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Abstract

In this paper, we use the Conventional Finite Difince Approximation schemes
of the first and second order derivatives of a fuimn to examine and analyze the
effect of varying step-size in finite approximatiolVe then use these finite difference
quotients to solve some differential equation prefrs using different values of step-
size to help establish the effect of varying stépeson the approximated solution. The
technique is illustrated using an Excel (Spreadshegackage.

1.0 Introduction

The use of simple operations to find approximatieitams to complex problems constitutes the maial gif numerical
analysis. Solutions to differential equations abgamable by analytical or numerical methods, haevewhere differential
equations defy solution analytically, approximatéusons are often obtainable by the applicatiomaierical methods [1].
Most Differential equations are not too complicatede solved by an explicit analytical formuldeyg the development of
accurate numerical approximation scheme is essefotiaboth extracting qualitative information as livas achieving
understanding the behavior of the solutions [2-dirérical Methods for solving ordinary differenteduations depend on a
step-size K, since the truncation error goes to zerchgees to zero, atleast for nice problems. Stepsizald be limited
only the number of steps we have time to take, ewes step—size decreases and the number ofistepase, arithmetic
error also increases. In this paper, we solve sdifferential equations using small and smallepstizes comparing the
solutions to see if they are converging. A numbfeother works considering the effect of step-simenmmerical solution
exits (see [5-7]).

2.0 Methodology

2.1 Description of Step-Size

Suppose we are solving = f(t,u)on [0,T] and we are using a method of orgére the error in our approximation for
u(T) is bounded by some constant tinsSolve usin@" steps, sti=2""T and letUy, denote the solution.

Assume that only is the error bounded by a multgflé® but that for small enough the error is approximated equal to a
constant time&P. that is assume

U(T) — Uy(T) = ch? 1.1
Let
Dy - Uy(T) — Uy_1 (T) (1.2)
~(UT) —c @M T)P) - (UT) —c(2-%-971)") (1.3)
= 27PN (2P —1)cTP (1.4)
Dy_y 27PN (2P — 1)cTP

Dy 2°PN(2P — TP (1.5)
And so

_ln | Dy—-1/Dyl - 16
NE— o, FP (1.6)

The derivation betweeRy andp gives a measure of how the method is convergigpically, Ry gets closer t@ while the
method is becoming more accurate and then deviaterf as the error starts increasing due to accumukaidtmetic error.
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2.2 Description of the Conventional Numerical Methods
Let consider
u(x+h) —u(x
% ~ yu® (1.7)
Used to approximate the first derivative of thediion U(x). Indeed, if it is differentiable at x, ther{x) is by definition the
limit ash—0 of the finite difference quotients, where h is #iep-size which may be either positive or negdiivt is assume
to be small | h| « 1. wherh> 0 egn (1.7) is refer as forward difference schemmde h< 0 eqgn (1.7) gives backward
difference scheme [2,3]
Assume that u(x) is atleast twice continuouslyeatiéhtiable, and examine the first order Taylopamsion

u(x+h) =ulx) +u'(x)h + %u”(é)hz (1.8)

We have used Cauchy form for the reminder ternnhich € represents some points lying betweeandx+h. the Error and
the derivative being approximated is given by

u(x + h) —u(x) , 1

W =5u(Oh (1.9)
Since the Error is proportional Ip we can re-write the equation as

+h) —

() = A& )h @ L om (1.10)
This is a first order approximation.
We again approximate” (x) by samplingu at the particular points, x+ h, x-h.Which combination of the functions values
u(x-h), u(x), u(x +h) are used.
We expand the functiongx-h), u(x), u(x + h) using Taylor expansion as shown

u(x+h) =ulx) +u' (x)h + %u"(x)h2 + %u"’(x)h3 +0(h*) (1.11)

u(x—h) =ulx) —u (x)h + %u"(x)h2 - %u"’(x)h3 +0(h*) (1.12)
Adding the two formulae (1.11) & (1.12) togethemive

u(x + h) + ulx — h) = 2ux) + u"(x)h? + 0(h*) (1.13)

Re-arranging terms, we conclude that

u(x+h) —2u(x)+ulx—nh
u'(x) = ( ) h(z) ( ) + 0(h?) (1.14)

The result is known as the central difference appmation of the second derivative of a functionnc the Error is

proportional tch®, we conclude that this is a second order apprdioma

We also reconsider the first order approximatioeduation (1.10) based on the function valuesragtpoints x, x+#h, & x-

h, to find the approximate combination ufx- h), u(x), u(x+ h), we return to Taylor Expansion (1.12) & (1.13d solve for

u'(x), we subtract the two formulae and so

h3
u(x+ h) —ulx —h) =2u'(x)h + u"(x)§ + 0(h*) (1.15)
Re-arranging the terms, we are lead to the welirakdifference formula
ulx +h) —u(lx —h)
u'(x) = oh + 0(h? (1.16)

This is a second order approximation to the fiestuhtive

4.0 Numerical Examples
Example 1 Let u(x) = sinx
Analytical Solution: u'(1) = cos1 = 0.5403023
But by computing with finite different quotients
u(x+h)—u (x)

h
1~ sin(1 + h) — sinl

u'(x) =

< COS

Considering different values oh* the results are presented in table 1, the reseltoltained using Microsoft Excel
Package.
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Example 2 Let u(x) = e*
Analytical solution: u”(x) = (4x2 + 2) e*”
~u" (1) = 6e = 16.30969097
Using the finite difference quotient (1.14) above
ulx + h) — 2u(x) + u(x — h)
h2
e(+)? _ 9, + e(1-1)?
hZ
The results are listed in table 2, using diffensdties of step sizéh®
Example 3. Let u(x) = sinx
Analytical solution:u'(x) = cosx
u'(1) = cos1 = 0.5403023
Using finite different quotient (1.15)
u(x +h) —u(x —h)

ull(x) ~

6e =

u'(x) =
1 sin(1+ h) —sin(1 — h)

<~ COS

2h
Considering using different values df*the results are listed in the table 3

Table 1: Numerical Results of Example 1 obtained ursg different values of “h”

h 1 0.1 0.01 0.001 0.0001
Approximate 0.067826 0.497364 0.536086 0.539881 0.540260
solution
Error -0.472476 -0.042939 -0.004216 -0.000421 -0.000042
Table 2: Numerical Results of Example 2 obtained ursg different values of “h”
h 1 0.1 0.01 0.001 0.0001
Approximate 5.16158638 16.48289823 16.31141265 16.30970819 0969315
solution
Error 33.85189541 0.17320726 0.00172168 0.00001722 00DA@0
Table 3: Numerical Results of Example 3 obtained ursg different values of “h”
h 0.1 0.01 0.001 0.0001
Approximate 0.539402254217 0.54029330087 0.5403221582 0.5403973
solution
Error -0.0090005370 -0.00000900499 -0.00000009005 -0 @OTBO90
5.0  Analysis and Discussion of Results

We observed in table 1,that reducing the step ‘Sizédoy a factor 0% reduces the size of the error by approximately the
same factor in example 1. Thus, to obtain 10 digituracy we anticipate needing a step size of alvoutO *LIn table
2,each reduction in step size™by a factor 0% reduces the size of the error by approximately thetorl—(lm, results is a

gain of two new decimal digits accuracy, confirmitngt the finite difference approximation is of @ad order . In table
3,The results are much more accurate than theided-gnite difference approximation used in examplat the same step-

size, since it is second order approximation, aachuction in the step size by a factorﬁfresults in two more decimal
places of accuracy.

6.0  Conclusion
This study examines the effect of vary step siz¢henapproximated solution, it is interesting teetved that reducing step
size also reduces the size of error by approximypalel same factor, in case of first order numerggadroximation scheme as

seen in tablel, but in case of second order nualeajgproximation reducing the step size by a fa(%orwill reduces the
error by a factor ﬁ as seen in table 2. Now we can conclude that #wral difference approximation is a better
approximation scheme than one-sided finite diffeeescheme as seen in table 1,2, & 3.
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Where the errors produced in solving Example 3 qugsiantral difference approximation scheme gain hew decimal
points, which make it more accurate than one-siiétg difference approximation used in Examplet the same step- size.
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