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Abstract 
 
In this paper, we present the local and global stability analysis of the endemic 

equilibrium of a mathematical model for cholera that incorporates the death of 
hyperinfective V. cholerae, the pathogen responsible for cholera, in the transmission 
dynamics of cholera. The analyses show that the endemic equilibrium point (EEP) 
exists and is unique and is linearly globally asymptotically stable in the domain under 
consideration. 

 

 Keywords:Cholera, endemic equilibrium point, hyperinfective, V. cholerae 
 
1.0     Introduction 
Cholera is an ancient disease that continues to cause epidemic and pandemic infection despite ongoing efforts to limit its 
spread [1]. Historically, six out of the seven cholera pandemics have swept the globe since 1816[2 - 4]. Most recently, the 
seventh pandemic started from Indonesia in 1961, spread into Europe, South Pacific and Japan in the late 1970s, reached 
South America in 1990s, and has continued (though much diminished) to the present. The last few years have witnessed 
many cholera outbreaks in developing countries, including India (2007), Congo (2008), Iraq (2008), Zimbabwe (2008–2009), 
Vietnam (2009), Nigeria (2010), and Haiti (2010). In the year of 2010 alone, it is estimated that cholera affects 3–5 million 
people and causes 100,000–130,000 deaths in the world [4]. Particularly, cholera represents a significant public health burden 
to developing countries and cholera continues receiving worldwide attention [1]. 
Cholera is an infection of the small intestine caused by the gram-negative bacterium, Vibrio cholerae. Untreated individuals 
suffer severely from diarrhea and vomiting. It can cause a rapid dehydration and electrolyte imbalance, and can lead to death. 
As a water/food-borne disease, cholera is typically infected through pathogen ingestion, such as drinking sewage-
contaminated water, or eating food prepared by an individual with soiled hands. Mean-while, different transmission pathways 
are possible. For example, a cholera outbreak in a Singapore psychiatric hospital indicated that the direct human-to-human 
transmission was a driving force [1]. In addition, several other aspects must be considered, including the pathogen ecology 
outside of human hosts [5] and climatological influence [6]. The present work aims to understand the global dynamics of 
cholera epidemiology in a general mathematical mod-el which has a potential to incorporate these different factors into a 
unified framework. Such understanding is crucial for effective prevention and intervention strategies against cholera 
outbreak.  
Many mathematical models have already been proposed to investigate the complex epidemic and endemic behavior of 
cholera. One difficulty in studying cholera dynamics is the coupling between its multiple transmission pathways which 
involve bothdirect human-to-human and indirect environment-to-humanmodes and which lead to combined human-
environment epidemiological models [1]. The earliest mathematical model was proposed byCapasso and Paveri-Fontana[7]to 
study the 1973 cholera epidemicin the Mediterranean region. The model consists of two components, the concentration of the 
pathogen in water and the population of the infected people. Codeço [8] in 2001 extended the work in [7] and explicitly 
accounted for the role of the aquatic reservoir in cholera dynamics. Codeço included the susceptible population into her 
model to consider the long-term dynamics. Similar to the work of Capasso and Paveri-Fontana [7], this model assumes the 
ingestion of contaminated water is the only transmission route.  Using similar non-linear incidence in Codeço’s model, 
Hartley et al. [9] incorporated a hyperinfective stage of V. cholerae (i.e., freshly shed vibrios) into their model. This model 
emphasizes the stage of ‘‘explosive’’ infectivity of V. cholerae, based on the laboratory measurements that freshly shed V. 
cholerae from human intestines outcompeted other V. cholerae by as much as 700-fold for the first few hours in the 
environment [9]. Consequently, this model tries to implicitly highlight the importance of human-to-human interaction in 
cholera epidemics. Oghre and Ako [10] modified the work of Hartley et al. [9] by the inclusion of the death rate of 
hyperinfective V. cholerae. Their model is given by. 
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The state variables (sub-populations) are: number of individuals not infected but susceptible to infection S,  number of 

individuals infected and infectiousI , number of individuals recovered from infectionR , concentration of hyperinfectious 

(HI) V. cholerae HB ,concentration of less-infections (LI) V. cholerae LB ;the model parameters are: per-capita natural 

human birth/mortality rateµ , Ingestion rate of hyperinfectious (HI) V. cholerae by susceptible individuals Hβ ,Ingestion 

rate of less-infectious (LI) V. cholerae by susceptible individuals Lβ ,the hyperinfectious (HI) V. cholerae infectious 

concentration or half saturation rateHK , the less-infectious (LI) V. cholerae infectious concentration or half saturation rate

LK , bacterial transition rate i.e., the rate of decay from hyper-to reduced infectiousness.χ ,Shedding rate i.e., the rate of 

contribution to HI V. cholerae in aquatic environmentξ ,net death rate of HI vibriosHδ ,net death rate of non-HI vibrios in 

the aquatic environmentLδ , rate of recovery from cholera.γ .    In their paper, Oghre and Ako[10] computed the basic 

reproduction number, 0R
, and the critical susceptible population,  CS

, to be: 
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=
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respectively(see [10] for more details). Oghre and Ako [10] analyzed the local and global asymptotic stability of the 
infection-free equilibrium point in their work. In this paper, we extend the work in [10] by analyzing the local and global 
asymptotic stability of the endemic equilibrium point (EEP).  
 
2.0 Existence and Local Stability of the Endemic Equilibrium Point 
The dynamics of a disease over a very long period of time is characterized and governed by the stability at the endemic 
equilibrium. Furthermore, endemicity refers to a situation whereby a disease seems to be locally persistent in a given 
community over a long period of time, thus making that community vulnerable [11]. 
Let the endemic equilibrium point (EEP) of system (1) denoted by  

* * * * * *( , , , , ) (4)T
H LX S I R B B=

 
That is, generally,

*
*( ) 0 (5)

dX
F X
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= =   

Thus, the components of the endemic equilibrium point, *X , are 
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These components (6 - 10) will aid us in showing the existence and uniqueness of the positive endemic equilibrium. We will 
do this in the following theorem. 
Theorem 1 

The positive endemic equilibrium point exists and is unique if and only if 10 >R . 

Proof: Substituting Eq. (7) in Eq. (6) and expanding the result yields 
* 3 * 2 *( ) ( ) 0 (11)U I V I WI+ + =  

where 
2 ( )( ) (12)L HU ξ χ γ µ β β µ= − + + +

 
2 ( ) ( )( )( ) (13)L H H L H H L L L L HV N K K K Kξ χµ β β ξ γ µ χ δ β χ β δ µ δ µχ= + − + + + + +

 
[ ]( ) ( ) ( ) ( ) (14)H L H H L L H H L LW N K K K Kχ δ ξµ β χ β δ µ γ µ χ δ δ= + + − + +

 
Factorizing Eq. (14) gives  

( )( )
( )( ) (15)

(
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H L H H L L
L H H L L

K K
W K K N

K K

γ µ χ δ δξµ χ δ β χ β δ
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 + +
= + + − +   

Recalling Eq. (3) and substituting it in Eq. (15), gives 

[ ]( ) ( ) (16)H L H H L L CW K K N Sξµ χ δ β χ β δ= + + −
 

Eq. (11), on further simplification, yields 
* * 2 *( ) 0 (17)I U I VI W + + =   

From Eq. (15), it is obvious that either  

0* =I  (18)  
or  

0)()( *2* =++ WIVIU (19)  

The zero root of Eq. (18) i.e. ,0* =I corresponds to the DFE. 

The other two (non-zero) roots, 21 IandI , of Eq. (19) must satisfy: 

1 2                             (20)
W

I I
U

=
 

1 2       (21)
V

I I
U

+ =−
 

The sign on U  is negative, i.e. 0U < since all the parameters are positive.When 

0,10 >>> WandSNthenR C , so that the RHS of Eq. (20) is negative. Therefore, there is one and only one 

positive real root for Eq. (19).Conversely, if CSNthenR << ,10  and 0W < , so that the RHS of Eq. (21) is positive.  

Next we prove that 0V < . Recall that  
2 ( ) ( )( )( ) (22)L H H L H H L L L L HV N K K K Kξ µχ β β ξ γ µ χ δ β χ β δ µ δ µχ= + − + + + + +

 
From Eq. (22), we have that  
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when CSN < . Meanwhile, 

( )( )( ) ( )( )[(

                                                                                              ( )]      (25)
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Manipulating both sides of Eq. (25) yields 
( ) ( )( )

( )( )( )

                                                                                                                           

L H H H L L
H L H H L L L L H

L H H L L

K K
K K K K

K K

ξµχ β β γ µ χ δ δ ξ γ µ χ δ β χ β δ µ δ µχ
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+
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From the combination of Eq. (24) and (26), we obtain 
2 ( ) ( ) ( ) ( ) (27)L H H L H H L L L L HN K K K Kξ µχ β β ξ γ µ χ δ β χ β δ µ δ µχ+ < + + + + +  

which on further simplification, yields 
2 ( ) ( )( )( ) 0 (28)L H H L H H L L L L HN K K K Kξ µχ β β ξ γ µ χ δ β χ β δ µ δ µχ+ − + + + + + <

 

which implies that 0V < .Hence, the RHS of Eq. (21) is negative. In this case we either have two negative real roots, or two 

complex conjugate roots with negative real parts, for .0)( *2* =++ WVIIU  which is a contradiction. Hence there is 

no positive endemic equilibrium given the condition that 10 <R i.e. N < CS and 0W < . 

Finally, if 0R = 1, then CSN = and 0W = , i.e. Eq. (20) becomes 

1 2 0 (29)
W

I I
U

= =
 

which implies that either 00 21 == IorI . Hence, if ,01 =I  then 02 ≠I . Conversely, if ,02 =I  then 

01 ≠I .Thus, Eq. (21) based on Eq. (29) gives us either for ,00 21 ≠= IandI  
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I I I
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+ = = −
 

or for 00 12 ≠= IandI , 

1 2 1 (31)
V

I I I
U

+ = = −
 

Hence, either 

1 2 (32)
V V

I or I
U U

= − = −
 

Hence, for 10 =R , Eq. (17) has only one non-zero root, 
U

V− , which is negative, which contradicts the statement of the 

theorem. Thus, the positive endemic equilibrium exists and is unique if and only if  10 >R . 

Theorem 2 

When 10 >R , the positive endemic equilibrium point of system (5) is locally asymptotically stable. 

Proof: We consider the Jacobian ofEq. (5) at the endemic equilibrium point. In order to make the algebraic manipulation 
easier, we set: 

* *
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where , , 0A B C > .The Jacobian matrix, *J ,at the EEP becomes 

*

0 0

( ) 0
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0 0 ( ) 0
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H
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− − − − 
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 −   

The characteristic polynomial of 
*J  is given as  

* ( ) [( ) ( ) ( ) ( )

                                                 ( )( ) ( )] 0                  (35)

H L

L

Det I J A b
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λ λ µ λ λ γ µ λ χ δ λ δ
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− + + − + =    
It is obvious that λ µ= −  is a negative root of Eq. (35).  

We then proceed to expand the expression in the square brackets to obtain 

 
4 3 2

4 3 2 1 0 0 (36)b b b b bλ λ λ λ+ + + + =
 

where  
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In order to prove the local asymptotic stability of Eq. (36), we employ a result from the work of Heffernan et al.[12], which 
states that for more complex models (like Eq. (1)), the characteristic equation may be of the form 

1
1 1 0. . . 0, (42)n n

nP P Pλ λ λ−
−+ + + + =

 
with 1 2 1, , . . . , 0.nP P P − > In this special case, 1−n roots of the polynomial (Eq. (42)) have negative real part. When 

,00 =P  the nth  root, or largest eigenvalue, is zero, when ,00 >P  all eigenvalues are negative, whereas when 

,00 <P the largest eigenvalue has positive real part. Thus, the stability (i.e. the local asymptotic stability in this case) is 

determined solely by the sign of the constant term of the characteristic equation. It, therefore, behooves us to show that Eq. 
(36) fits the description in Heffernan et al.[12]. 

Obviously, ,03 >b  since all the parameters are positive. Now, we need to show that 2 0b > . Thus,  
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Considering the last part of Eq. (43), we have 
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To resolve Eq. (44), we will be requiring appropriate substitutions for )( µγ + and B respectively. Now, from Eq. (6), we 

obtain an expression for γ µ+ , i.e. 

* *
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Recall, from Eq. (3.90), that  
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Thus, substituting Eqs. (45) and (46) in Eq. (44), we obtain  
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Hence, substituting Eq. (48) into Eq. (43), we obtain  
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*
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                                                (49)  
Hence, 2 0b > . 

Next, we proceed by rewriting 1b  into the sum of three parts, i.e. 
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µχ µδ µδ γδ δ δ χδ γχ γχ

µχδ µδ δ µ δ µγδ

= + + + −

+ + + + − −
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+ + + +  
NB: It is obvious that the last part of Eq. (50) is positive. 
Considering the first bracket of Eq. (50), 

2 2 ( ) ( ) (51)H H HB Bµ χ µ δ µγχ µγδ ξµ µ χ δ γ µ ξµ+ + + − = + + −  
Substituting Eqs. (45) and (46) into the RHS of Eq. (51) and simplifying the result yields 

*
*
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( ) ( )  
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( ) [ ( ) ]

H
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I
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Considering the second bracket in Eq. (50), 

      ( ) ( ) (53)
L H L L H L L

L H L

B C

B C

δ χγ γδ δ µχδ µδ δ ξδ ξχ
δ χ δ γ µ ξδ ξχ
+ + + − −

= + + − −  
Substituting Eqs. (45), (46) and (47) into the RHS of Eq. (53) and simplifying the result yields 

2 * *
*

* 2 * 2

( ) ( )
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L H L
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= + + > + + + +   
Thus, 1 0b > . 
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Thus far, we have been able to establish that 

1 2 3, , 0 (55)b b b >  
Finally, we need to establish that 00 >b  . 

Rearranging and factorizing Eq. (41), we obtain 

( ) ( )0 ( ) ( ) ( ) ( ) (56)L H L H Lb A C Bδ χ δ γ µ µδ χ δ γ µ µξχ µξδ= + + + + + − −
 

Substituting Eqs. (45), (46) and (47) into the second part of the RHS of Eq. (56) and simplifying yields 

0

2 * *
*

* 2 * 2

( ) ( )

     ( ) 0
[ ( ) ] [ ( ) ]

                                                                                                               

L H

L H
H L

L L H H H

b

I I
S

K I K I

δ χ δ γ µ

β ξχ β ξµξ χ δ δ
δ χ δ ξχ χ δ ξ

= Α + +

 
+ + + > + + + + 

                      (57)  
Thus, 00 >b . 

 Recall, from Heffernan et al. [12], that 

1. When 00 =b  , the fourth root, or largest eigenvalue, is zero;  

2. When 00 >b all eigenvalues are negative and;  

3. When 00 <b , the largest eigenvalue has positive real part.  

Thus, since our 00 >b and the stability, i.e. the local asymptotic stability, is determined by the sign of the constant term of 

the characteristic equation, the positive endemic equilibrium of system (5) is LAS (i.e. locally asymptotically stable), when 

10 >R
. 

3.0 Linear Global Stability  
The classical Poincare-Bendixson theory is a powerful tool to study global stability of non-linear autonomous systems. 
However, this framework cannot be directly extended to higher dimensional systems. Consequently, the global stability 
analysis of endemic equilibria, for non-linear higher-dimensional problems, such as the one in Eq. (1), is generally difficult 
despite the efforts made by several authors [11]. For some special differential equation systems, one might be able to find a 
suitable Lyapunov function [13, 14] to prove the global stability. Unfortunately, there is no systemic way to construct or find 
Lyapunov functions, which hinders the application of this approach to more general model systems [11]. We propose that the 

unique positive endemic equilibrium of system (1) is globally asymptotically stable when 10 >R  [11]. We will employ a 

special linear case to illustrate this point. 
Case 1:We assume that the pathogen concentrations in the environment are far beyond the HI and LI half saturation rates 

(ID50), i.e. HHLL KBandKB >>>> . Under this assumption, the incidence rates in the model become 

1 1 (58)L H

L L H H

B B
and

K B K B
≈ ≈

+ +  
That is, the possibility of infection is about 100% to those exposed to pathogens. Since SINR −−= , the model (1) is 
reduced to a two-dimensional linear system:  

 
( ) (59)

dS
N S

dt
µ β µ= − +

 

 
( )         (60)

dI
S I

dt
β γ µ= − +

   

with 
.L Hβ β β= +
It is straightforward to determine the unique positive endemic equilibrium of this system ((59) and 

(60)): 

*      (61)
N

S
µ

β µ
=

+  
and              

 

* (62)
( )( )

N
I

βµ
β µ γ µ

=
+ +
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There is no DFE in this case since 
*I exists and is positive since all the parameters are positive. Meanwhile, the exact 

solution of the system ((59), (60)) can be obtained as follows: 
 
Integrating Eq. (59) yields  

( )( ) (0) (63)tN N
S t S e β µµ µ

β µ β µ
− + 

= + − + +   
Integrating Eq. (60), we have 

( ) ( )
1 2( ) (64)

( ) ( )
t tN

I t e eβ µ γ µβµ ϕ ϕ
β µ γ µ

− + − += + +
+ +  

where 

 

te
N

S )(
1 )0( µβ

µβ
µ

βγ
βφ +−










+
−

−
=

 

 









+
−

−
−

++
−=

µγ
µ

βγ
β

µγµβ
βµφ N

S
N

I )0(
)()(

)0(2

 

Hence, we observe from Eqs. (63) and (64) that as 
* *, ( )  ( )t S t S while I t I→ ∞ → →  regardless of the initial values 

of  and  S I respectively. Thus, the endemic equilibrium ),( ** IS  is linearly globally asymptotically stable. 

 
Case 2:In this case, we assume the pathogen concentrations are much lower than the half saturation rates, i.e., 

HHLL KBandKB <<<< . This leads us to  

0 0 (6 5)L H

L L H H

B B
a n d

K B K B
≈ ≈

+ +  
That is, the possibility or chance of getting new infection is about 0. Our model system (1) is then reduced to  

(66)
dS

N S
dt

µ µ= −
 

( ) (67)
dI

I
dt

γ µ= − +
 

We observe that there is no endemic equilibrium point in this case and the only equilibrium point of system ((66), (67)) is a 
DFE, i.e.   
 

 (0) (68)S N=  

and (0) 0 (69)I =  
The exact solution of Eqs. (66) and (67) can be obtained as follows:Considering Eq. (66), 

 
SN

dt

dS µµ −=
 

Integrating Eq. (66) yields                

( ) ( (0) ) (70)tS t N S N eµ−= + −  
Integrating Eq. (67) yields                

( )( ) (0) (80)tI t I e γ µ− +=  

Clearly, from Eqs. (67) and (80), ( ) (0)S t S and→ ( ) (0)I t I as t→ → ∞ , confirming the global stability of the 
DFE. 
 
4.0  Parameter Estimation and Numerical Results 
4.1 Parameter Estimation 
We set the week as the unit of time. The constant mortality )(µ is estimated as the inverse of life expectancy at birth which  
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is about 49 years in Nigeria [15]. Hence µ = 1/49 = 0.02041
1−yr  = 0.000392465

1−wk . We shall assume an arbitrary value 

for the net death rate of HI vibrios in the environment ( Hδ ).Among the many parameters in our model (1), LK , HK , χ , 

ξ , Lδ , Hβ  and Lβ  have been estimated by various literatures[11]; their values are listed in Table 1 and treated as reliable 

in our work. Since the total population of Nigeria is about 155 million [16] we scale down this number by a factor of 15,500 
to match the hypothetical population of 10,000 in [9]. This figure is assumed to be constant i.e. births equals deaths. 
 
Table 1: Model parameters and values. Source: [9, 11] 
Model Parameter Symbol Value 
Rate of drinking LI V. cholerae 

Lβ  
1.50wk-1 

Rate of drinking HI V. cholerae 
Hβ  

1.15wk-1 

Non-HI V. cholerae infectious concentration (ID50) 
LK  

106 cells/ml 
 

HI V. cholerae infectious concentration (ID50) 
HK  HK = 700÷LK  

     =1428. 571429cells/ml 
Natural human birth and death rate µ

 
0.000392465wk-1 

Rate of decay from hyper- to reduced infectiousness χ
 

33.60wk-1 

Rate of contribution to HI V. cholerae in the aquatic 
environment 

ξ  
70wk-1 

Net death rate of non-HI vibrios in the environment 
Lδ  

0.23333wk-1 

Net death rate of HI vibrios  
Hδ  * Hδ = Lδ  

Rate of recovery from cholera γ
 

 1.40wk-1 

 
By substituting the values of the model parameters in Table 1 into equations (2) and (3), we find that the basic reproduction 
number  

0 15.083                                        (81)R =
  

and that the population threshold  

663                                              (82)CS =
 

The fact that 0 1,R > justifies the development of the cholera epidemics. The relatively large value of 0R  for the Nigerian 

cholera outbreak is attributed to the fact that the frequent exposure to and high consumption rate of V. cholerae infested water 
in Nigeria which is the resultant effect of the inadequate provision of potable water for her citizens and poor sanitation 
facilities due to overcrowding in areas ravaged by the disease. Although nearly 0.064 million cases of cholera between 
January 2010 and October 2011 have been reported, the overall percentage of infection with respect to the total population is 

still very low (less than 0.0004%). The 0R  estimated here is regarded as a nationally averaged reproduction rate. It is worthy 

of note that, scientifically, when the rate of drinking HI V. cholerae, Hβ , is almost equal to the rate of drinking LI V. 

cholerae, Lβ , i.e. ≈Hβ Lβ , then the value of 0R  will be quite large [9]. Meanwhile, we substitute these parameter values 

into equations (6 - 10) and find the unique positive endemic equilibrium: 

 ,665* =S ,6160.2* =I ,9332* =R ,4140.5* =HB 50.779* =LB   (83) 
Note again that we have scaled down the total population in Nigeria by a factor of 15,500 to match the hypothetical 
population 000,10=N . Thus, our model predicts that the realistic endemic infection number in Nigeria is about 40,548.  

 
4.2 Numerical Results 
To verify the model prediction, we run the numerical simulation for a large period of time (up to 2,000 weeks) with the initial 

conditions: ,1)0( =I ,9999)0( =S =)0(R 0)0()0( == LH BB  and present the results for ,I S and R in Figures 1, 

2 and 3.The first peak of the infection curve in Figure 1 represents the 2010-2011 cholera outbreaks.  
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The infection number )( I  starts to decline once the susceptible population 

this outbreak I drops to almost zero, meaning that the majority of the infected population have recovered and entered the 

recovered class, R , so that we observe a significant increase of 

weeks or so (almost 3 years). During this period, the value of 

individuals whereas the value of S gradually increases due to continuous birth of new susceptibles. Once the susceptible 

population exceeds the threshold 665=CS
pattern continues for a few more outbreaks with decaying magnitudes. After about 900 weeks, the infection curve rests at the 

endemic value, 6160.2* =I ; the  S and 

respectively.Figures 4, 5 and 6 show the results of another numerical run with different initial conditions: 

,8995)0( =S ,1000)0( =R )0( =HB

obtained. In particular, the ,I S  and R  

pattern demonstrates the global asymptotic stability of the endemic equilibrium when

justify the instability of the disease-free equilibrium, as cholera outbreaks occur whenever the susceptible population 

exceeds the critical value .CS It is worthy of note that Figures 1 and 4 exhibit low endemicity.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: The infected population vs. time with the initial setting: 

. This curve exhibits several epidemic oscillations and then approaches the endemic equilibrium: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: The susceptible population vs. time with the initial setting: 

0)0()0( == LH BB . This curve exhibits several epidemic oscillations before approaching the endemic equilibrium: 

665* =S over time. 
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starts to decline once the susceptible population )(S  falls below the threshold, 

drops to almost zero, meaning that the majority of the infected population have recovered and entered the 

, so that we observe a significant increase of R in Figure 3. Then I stays at zero level for the next 131 

weeks or so (almost 3 years). During this period, the value of R  gradually decreases due to the natural death of recovered 

gradually increases due to continuous birth of new susceptibles. Once the susceptible 

665, another cholera outbreak is triggered but with much lower magnitude. This 

eaks with decaying magnitudes. After about 900 weeks, the infection curve rests at the 

and R curves also converge to their endemic values, *S

respectively.Figures 4, 5 and 6 show the results of another numerical run with different initial conditions: 

0)0( =LB . We observe a very similar pattern to that which we had earlier 

 curves all approach their endemic equilibrium values after about 900 weeks. This 

pattern demonstrates the global asymptotic stability of the endemic equilibrium when 10 >R . Meanwhile, these results also 

free equilibrium, as cholera outbreaks occur whenever the susceptible population 

It is worthy of note that Figures 1 and 4 exhibit low endemicity. 

: The infected population vs. time with the initial setting: ,1)0( =I ,9999)0( =S )0(R

. This curve exhibits several epidemic oscillations and then approaches the endemic equilibrium: *I

The susceptible population vs. time with the initial setting: ,1)0( =I

. This curve exhibits several epidemic oscillations before approaching the endemic equilibrium: 
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falls below the threshold, 665=CS . After 

drops to almost zero, meaning that the majority of the infected population have recovered and entered the 

stays at zero level for the next 131 

gradually decreases due to the natural death of recovered 

gradually increases due to continuous birth of new susceptibles. Once the susceptible 

, another cholera outbreak is triggered but with much lower magnitude. This 

eaks with decaying magnitudes. After about 900 weeks, the infection curve rests at the 

665=  and 9332* =R  

respectively.Figures 4, 5 and 6 show the results of another numerical run with different initial conditions: ,5)0( =I

. We observe a very similar pattern to that which we had earlier 

curves all approach their endemic equilibrium values after about 900 weeks. This 

. Meanwhile, these results also 

free equilibrium, as cholera outbreaks occur whenever the susceptible population S 

= 0)0()0( == LH BB

6160.2* = over time. 

,9999)0( =S =)0(R

. This curve exhibits several epidemic oscillations before approaching the endemic equilibrium: 
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Figure 3: The recovered population vs. time with the initial setting: 

0)0()0( == LH BB . This curve exhibits several epidemic oscillations and then approaches the endemic equilibrium: 

9332* =R over time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: The infected population vs. time with the initial setting: 

0)0()0( == LH BB . This curve exhibits several epidemic oscillations and then approaches the endemic equilibrium over 

time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: The susceptible population vs. time with the initial setting: 

0)0()0( == LH BB . This curve exhibits several epidemic oscillations before approaching the endemic equilibrium over 
time. 
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The recovered population vs. time with the initial setting: ,1)0( =I

. This curve exhibits several epidemic oscillations and then approaches the endemic equilibrium: 

The infected population vs. time with the initial setting: ,5)0( =I )0(S

. This curve exhibits several epidemic oscillations and then approaches the endemic equilibrium over 

The susceptible population vs. time with the initial setting: ,5)0( =I )0(S

. This curve exhibits several epidemic oscillations before approaching the endemic equilibrium over 
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,9999)0( =S =)0(R

. This curve exhibits several epidemic oscillations and then approaches the endemic equilibrium: 

,8995= ,1000)0( =R

. This curve exhibits several epidemic oscillations and then approaches the endemic equilibrium over 

,8995= ,1000)0( =R

. This curve exhibits several epidemic oscillations before approaching the endemic equilibrium over 
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Figure 6: The recovered population vs. time with the initial setting: 

0)0()0( == LH BB . This curve exhibits several epidemic oscillations and then approaches the endemic equilibrium over 

time. 
 
5.0 Conclusion 
This work showed the stability of the EEP of the cholera mathematical model [10]. We showed that the positive EEP of the 
model in [10] exists and is unique where the associated reproduction number is greater than unity. The endemic equilibri
point was shown to be locally asymptotically stable while, for the special linear case, it was globally asymptotically stable
Numerically, we also demonstrated cases of low and high endemicity depending on the value of the basic reproduction 
number.  
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