Λ + − − + − −     (2a) 

( ) ( ) ( )2
1

1 ( )
1 ( ) h h mh

h h h h
h

S I u tdI
u t pA I

dt N

β
µ γ δ

−
= − + − + +    (2b) 

( )h
h h h h h

dR
I R

dt
γ µ ρ= − +        (2c) 
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( )31 ( )m m hm
m m m

h

S I u tds
S

dt N

β
µ

−
= Λ − −       (2d) 

( )31 ( )m m hm
m m

h

S I u tdI
I

dt N

β
µ

−
= −        (2e) 

The equations in (2) represent the rate of change, with respect to time of the different compartments with control terms. 
In equation (2a), the term ( )11 1 ( )u t p A − −  represent the number of susceptible immigrants coming into the population in 

the presence of a time dependent control, u1(t). The control u1(t) is a control that allows for medical testing/screening of new 
immigrants coming into the population before they are allowed into the population, while the coefficient 1 – u1(t) is the effort 
that sustains such a testing policy; u1(t) near 0 indicates that the policy is “loose,” it does not prevent the infected immigrants 
from entering the population while u1(t) near 1, indicates a very strict testing policy that prevents the infected immigrants 
from increasing the size of the infected class IH.  The control u2(t) is a drug controlthat prevent the malaria parasite from 
developing in susceptible human, after the use of Prophylactic drugs. The coefficient 1 – u2(t) is the effectiveness of the 
drug;u2(t) near 0 indicates that the specific prophylactic drug does not prevent the infected mosquito from infecting the 
susceptible individuals, while u2(t) near 1, indicate that the prophylactic drugs effectively prevents the infected mosquito 
from infecting the susceptible individuals following a bite or blood meal. The control  u3(t) is a drug combination for treating 
malaria and prevent the forming of gametocytes in the human host that could be ingested by the mosquitoes after a blood 
meal, thereby infecting the mosquitoes. The coefficient 1-u3(t) is the effectiveness of the gametocytes destroying drug; u3(t) 
near 0, indicate that the specific drug does not affect the formation of gametocytes in the body, while u3(t) near 1 indicate that 
the drug is effective in preventing the forming of gametes and hence reducing the likelihood of having infected mosquitoes. 
The objective function to be minimized is                          

( ) ( )2 2 2
1 2 3 1 1 2 2 3 3

0

1
, ,

2

T

H MJ u u u I I c u c u c u dt
 = + + + + 
 
∫     (3) 

We minimize the infectious human and infectious mosquito population. Hence we will minimize an objective functional of a 
form that shows the trade-off we need in minimizing the number of infectious humans and mosquitoes, and the associated 
relevant cost of doing this. The associated relevant cost is made up of the cost of immigrant screening, the cost on the use of 
prophylactic drugs and cost of the use of gametocytes destroying drugs. Here, we assume that the associated cost with 
immigrant screening, the use of prophylactic drugs and gametocytes destroying drugs are nonlinear and take a quadratic 
form. The coefficients C1, C2 and C3 are balancing cost factors due to the size and importance of the parts making up the 
objective functional. 

We seek to find an optimal control triple * * *
1 2 3, ,u u u such that  

( ) ( )* * *
1 2 3 1 2 3, , min , ,J u u u J u u u U= ∈       (4) 

Subject to the system describe in (2) 
Where the control set is defined as 

( ) [ ]{ }1 2 3, , : ( ) 0,1 ,0 ( ) 1, 1,2,3i iU u u u u t u t i= ∈ ≤ ≤ =
. 

4.0 A Note on the Transmission Dynamics of Malaria with Infective Immigrants 
Before we analyse the optimal control model (2), we give the analysis of model (1)that has no time-dependent control. 
The coupled system of ordinary differential equations which describe the progress of the disease with immigration of 
infective is given by 

( )

( )

( )

1h h m h
h h h h h

h

h h m h
h h h h

h

h
h h h h h

m m h m
m m m

h

m m h m
m m

h

dS I S
p A R S

dt N

dI I S
pA I

dt N

dR
I R

dt
ds I S

S
dt N

dI I S
I

dt N

βρ µ

β µ γ δ

γ µ ρ

β µ

β µ

= Λ + − + − −

= + − + +

= − +

= Λ − −

= −

      (5) 
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A suitable domain for model (5) is 

( ) 5, , , , : ,h m
H H H M M H H H M M

h m

A
D S I R S I R S I R S I

µ µ
 Λ + Λ= ∈ + + ≤ + ≤ 
   

It can be shown that the set D is positively invariant set and a global attractor of this system. Hence a phase trajectory 
initiated anywhere in the non-negative region of the space eventually enters the region D and remains in D afterwards 

The rate of change of the total human population HN is given by 

( )H
H H H H H

dN
A N I

dt
µ δ= Λ + − −

 
Without loss of generality, we can write that 

( )H
H H H

dN
A N

dt
µ≤ Λ + −

 
Since the right-hand side of the equation for the rate of change of HN , is bounded by ( )H H HA NµΛ + − , a standard 

comparison theorem can be used to show that 

( )
( ) (0) (1 )H HHt t

H H
H

A
N t N e eµ µ

µ
− −Λ +

≤ + −
 

If 
( )

(0) H
H

H

A
N

µ
Λ +

≤  

Then 
( )

(t) H
H

H

A
N

µ
Λ +

≤  

Similarly (t) m
m

m

N
µ
Λ

≤  

Thus, D is a positively invariant set under the flow described in system (5). Hence no solution path leaves through any 
boundary of D. Since path cannot leave D, solutions remain non-negative for non-negative initial conditions. This means that 
the solution exists for all positive time t. Therefore, the model (5) is mathematically and epidemiologically well-posed, [12]. 
For convenience and to simplify the analysis of our model, we rewrite equation (5) in terms of the proportions of individual 
in each class. 

Let H
h

H

S
s

N
= , H

h
H

I
i

N
= , H

h
H

R
r

N
= , M

m
M

S
s

N
= , M

m
M

I
i

N
= be the proportions for the classesHS , HI , HR , MS and MI , 

respectively. 

Let m

H

N
m

N
= be the female mosquito-human ratio, that is, the number of female mosquito per human host. 

The ratio m

H

N
m

N
= is a constant because a mosquito takes a fixed number of blood meals per unit time independent of the 

population density of the host. [13]. 
 Also let H hβ β= , H hΛ = Λ , H hµ µ= , H hρ ρ= , M mβ β= , M mµ µ= , M mΛ = Λ  

Differentiating the above proportions with respect to time t, we have that 

1h hH H

H H

ds sdS dN

dt N dt N dt
= −

 
1h hH H

H H

di idI dN

dt N dt N dt
= −
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1h hH H

H H

dr rdR dN

dt N dt N dt
= −

 
1m mM M

M M

ds sdS dN

dt N dt N dt
= −

       (6) 

1m mM M

M M

di idI dN

dt N dt N dt
= −

 
Using equation (6), the system (5) can be written as 

( )1
h h h

h h h m h h h
H H H

A pds A
r mi i s

dt N N N
ρ β δ

−  Λ Λ += + + − + − 
   

h h
h m h h h h h h

H H

di ApA
mi s i i

dt N N
β γ δ δ

 Λ += + − + + − 
 

 

     (7) 
 
 
 
 

 
 

 
4.1  Existence of the equilibria of the malaria Model (7) 
Since malaria can be introduced into the population by the recruitment of infected immigrants, it is more realistic to consider 
the malaria model with p > 0. 
To findthe steady states of (7), we set the derivatives with respect to time in  (7) to zero and using the fact that  

0hH
h h h H

H

AdN
i N

dt N
µ δ Λ +

= − − = 
 

, that is h
h h h

H

A
i

N
µ δΛ +

= + ,  m
m

mN
µΛ

= , 1h h hs i r+ + = , 

1m ms i+ = and 
H

A
a

N
=  

This yield the endemic equilibrium ( )1 * * * * *, , , ,h h h m mE s i r s i=  

Where 

* h h h h h
h

h h m

i pA r
s

mi

µ δ ρ
µ β

+ − +=
+

       (8a) 

( )* 1h m h
h

h h h h m

pA mi r
i

mi

β
µ γ δ β

+ −
=

+ + +
       (8b) 

*

h

h h

h h

i
r

γ
µ ρ

=
+

         (8c) 

* m
m

m m h

s
i

µ
µ β

=
+

        (8d) 

* m h
m

m h m

i
i

i

β
β β

=
+

(8e) 
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H

dr A
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dt N
γ ρ δ

 Λ += − + − 
 

m m m
m h m

m

di i
i s

dt N
β Λ= −

m m m
m h m

m m

ds
i s

dt N N
β

 Λ Λ= − + 
 
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4.2 Disease-Free Equilibrium point 
In order to understand the implications of having a constant influx of infected immigrants on the dynamics of the system in 
(7), we present conditions for the existence of positive equilibria with or without the infected immigrants. 

Let ( )0 , , , ,o o o o o
h h h m mE s i r s i= be the disease-free equilibrium points of model (7) 

In the absence of the disease, that is when 0h mi i p= = = , the model (7) reduces to 

1hs = , 0hi = , 0hr = , 1ms =  and 0mi =  

Therefore ( ) ( )0 , , , , 1,0,0,1,0o o o o o
h h h m mE s i r s i= =      (9) 

 
This implies that at the disease-free equilibrium, the susceptible human population is equal to the total human population and 
the susceptible mosquito population is equal to the total mosquito population. 

But if 
0, 0h mi i p= = ≠

The model (7) has no disease-free equilibrium, since there will always be infected human 
migration into the population. 

Again if we substitute equations (8c) and (8e) into (8b), we have the following quadratic equation in *
hi . 

( ) ( )2 *2 *
2 3 2 1 2 3 1 2 2 2 0m m h h m m h mB B B m B m i B B B B m paB i paBβ β γ µ β µ+ + + − − − =

 (10) 
Where 1 2 3, ,h m h h h h hB B Bβ β µ ρ µ γ δ= = + = + +  

Case 1:( 0)p = , in this case, equation (10) reduces to 

( ) ( )2 *2 *
2 3 2 1 1 2 2 3 0

hm m h h mB B B m B m i B B m B B iβ β γ µ+ + − − =
   (11) 

Which has two roots: 
* 0
h

i = , for which the disease is absent.( Disease-free equilibrium) 

and 

* 1 2 2 3
2

1 2 2 1
h

m

m m h

B B m B B
i

B B B m B m

µ
β β γ

−
=

+ +
for which the disease persists. This is positive provided 

1 2 2 3 0mB B m B Bσ µ= − >
 

Now 

( )
1

22 3
2 3 03*

2 2
1 2 2 1 1 2 2 1

1
1

h

m
mm

m m h m m h

B m
B B

B B RB
i

B B B m B m B B B m B m

µ µµ
β β γ β β γ

 
−  − = =

+ + + +
 

Where 

( )
2
0

h m

m h h h

m
R

β β
µ µ γ δ

=
+ +

 
If 0 1R > the disease will persists in the population.That is, if 0p = , the model has a disease-free equilibrium and an 

endemic equilibrium point, with the former existing when 0 1R >  while the latter exists and is unique when 0 1R >  

Case 2: 0p > , in this , (10) can be re-written as 

( ) ( )2 *2 *
2 3 2 1 2 2 0

hm m h h m mB B B m B m i paB i paBβ β γ σ β µ+ + − + − =   (12) 

Clearly, there is no disease-free solution to equation (12). Instead, (12) has one positive root given by 

( ) ( )
( )

2 2
2 2 2 3 2 1 2*

2
2 3 2 1

4

2h

m m m m h m

m m h

paB paB B B B m B m paB
i

B B B m B m

σ β σ β β β γ µ

β β γ

+ + + + + +
=

+ +
 (13) 
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This means that for 0p = , there exist a disease-free equilibrium when 0 1R < and a unique endemic equilibrium point when 

0 1R > . However, if 0p > , There is no disease-free equilibrium, instead, an endemic equilibrium point exist.  

 
 
5.0 Analysis of Optimal Control  
The necessary conditions that an optimal control 1 2 3, ,u u u  must satisfy comes from the Pontryagin’s maximum principle 

[14]. This principle converts equations (2), (3) and (4) into a problem of minimizing pointwise a Hamiltonian H, with respect 

to 1 2 3, ,u u u .   

The lagrangrian of the control problem is given by  

( )2 2 2
1 1 2 2 3 3

1

2H ML I I c u c u c u= + + + +       (14) 

We seek for the minimal value of the Lagragrian. To do this, we define the Hamiltonian H for the optimal control problem. 

( )1 2 3 1 2 3 4 5, , , , H H H M M
H M

dS dI dR dS dI
H L I I u u u

dt dt dt dt dt
λ λ λ λ λ= + + + + +  (15) 

 

( )2 2 2
1 1 2 2 3 3

1

2H MH I I c u c u c u= + + + +
 

( ) ( )

( ) ( ) ( )

( )( )
( )

( )

2
1 1

2
2 1

3

3
4

3
5

1 ( )
1 1 ( )

1 ( )
1 ( )

1 ( )

1 ( )

h h m
h h h h h

h

h h m
h h h h

h

h h h h h

m m h
m m m

h

m m h
m m

h

S I u t
u t p A R S

N

S I u t
u t pA I

N

I R

S I u t
S

N

S I u t
I

N

β
λ ρ µ

β
λ µ γ δ

λ γ µ ρ

β
λ µ

β
λ µ

− 
+ Λ + − − + − −   

 

− 
+ − + − + + 

 

+ − +

− 
+ Λ − − 

 

− 
+ − 

 

  (16) 

 
In order to find the optimal solution, we apply Pontryagin’s Maximum Principle. We obtain the following theorem. 
Theorem  4.1 

There exists an optimal control * * *
1 2 3, ,u u u and corresponding solutions, * * * * *, , , ,H H H M MS I R S I that minimize

( )1 2 3, ,J u u u U∈ .  Furthermore, there exist adjoint functions 1 2 3 4 5, , , ,λ λ λ λ λ such that 

( ) ( )1 1 2 2 11 ( )I m
h h

h

I
u t

N
λ λ λ β λ µ= − − +       (17a) 

( ) ( ) ( )3
2 2 3 4 5

1 ( )
1 m mI

h h h h
h

S u t

N

β
λ λ µ γ δ λ γ λ λ

−
= − + + + − + −    (17b) 

( )3 3 1 3
I

h hλ λ λ ρ λ µ= − +        (17c) 

( ) ( )3
4 4 5 4

1 ( )m hI
m

h
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−
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( ) ( )2
5 1 2 5

1 ( )
1 h hI

m
h

S u t

N

β
λ λ λ λ µ

−
= − + − +      (17e) 

With transversality conditions 

( ) 0, 1,2,...,5i t iλ = = and * * * *
H H H HN S I R= + + ,   * * *

M M MN S I= +  

The following characterization holds 

( )2 1*
1

1

( ) min 1,max 0,
pA

u t
C

λ λ −  =   
   

     (18a) 

( )*
2 2 1

2

( ) min 1,max 0, h h m

h

S I
u t

C N

βλ λ
   = −  
   

     (18b) 

( )*
3 5 4

3

( ) min 1,max 0, m m h

H

S I
u t

C N

βλ λ
   = −  
   

     (18c) 

Proof 
When the Pontryagin’s Maximum principle is applied, we have that 

1
1, ( ) 0

H

d H
t

dt S

λ λ∂= − =
∂

 

2
2, ( ) 0

H

d H
t

dt I

λ λ∂= − =
∂

 

3
3, ( ) 0

H

d H
t

dt R

λ λ∂= − =
∂

 

4
4, ( ) 0

V

d H
t

dt S

λ λ∂= − =
∂

 

5
5, ( ) 0

V

d H
t

dt I

λ λ∂= − =
∂

 
This, evaluated at the optimal control * * *

1 2 3, ,u u u  and corresponding state, gives the results in (17). 

Considering the optimality conditions, 

1 2 3

0, 0, 0
H H H

u u u

∂ ∂ ∂= = =
∂ ∂ ∂

 
And solving for * * *

1 2 3, ,u u u , subject to the state variables, the characterization in equation (18) is obtained.  

This end the proof. 
 
6.0 Numerical Results 
The optimality screening, prophylactic drugs and gametocytes destroying drugs strategy is obtained by solving the optimality 
system which is made up of the state and adjoint equations. The optimality system is solved using MATLAB with a Runge-
Kutta fourth order scheme. The state system, with an initial condition, is solved forward in time, with a guess for the controls 
over the simulated time, while the adjoint system, with values at final time T, is solved backward in time using the current 
iteration solution of the state equations. The controls are updated by using a convex combination of the previous controls and 
the value from the characterization. We shall repeat this process and the iteration is stopped if the value of unknowns at the 
previous iteration are very close to the ones at the present iteration [15]. 
By varying the values of one parameter while keeping the others constant, we observe a corresponding change in the solution 
of the system of differential equations. This shows that the solution depends continuously on the parameter values. In this 

research, we experimented with two different values for some of the parameters. For instance, we had 
0.022hβ =

 adjusted  
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to 0.00022hβ = and 0.028mβ = adjusted to 0.00028mβ =  .The different solutions where shown and explained.   

For the bounds on the control, we have that 10 1µ≤ ≤ , 20 1µ≤ ≤ and 30 1µ≤ ≤ . 

We have assumed that the weight factors, C2 and C3 associated with controls u2 and u3 is greater than or equal to C1 which is 
associated with control u1. This is because the cost associated with u1 is made up of screening and testing of immigrants, and 
most times, the immigrant may bear the cost; hence the policy makers as well as public health officials may have little to 
spend in this regards. The cost associated with u2 will entail giving prophylactic drugs to susceptible humans, while the cost 
associated with u3 will entails the distribution of gametocytes destroying drugs to infected humans. 
 
6.1   Numerical Results of model (2) 
We explore model (2) that includes immigration of infective with immigrant screening, the use of Prophylactic drugs and 
gametocytes destroying drugs, as control measures, to study the effects of control practices on the transmission of malaria. 
Parameters used for the simulation were obtained from [16]. See Table 1. 
 
Table 1: Parameters, their Symbols and Values used in Simulating model 2.  

Parameter Description Value 
∧h Birth rate of humans 0.00011 
P Proportion of infective immigrants 0.7 
A Rate of Immigration 0.033 
ρh Rate of loss of immunity   0.000055 
βh Rate of transmission of infection from infected mosquito 

to susceptible human  
0.022 

µh Natural death rate for humans 0.000016 
γh Recovery rate of humans 0.0035 
∧m Birth rate of mosquitoes 0.13 
βm Rate of transmission of infection from infective human to 

susceptible mosquitoes 
0.0028 

µm Natural death rate of mosquitoes 0.033 
 
6.1.1  Results with A=0 
In this section, the three controls are used for the simulations. For the numerical results presented here, we assumed that there 
are no immigrants coming into the target population 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 1. Optimal  control strategy when A = 0, �h varied, initial conditions Sh(0) = 1000, Ih(0) = 10,  
Rh(0) = 0, Sv(0) = 2400, Ev(0) = 500  and Iv(0) = 5. Other parameters are stated in Table 1 
We use the three controls u1, u2 and u3 to optimize the objective functional J. Figure 1 represent some of the epidemiological 
classes after the optimal strategy was implemented, with the rate of progression of humans from the susceptible state to the 
infectious state	�h, reduced from 0.022 to 0.00022. 
Figure 2  shows the controls plotted as a function of time for both values of �h.  Observe in figure 10 that the control u1 is 
zero, this is true since there are no infective immigrants coming into the population.  To minimize the total number of 
infectious human, we observed in figure 9 that the control strategies resulted in a decrease in the numbers of infectious 
human. Ih and infectious mosquitoes Im 
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Fig.2:Control u1, u2 and u3 when A = 0 and �h varied. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 3:Optimal  control strategy when A = 0, �m varied, initial conditions Sh(0) = 1000, Ih(0) = 10, Rh(0) = 0, Sv(0) = 2400, 
Ev(0) = 500  and Iv(0) = 5. Other parameters are stated in Table 1. 
From the control profiles shown in Figure 2, the results suggest that using this strategy, the control u1 and u2 were at its 
lowest bound. This means that, in the absence of infective immigrants coming into the population, a strict on the use of 
prophylactic drugs and gametes destroying drugs can drastically reduce the spread of malaria in the target population.  Figure 
3, shows the optimal control strategy when the rate of progression of mosquitoes from the susceptible state to the infection 
state, �m, is reduced from 0.028 to 0.00028.  This strategy resulted in decrease in the number of infectious mosquitoes.  From 
the control profile in Figure 4, we observe that the control u2 was at its lowest bound while control u3 decreases from 0.1 to its 
lowest at time t = 90.  This suggests that without the influx of infective immigrants into the target population, a reduction in 
the value of �m can drastically reduce infectious mosquitoes 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4:Control u1, u2 and u3 when A = 0 and �m varied. 
 
6.1.2  Results with A>0. 
In this section, the three controls are used for the simulations. For the numerical results presented here, we assumed that there 
is a constant influx of immigrants coming into the population. 
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Fig 5: Optimal  control strategy when A > 0, �h varied, initial conditions Sh(0) = 1000, Ih(0) = 10,  
Rh(0) = 0, Sv(0) = 2400, Ev(0) = 500  and Iv(0) = 5. Other parameters are stated in Table 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.6:Control u1, u2 and u3 when A > 0 and �h varied. 
 
We use all the controls u1, u2 and u3 to optimize the objective functions.  Figure 5, shows the epidemiological classes with 
infective immigrant after the optimal strategy was implemented with �h reduced from 0.022 to 0.00022. We observe that in 
figure 5, even when �h was reduced, the infectious human class still has a constant supply of infective humans, this is 
attributed to the influx of infective immigrants.  Figure 6, shows the control profile plotted, that is, controls plotted as a 
function of time.  The results suggest that using this strategy, the control efforts u1 decreases from 0.05 till t = 100, while 
u2decrease from 0.25 till t = 90 and u3 were at its lowest bound when �his varied.  The same result was also obtained when 
�m was varied. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.7: Optimal control strategy when A > 0, �m varied, initial conditions Sh(0) = 1000, Ih(0) = 10,  
Rh(0) = 0, Sv(0) = 2400, Ev(0) = 500  and Iv(0) = 5. Other parameters are stated in Table 1 
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Fig.8:Control u1, u2 and u3 when A > 0 and �m varied. 
 
7.0 Conclusion 
In this work, we apply Optimal Control theory to a model that includes a constant influx of immigrants into the Susceptible 
class, out of which a proportion of the immigrant is considered infective. The model is analysed for the existence of disease-
free and endemic equilibrium points. It was found that if there is an influx of infective immigrants into the population, a 
steady state with a positive fraction of infective always exists. This means that the model does not have disease-free 
equilibrium point and has only the endemic disease equilibrium point in which the disease persist in the population. 
According to [7], human migration plays an important role in the transmission and spread of malaria. It contributes to the 
transmission and spread of malaria infection and exposes the non-immune to the risk of infection and complicates the control 
measures. It was also found out that the influx of infective immigrants into the population does not alter the value of the basic 
reproduction number, R0 . That is, R0 is irrelevant and has limited application in the eradication of malaria when there is an 
influx of infective immigrant into the population.The model was extended to assess the impact of the anti-malaria control 
measures (immigrant screening, use of Prophylactic drugs and gametocytes destroying drugs) by reformulating the model as 
an optimal control problem. Using analytical method, the existence of an optimal control and the optimality of the system 
was proved. The simulation of the optimal control model was done using MATLAB.  Numerical results agree with our 
analytical result that if there is a constant influx of infected immigrant, the model does not have disease-free equilibrium It 
was also found that infected immigrant may not have strong impact in the spread of malaria if there is a strict policy on the 
use of prophylactic drugs and gametocytes destroying drugs. However, the combination of the three controls, that is, 
screening/medical testing of immigrants, the use of prophylactic drugs and gametocytes destroying drugs, gave a better and 
efficient result in controlling the spread of malaria. This means that control programmes that use these three strategies can 
effectively reduce the spread of malaria in the target community. 
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