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Abstract 
 
In this paper, a multistep collocation technique is used to develop a 3-point 

hybrid block method for the numerical integration of Initial Value Problems (IVPs). 
The derivation of the block method is based on collocation of the differential system 
and the interpolation of the approximate solution at the grid and off-grid points. The 
approach is used to obtain Multiple Finite Difference Methods (MFDMs) which are 
combined as simultaneous numerical integrators to form the proposed block method. 
The individual schemes of the block method are investigated and found to be 
consistent, zero-stable and hence convergent. The proposed hybrid block method is 
tested on some standard IVPs to illustrate the accuracy and desirability of the new 
method. 
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1.0     Introduction 
Consider the initial value problems 

),( ytfy =′ , 00 )( yty = , bxa ≤≤    (1.1) 

with  ., ℜ∈fy  

 Numerical methods for parallel solution of the IVPs as in (1.1) are well established techniques in literature. One 
such technique is the block method which by means of a single application of a calculation unit yields a sequence of new 
estimates fory .  The numerical methods for the solution of equation (1.1) are called multistep methods if the value of )(ty   

at 1+= ntt  uses the values of the dependent variable and its derivative at more than one grid or mesh points. The whole idea 

is about seeking a solution of (1.1) in the range[ ]ba, , where a  and b  are finite. 

 Development of LMM for solving IVPs can be generated using methods such as Taylor’s series, numerical 
integration, and collocation method, which are restricted by an assumed order of convergence [1]. In this paper, a multistep 
collocation method introduced by Onumanyi et al. [2-6] is followed. In the last two decades a number of papers have 
appeared on this topic, prominent among these numerical analysists include Lambert and Shaw [7], Fatunla [8-9], Fatokun et 
al. [10], Awoyemi [11] and Areo et al. [12-13]. 
 Block methods for solving ODEs have initially been proposed by Milne [1] who used them as starting values for 
predictor-corrector algorithm, Rosser in Milne [1] developed Milne’s method in form of implicit methods, and Shampine and 
Watts [14] also contributed greatly to the development and application of block methods. Fatunla [8] gave a generalization to 
block methods using some definition in matrix form upon which the methods derived in this paper will follow Onumanyi 
et.al [2-6]. Following Onumanyi et.al [2-6], we identify a Continuous hybrid Formula (CHF) through the addition of one or 
more off-grid collocation points in the Multistep Collocation (MC). The CHF is evaluated at some district points involving 
step and off-step points along with its first derivative, where necessary, to obtain multiple discrete hybrid formulae for a 
simultaneous application to the ODEs with initial conditions called hybrid block method.  
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2.0 The Method 
In this section we discussed the development of continuous scheme and its discrete schemes using Sirisena [15-18] where a 
K-step multistep collocation method with m collocation points was obtained as follows: 
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are the continuous coefficients of the method and  xn+j, j = 0, 1...t-1 in (2.1) are t (0<t≤ k) arbitrary chosen interpolation points 

from (xn, … xn+k) and   jx , j = o, 1…, m-2 are the m collocation points belonging to  {xn…, xn+k}. 

To determine αj (x) and βj (x), we use a matrix equation of the form 
  DC = I         (2.4) 
Where, 
I is an identity matrix  
While D and C are the matrices defined as in [2]. 
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The columns of the matrix C = D-1 consists of the continuous coefficients, i.e.  
 αj(x);  j =o, 1…k-1 and  βj (x);  j = 0, 1…. k-1. 

In this paper k = t = 3, m = 6, x o = xn,  x n, x 1= xp+1, x 2 = xn+2.  Then equation (2.1) becomes 
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Thus, the matrix D in (2.5) becomes 
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We obtained C =D-1 in (2.8) to determine αi(x); i = 0(1)2 and   hβi (x); i = 0, 1, 2, 3, 5/2 in (2.7) as follows: 
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 Putting equations (2.9) – (2.16) into equation (2.7), we obtained a continuous scheme. 
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On evaluating (2.17) at x = xn+3,
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obtained the following six discrete equations.  
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3.0 Analysis and Implementation 
In this section, discussion of local truncation error, error constant, order, zero-stability and implementation of the method was 
made. 
3.1 Local Truncation Error and Order 
Following Fatunla [8-9] and Lambert [19-21], local truncation error associated with (2.7) was defined to be the linear 
difference operator 
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Assuming that )(xy is sufficiently differentiable, one can expand the terms in (3.1) as a Taylor series about the point x  to 
obtain the expression 
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According to Henrici [22], we can that the method (2.7) has order p if 
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It is established from our calculations that the six schemes (2.18)-(2.23) have order 7 with error constants 1+pC as follows: 
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3.2 Zero-stability 
In order to analyze the method for zero-stability, equations (2.18)-(2.23) were written as a block method given by the matrix 
difference equation 
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for L,1=µ and L,1,0=n and the matrices )0()1()0( ,, BAA and )1(B are 6 by 6 matrices whose entries are given by the 

coefficients of equations (2.18)-(2.23). 
It is worth nothing that zero-stability is concerned with the stability of the difference system in the limit as h tends to zero.  
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Thus, as ,0→h  the method (3.4) tends to the difference system  

01
)1()0( =− −µµ YAYA          (3.5) 

whose first characteristic polynomial )(Rρ  is given by 

)1()det()( )1()0( −=−= RRARARρ        (3.6) 

Following Fatunla [8-9], the block method (3.4) is zero-stable, since from (3.6), 0)( =Rρ satisfy 2,1,1 =≤ jR j  and for 

those roots with 1=jR , the multiplicity does not exceed 1. The block method is consistent as it has order .1>P  

According to Henrici [22], I can safely assert the convergence of my block method (3.4). 
 
3.3  Implementation   
This method is implemented more efficiently by combining discrete schemes (2.18)-(2.23) obtained as simultaneous 
integrators for IVPs without requiring starting values and predictors. The procedure is by obtaining initial conditions at 
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gotten over the sub-interval [ ],, 43 xx  as 21, yy  and 3y  are known from the previous block, and so on. Hence, the sub-

intervals do not overlap and the solutions obtained in this manner are more accurate than those obtained in the conventional 
way. 
 
4.0  Numerical Experiments 
In this section, four numerical examples were given to illustrate the accuracy of the block method. The absolute errors of the 

approximate solution on the partition Nπ  as )(xyy −  were found. The errors arising from the computed and theoretical 

values were compared with Areo et. al [2] –[3] as shown in Tables 1, 2 and 3 below. 
Example 4.1 
 0.1 h  1,x0 1,y(o)  -y,y =≤≤==′  

 y(x) = e-x 
Example 4.2 
 0.1 h  1,x0 ,0y(o)  y,-xy =≤≤==′  

 y(x) = x + e-x –1 
Example 4.3 
 0.1 h  1,x0 ,2y(o)  1,x)-(8y =≤≤=+=′ y  

 y(x) = x + 2e-8x 

 
Example 4.4 
Considering the discharge valve on a 200-gallon tank that is full of water opened at time 0=t  and 3 gallons per second 
flow out. At the same time 2  gallons per second of 1 percent chlorine mixture begin to enter the tank. Assume that the liquid 
is being stirred so that the concentration of chlorine is consistent throughout the tank. The task is to determine the 
concentration of chlorine when the tank is half full. It takes 100 seconds for this moment to occur, since we lose a gallon per 

second. If )(ty  is the amount of chlorine in the tank at time t , then the rate chlorine is entering is 
100

2
 gal/sec and it is 

leaving at the rate ]
200

3[
t

y

−
 gal/sec. 

Thus, the resulting IVP is 
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whose analytical solution is 
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4.1    Analysis of Results 
The comparison of the accuracies of the block method for the numerical examples 4.1-4.4 are shown in the tables below. 
Table 1: Comparison of Errors for Example 4.1 

X Areo et. al [2] Proposed Method 

0.1 2.10 x 10-10 3.20 x 10-12 

0.2 2.20 x 10-10 4.30 x 10-12 

0.3 6.00 x 10-10 6.00 x 10-12 

0.4 1.00 x 10-10 6.00 x 10-12 

0.5 4.10 x 10-9 3.10 x 10-10 

0.6 7.00 x 10-10 6.00 x 10-12 

0.7 1.50 x 10-9 2.30 x 10-10 

0.8 7.00 x10-10 8.00 x10-12 

0.9 1.40 x 10-9 4.10 x 10-10 

1.0 8.00 x 10-10 9.00 x 10-12 

 
Table 2: Comparison of Errors for Example 4.2 

X Areo et. al [2] Proposed Method 

0.1       0.00       0.00 

0.2       0.00       0.00 

0.3 6.00 x 10-10 3.00x 10-11 

0.4 2.00 x 10-11 1.00 x 10-12 

0.5 7.00 x 10-10 2.00 x 10-12 

0.6 1.00 x 10-10 0.00 

0.7 8.00 x 10-10 3.20 x 10-13 

0.8 2.00 x10-10 4.00 x10-12 

0.9 9.00 x 10-10 4.25x 10-13 

1.0 4.00x 10-10 0.00 
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Table 3: Comparison of Errors for Example 4.3 

X Areo et. al [2] Proposed Method 

0.1      1.70 x 10-5     3.50 x 10-6 

0.2      1.60 x 10-5     2.50 x 10-6 

0.3      9.30 x 10-6     7.00 x 10-7 

0.4     4.60 x 10-6     5.00 x 10-7 

0.5     1.80 x 10-6     3.20 x 10-7 

0.6     4.20 x 10-7     5.60 x 10-8 

0.7    1.80 x 10-7    6.00 x 10-8 

0.8    2.30 x 10-6    4.00 x 10-7 

0.9    3.80 x10-7    8.00 x10-8 

1.0    3.20 x 10-7    7.50 x 10-8 

 
Table 4:Comparison of Errors for Example 4.4 

t Areo et.al [3] Proposed Method 

0.1       0.00      0.00 

0.2       0.00     0.00 

0.3     2.40 x 10-11     4.40 x 10-13 

0.4     2.40 x 10-11     4.40 x 10-13 

0.5     2.40 x 10-11     5.00 x 10-13 

0.6     3.00 x 10-11     6.00 x 10-13 

0.7     3.00 x 10-11     3.00 x 10-14 

0.8     3.00 x 10-11     3.00 x 10-14 

0.9     3.00 x 10-11     3.00 x 10-14 

1.0     3.00 x 10-11 3.0 x 10-14 

 
5.0 Discussion/Conclusion 
A collocation approach which produces a family of order seven discrete schemes has been proposed for the numerical 
solution of first order initial value problems. The errors arising from Problems 4.1-4.3 using the proposed method were 
compared with those obtained by Areo et. al [12] who earlier solved the same problems while the errors arising from Problem 
4.4 were compared with Areo et.al [13]. 
A close look at the tables presented above reveal that the newly proposed method perform better than those compared with. 
The method is also desirable by virtue of possessing of high order accuracy.  
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