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Abstract 
 
This paper investigates the construction of diagonally implicit Runge-Kutta-

Nystrom (RKN) methods for the special second-order ordinary differential 
equations (ODEs) possessing oscillatory solutions for use on parallel computers. 
The parameters in the matrix coefficients are obtained as to ensure that the 
resultant scheme has an appropriate region of stability, thus suitable for 
oscillatory problems. Numerical comparison with existing method of solving this 
type of ODEs shows its advantage. 
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1.0     Introduction 
A subject of great interest in numerous scientific areas is the integration of second-order initial -value problem. 

 
( ) ( ) ( )0 0 0 0, ,y f x y y x y y x y′′ ′ ′= = =

     (1.1) 

where : n nf × →� � �  in which f  does not depend on 'y  explicitly. The solutions of such systems are known to 
be oscillatory in nature and are frequently encountered in many fields of physics, mechanics and in other engineering 
applications.  
 A possible approach is to convert (1.1) into a first order system of ODEs and apply Runge-Kutta (RK) method. 

However, since (1.1) does not have 'y  term, great efficiency can be obtained by constructing special class of method. 
One popular class of method is the RKN method which takes the form [1, 2, 3, 4] 
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The coefficients cj,ajk,bj,
'
jb
 determines the method and they satisfy the following equation 
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The method can be compactly represented by means of the Butcher tableau 
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RKN methods can be divided into two broad classes Explicit ( )0,jka k j= ≥  and implicit ( 0,jka k j≠ ≥ ). The later 

contains the class of diagonally implicit Runge-Kutta-Nystrom (DIRKN) methods for which ( )0,j ka k j= >  and the 

ajj are equal. 
 In the literature, various DIRKN methods have been developed for the integration of the systems of ODEs (1.1) 
on one-processor computers. We mention for example, the two-stage and three-stage DIRKN methods of orders three 
and four of Sharp et. al [3], the two-stage DIRKN methods of order four of Sommeijer [5], DIRKN methods for 
oscillatory problems by Van der Houwen and Sommeijer [6], the RKN methods of orders three for solving fuzzy 
differential equations of Kanagarajam and Sambath [7]. 
 Parallel initial value problems (IVPs) solvers arise from the need to solve many substantial problems faster than 
is currently possible. The computational time on a conventional sequential machine is so large that it affects the 
productivity of scientist and engineers working on the design of complex systems.  
 In this paper, parallel diagonally implicit Runge-Kutta-Nystrom (PDIRKN) method is developed for the 
integration of special second order IVP (1.1). The choice of RKN has been motivated by the fact that, it results more 
efficient and require less storage than RK method applied to the first order system equivalent to (1.1). 
According to Burrage [8], Amodio and Brugnano [9], the development of parallelism in IVP solvers can be classified 
into three main category: 
 
• Parallelism across the method: This means the possibility of distributing the computational effort of each 

integration steps among the processors. 
 
• Parallelism across the system: This technique is via the decomposition of a problem into sub-problems which 

can then be solved in parallel with the processors communicating as appropriate 
 
• Parallelism across the steps: In which general integration steps are performed concurrently with a given 

numerical method. 
The construction of PDIRKN method for solving the IVPs associated to the special second order IVPs (1.1) in the first 
category, which is parallelism across the method is investigated is this paper. 
 
2.0  The Concept of Directed Graphs (Digraphs)  
The concept of directed graphs or digraphs was first introduced in [10]. From the model of the digraphs, the methods that 
can be parallelized are easily identified. 
A digraph is a graph in which each edge has an orientation or direction assigned to it. It can be pictured like a graph with 
direction of an arc indicated by an arrow. The digraph models the sparsity pattern of matrix A. Table 1.1 gives four 

examples of sparsity pattern of matrix A and their digraphs [11,12]. The RKN array { }
, 1

s

jk j k
a

=
 represents the 

coefficients of the matrix method A  where x and 0 are used to denote non-zero and zero coefficients of A respectively. 
In plotting the digraph, each arrow in the corresponding “production graph”, pointing from vertex “k” to vertex “j” stands 

for a non-zero jka
. For example, in Table 1.1, for method I, stages one and two can be computed together independent of 

stages three and four in parallel. Thus, the four stages can be evaluated at the same time as two stages in serial 

architecture. Here 1
q

 and 2q
 denote the first and the second processor respectively 
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Table 1.1 RKN Matrices and Digraphs 

Method Runge –Kutta –Nystrom Matrix

I.  

 

II.   

 

III.   

 

IV.   

 

 In method II of Table 1.1, it is possible to evaluate the first two stages which are independent of each other in parallel 
with two processors. The remaining stages that are mutually independent, though they depend on the preceding stages 
can again be calculated in parallel. The method is a four
we easily extend parallelism to RKN method.
The stability of (1.2) is investigated using the test equation

2 ,y yω ω′′ = − ∈�
 

Application of (1.2) to (2.1) yields the following relation. 
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The matrix )(zR  which determines the stability of the method is called the amplification matrix. Following [6], we 

introduced the functions 
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Nystrom Matrix Digraph 
 
 
 

 

 

 

 

In method II of Table 1.1, it is possible to evaluate the first two stages which are independent of each other in parallel 
with two processors. The remaining stages that are mutually independent, though they depend on the preceding stages 

culated in parallel. The method is a four-stage two-parallel and two-processor method. Based on [11, 12], 
we easily extend parallelism to RKN method. 
The stability of (1.2) is investigated using the test equation 

  (2.1)  
Application of (1.2) to (2.1) yields the following relation.  
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which determines the stability of the method is called the amplification matrix. Following [6], we 
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In method II of Table 1.1, it is possible to evaluate the first two stages which are independent of each other in parallel 
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( )s z  and ( )p z  with ( )s z = trace ( ( )R z )  and ( )p z = det ( ( )R z )    

The characteristic equation corresponding to (2.2) is of the form   

 2 ( ) ( ) 0s z p zζ ζ− + =        (2.3) 

An essential property for computing periodic motion of (1.1) is the situation where the eigenvalues  2,1ζ  are on the unit 

circle. 

Definition 2.1 (Periodicity Interval [6]):An RKN methods has periodicity interval ( )0 , 0zI z=  if the roots of its 

characteristic equation 2,1ζ  are on the unit circle and 1 2 0, ( , 0),z zζ ζ≠ ∀ ∈  is called the stability boundary. 

 
3.0 Construction of the PDIRKN Method 
This section describes the construction of PDIRKN methods for solving the special second order IVPs (1.1). The method 
introduced are constructed by imposing that the matrix A be block lower triangular with diagonal blocks which 

themselves are diagonal. In this way, the system (1.2b) is decoupled into m independent systems of order p that can be 

executed in parallel using q -processors so realizing parallelism in the stage computation.  
This paper considers five-stage, two-parallel, and two-processor fifth order method. The method has the sparsity pattern 
shown in Figure 3.1, 
 
 
RKN Matrix Digraph 

0 0 0 0

0 0 0 0

0 0

0

0

× 
 × 
 × × ×
 × × × × 
 × × × ×   

 

Figure 3.1:  5-Stage PDIRKN Matrix and Digraph 
 
where the symbol × denotes a non-zero element. Then, stages 1 and 2, and stages 4 and 5 can each be computed 
concurrently. The following order conditions are needed to be satisfied after making use of two basic simplifying 
assumptions [2, 13, 14] 
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simplifying assumptions: 

21
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( )' 1 , 1,...,j j jb b c j s= − =   (3.10) 

where the sums on i and j are from 1 to s respectively. 
Consider the PDIRKN method by allowing the RKN matrix to be block lower triangular with diagonal blocks which are 

themselves diagonal. That is 11 44a a= and 22 55a a= . 

Considering (3.10), we have to satisfy thirteen equations in twenty-one unknowns, thus we have eight free parameters. 
The Butcher tableau of the 5-stage diagonally implicit PRKN method is 
 
Table 3.1: The 5-Stage PDIRKN Method 
 

1c 11a
 

  2c
0    22a

 

  3c 31a 32a 33a
 

  4c 41a 42a 43a 44a
 

5c 51a 52a 53a
       0   55a

 

   1b 2b 3b 4b 5b
 

1b′ 2b′ 3b′ 4b′ 5b′
 

 

Let 1 2 3 4 5 33 42 52, , , , , , ,c c c c c a a a
be our free parameters and the process in the derivation of the method is the 

following: 
1.   Solve equation (3.1) – (3.4) and (3.6) to obtain 
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2. Using the simplifying assumption (3.9), solve for 11 22 31 41, , ,a a a a
 and 51a
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3. Then solve for 32 43,a a  and 53a  using (3.5), (3.7) - (3.8) and obtained
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  The above steps combined with a symbolic manipulation package, help us to derive all the coefficients, explicitly in 
terms of the free parameters. Since this is achieved, the choice of the free parameters follows.  
The free parameters can be used to get an optimal method minimizing the norms of the truncation error constant of the 
sixth order formula [14] given by 
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 are the error equations associated with the method. Thus we have the truncation error constant 

for this method as, 
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i i j i j

b c b c a c b a cτ τ τ τ τ τ= = = − = − = = −∑ ∑ ∑
 

'(6) '(6) '(6) 4 '(6) '(6) 2 '(6) 2
1 2 3 4 5 6

, ,

'(6) '(6) '(6) 3 '(6)
7 8 9 10

, , ,

1 1 1
, , ,

6 36 72

1 1
,

24 720

i i i i ij j i i ij j
i i j i j

i ij j i ij jk k
i j i j k

b c b c a c b c a c

b a c b a a c

τ τ τ τ τ τ

τ τ τ τ

= = = − = = − = −

= = = − = −

∑ ∑ ∑

∑ ∑
 

 
Substitute the solutions obtained above into (3.11) and minimize using the Mathematical package subject to bounds,

0 1, 1,2,3ic i≤ ≤ =
, 4,5 to choose the values for  the free parameters. The resulting 5-stage order 5 PDIRKN method, 

is expressed in Butcher tableau form 
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Table 3.2: The Coefficients of the 5-Stage PDIRKN Method 
 
9

10

81

200  

  

1

10

1

200  

  

22

25

74986

187500

23408

62500
− 2

15  

  

3

5

4798

7605
− 17

20

38042

60840

81

200  

  

2

5

264615

438360

21

40

266588

438360
−

         0           

1

200  

 b

281

1080

13

60

1711

7020

625

19656

26

105 

b’

13

600

1711

7800

25

6552

52

525

281

1800 
 
We examine the stability interval of the method by using (2.2) and obtain the amplification matrix given by 

( )
2 3 4 5 2 3 4 5

2 3 4 5 2 3 4 5

63 17 207 3 1471 91 41 39 8
1 1

200 125 5000 200 2500 2500 500 1250 625
1 541 79 77 3 417 251 17 4 1

1
2 2500 1250 5000 500 2500 5000 1250 625 250

z z z z z z z z z z
R z

z z z z z z z z z z

 + + + + + + + + + + 
=  
 + + + + + + + + +
    

A boundary locus plot of R(z) gives the  stability interval of approximately 
( 2.4,0)− . The stability region of the 5-stage PDIRKN method is shown in figure 3.2, where the stability region lies 
inside the boundary. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2: The Stability Region for the 5-Stage PDIRKN Method 
 
4.0 Numerical Examples 
We present the results obtained by applying the PDIRKN method in Table 3.2 and a reference method to some test 
problems. The method was implemented sequentially since parallel computers were not readily available.  It was 
implemented on Pentium IV using MATLAB 7.5 software. Also, as there is no other fifth order PDIRKN method, we 
compare the “New method” derived in this paper with the SDIRKN method of Franco et. al [15]. This later method will 
be referred to as “FGR method”.  
The following are the two test problems considered and their computed results are shown in Table 4.1 and 4.2 
respectively. The notations used are as follows: 
 
New Method: The PDIRKN Method obtained in Table 3.2 
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FGR Method: SDIRKN method of Franco et. al [15] 
h: Step size 
FCN: the number of functions evaluations 
Step: the number of steps 
 

Emax: max|| ( )n ny y x− ||, that is, the absolute value of the computed solution  
             minus the exact solution. 
 
Problem 4.1 
Consider the Duffing equation: 

3 1
'' cos(1.01 ) , (0) 0.20042678067, '(0) 0

500
y y y x y y= − − + = =

 
  The exact solution of the nonlinear problem is given as 

6

9

( ) 0.200179477536cos(1.01 ) 0.00246946143cos(3.03 ) 0.304014.10 cos(5.05 )

0.374.10 cos(7.07 )

y x x x x

x

−

−

= + + +

 
Source: Qinghong and Yongzhong [16] 
Problem 4.2  
Consider the “test-like equation” with double frequencies, which is  

2( ) ( ) 12cos( ), (0) 1, (0) 0, [0, 10 ]y x y x x y y xω π′+ = = = ∈  
The exact solution of the problem is  

1
( ) (cos(5 ) cos( ))

2
y x x x= + , set 5ω = . 

Source: Wang [17].  
 
Table 4.1: Numerical Results for Problem 4.1 

 Method h FCN Steps Emax 
New Method 
FGR Method 

    0.1    18740   
   14992 

  3748 
  3748 

4.3579481799X10-01 

3.9859488172X10-01 

New Method 
FGR Method 

   0.05    37480 
   29984 

  7496 
  7496 

1.3799580621X10-02 

3.9840695984X10-01 

New Method 
FGR Method 

  0. 02    93700 
   74960 

 18740 
 18740 

6.8355067142X10-03 

3.9835333766X10-01 

New Method 
FGR Method 

 0.01   187405 
  149924  

 37481 
 37481 

5.2474479606X10-03 

3.9835773762X10-01 

New Method 
FGR Method 

 0.002    374810 
  299848  

 74962 
 74962 

4.5960355578X10-04 

3.9834589432X10-02 

 
Table 4.2: Numerical Results for Problem 4.2 

 Method      h FCN Steps Emax 
New Method 
FGR Method 

    0.04    3925   
   3140 

  785 
  785 

8.4060967436X10-01 

1.7037935366X10+00 

New Method 
FGR Method 

   0.02    7850 
   6280 

  1570 
  1570 

3.7531904192X10-01 

1.6903562761X10+00 

New Method 
FGR Method 

  0. 01    15705 
   12564 

  3141 
  3141 

9.3114750249X10-02 

1.4810039191X10+00 

New Method 
FGR Method 

  0.004    39265 
   31412 

 7853 
 7853 

7.9878530503X10-02 

1.9044356947X10-01 

New Method 
FGR Method 

 0.005   284155 
  227324  

 56831 
 56831 

8.5945987496X10-03 

1.7551432789X10-01 

 
We decided to use the usual test based on computing of the maximum global error over the whole integration interval, 
because it gives a more significant measure of efficiency. As it can be observed in Table 4.1 and Table 4.2, the numerical 
results show that the new method performs compares in performance for the integration of the special second order IVPs 
(1.1) with oscillatory behaviour in terms of global error compared to FGR method. Hence, the new method is suitable for 
the integration of the IVPs (1.1). 
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5.0 Conclusion 
This paper has examined the construction of PDIRKN methods for the integration of the special second order IVPs (1.1) 
on parallel computers. 
The method introduced is constructed by imposing that the matrix A be block lower triangular with diagonal blocks 
which themselves are diagonal. In this way, the system (2.2) is decoupled into m independent systems that can be solved 

in parallel using q -processors, so realizing parallelism in the stage computation. The method considered is a 5-stage, 
two-parallel, two-processor fifth order. Also, the derived method has an appropriate region of stability, thus suitable for 
oscillatory solutions. 
Numerical experiments were performed using a sequential computer compared with the method of Franco et. al [15]. 
From the magnitude of the maximum error, we may conclude that the new PDIRKN method is more promising compared 
to the existing method Franco et. al [15]. We mention also that PDIRKN method is cost-optimal. 
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