Journal of the Nigerian Association of Mathematical Physics
Volume28, No. 1(November, 2014 pp 103 — 114
© J. of NAMP

Modified Kutta’s Algorithm

Agbeboh G. U and Ehiemua Mike
Department of Mathematics, Ambrose Alli University, Ekpoma, Edo State, Nigea.

Abstract

In this paper a modified Kutta’'s Algorithm is derdd through a tactful
application of a geometric progression and binomiekpansion for rational powers.
The new method is constructed from the traditionKutta’s formula, a one-step
explicit method for the solution of initial value nblems (IVPs) in ordinary
differential equations.(ODES)

The performance of the new formula is test by nurivat computation of some
selected IVPs and the results compares favourabiyh those from three other
existing Runge-Kutta Methods It has also been prdvwbhat the method is absolutely
stable, convergence, consistence anda very fastpding time.

Keywords: modified Kutta algorithm, Initial value problemdinary Differential Equations and stability.
2010 Mathematical Subject Classification: Prim@By.20; Secondary 65L06

1.0 Introduction
Here we present a modified Kutta algorithm

h
Y1 ™ Ya :Z(\/klkz +tk,+k;+ ké<4)- (1.1)
through a geometric root mean and a binomial psfoeshe numerical solution of initial value protris
y'=f(xy),y@s=nasxsb, (1.2)

whose solution functioy’ ([a,b — R], where a and b are finite. The literature presgrtere shows various one-step

schemes in existence in the area, see [1],[2Bn[B][4] respectively,where it has been stated ghatimerical method
becomes useful only when it has properties likesist@ncy, convergence and stability inherent iAlgo,a one-step method
is said to be consistent, if the difference equmatibthe computation formula exactly approximates differential equation it
intends to solve [5].We are encouraged by the vedr§6] and[7, 8] to investigate the efficiency afiromethod because of
their various contributions in error analysis. dishbeen noted that bounds for the local truncationelo not form a suitable
basis for monitoring local truncation error withvi@w to constructing a step — control policy simita that developed for
predictor- corrector methods [7, 9]. He said whatneed, in place of a bound, is a readily compatabtimate of the local
truncation error, similar to that obtained by Mimelevice for predictor- corrector pairs. One otlsus the Richardson
extrapolation [10]. Under the usual localizing asptionthat no previous errors have occurred,se\srel estimates exist
for the general one-step method defined by;

yn+1 _yn = h(dxn'yn'h)
R
h(x,, Yo, 1) = 2 6k

(1.3)

i=1
k = hf (xn +ch,y, +Zaﬂkjj,c, =0,=123,.r.
=

‘ (1.4)
i-1

a=>h, 0,i=23,.R

=1
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r
Yorr = Vi +ZV\l,kj -(1.5)Where the parametets, &; and W are arbitrary. For the purpose of linearity, we chee
t+1
modify the above parameters as folloysiy, bs1=a, by,=as, b= ay,bs=a, and hz=asWe shall highlight two of the well
known fourth order Runge- Kutta Formulae (RKF)ttoe purpose of clarity as follows:
a) Classical RKF,

Vo = %o = (ki + 2+ 2, 4K o

and
(b) Kutta’s formula given as:

h
Yo = Ya :g(k1+3k2+3k3+k4) (1.7)

Equation (1.6) has widely been research into wittdue attention paid to (1.7) hence our intereshislass (b) which
represents the original Kutta formula. An approdefreloped first and tested in [11], where a n&hotder Runge- Kutta
method was carved out of the existing forth ordassical Runge-Kutta method of (1.6). The classitiahge-Kutta method

is based on Arithmetic mean fé¢ [J i =1, 2,3nd 4 also called a one-Sixth Runge-Kutta method beciuseerages out

to six components. On the other hand, [12] useGhemetric root mean fdﬁ i =1,2,3and 4to develop a One-third
Kutta formula which averages to three components.the definition of these properties see [7, &8[48], Where it was
said that the local truncation error §t,, of the general explicit one —step method giveryhy — Y, = hg(X,, Y, ,h) (1.8)
Is defined by

T = Y(X,.0) — Y(X,) —heX,, Y(X,),h) (1.9)and y(X) is the theoretical solution of the initial valueoplemwhere,

the order p and the error consteﬁ{,ﬂ of (1.1) is obtain from the given local truncatiemor. Applying this definition to our

discussion, the rounding off error will be ignoteetause we shall adopt the Richardson’s extrapalatiocess of estimating
the discretization error. This method is usefutafculating global (not local) truncation error.

2.0 Derivation of the method:

This paper discusses thederivation of the new Kstteeme by means of binomial processes in line[1di{h where he
derived a one-third Runge-Kutta using geometric rmaa against the traditional fourth order Runget&uwthich is an
arithmetic progression in nature. Generally, atRge Kutta method is defined by;

yn+1 - yn = hﬂxn!yn ,h)
R
A, Youh) = D gk
k.= f(xy) (2.2) Yoy = Yy + O WK;.

i=1 t
k =hf [xn +ch,y +Zaﬂkjj,q =0,i=12,3,..r.
=1

i-1

a1 :Zhj i:2,3,..R

=1
(2.2)

. and w _ o :
where the parameter(s;;,, 3 "are arbitrary. For the purpose of linearity, we ez modify the above parameters as
followshy1=ay, bs1=ap, s=as, b= &, bs=as, and k=2

h
Yorr = Yn = g(kl +3K, + XK;+k,)

Journal of the Nigerian Association of Mathematic&hysics Volume 28 No. 1, (November, 2014), 1034 1
Modified Kutta’s Algorithm... Agbeboh and EhiemuaJ of NAMP

104



Yo=Y, = h(t/kk ko, + kg JkK). 2.3)

k= (X, ¥,) (2.4)
k, =f(x,+ha,y, +hak) (2.5)
ky = T(x, +ha,, y, +h(@ak, +ak,)) (2.6)
k, = f(x,+ha,,y+h(ak, +ak,+ak)) (2.7)

In order to find the values of the parameters i tight hand side of the equation (2.4) to (2.7) wdopt the general

principles of Taylor series to derive the functibvaues ofki Susing equations (2.1)-(2.2), starting with

k= (X, ¥) =Y,
(2.8a)
k, =L+ha,f, + - aikf +h a%ef, (2.8b)
— 2 2 h’ 2,2
k; =k, +h(a, +a,)k,f, +h*aakf, +7(a2+ a) kif,
(2.8¢)
h3 2 h 3,3
+?a1a3(a1+2(a2+a3))k1fyfw+ 6(a2+a3) K3f,,
k, =k +h(a, +a;+a,)k,f, +h* (aps+aa,+a))k
h . , (2.8d)
+?(a135 + ae(az tagt Zazas))(aﬁs"' ae(a .t a 3)k 1f
3
+h*aa;ak, f,° +%(a4 +ag+a,) Kif,
3
We introduce the binomial expansion of(1+ x)/]/Z 1+§—% +%— (2.9a)
1
By settingy kK, = f (1+ x)?, (2.9b) wherekk, = f*(1+x),
K,
k;Z -1 (2.9¢)
Now substituting for x in the binomial expansiore have
klk 1 kKk, 1 kk
k H-—= 1 1y .. (2.10)
ks 2f2)8f2)216f2)3
Which Simplifies to
,/k—lhf 2k, f il alk’f hzzf %f, f h” ajf’. (211)
k12—+§a1y a1 wt o 1Wy—8aly a w tafy @

Similarly,
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h* h®
k, =1+haf, +Ea1k1fyy +—a

Lt

(2.12)

3
o=k (e +a)kf, +aak )+ fataro(agiraaa i, 213

2 3
+h7(a2 + a3)2 k f, +%(a2 + a3)3 kif,, +...
Finally,

k.k, :1+g{(a2 +a,)+(a,+as+ag)f,

+h_82{4(alag+a1as)+4a6(a2+a3)+ Ya,razra)((ara)-(arazxal))-(azra )32} fy

3
(e, va) (arara) ki, +0 {Bana rdafara) + a (o pa)s
4a,a,(a, +a +a,)+(a,+a,) +(a,+a+a,)’ +4aa,(a,+a,+a,)-4aag(a,+a,)

-da (a, +a,)(a,+as+a;)-(a,+a)(a,+raa) —(a,+a) (a rasa ) f]
3

h

+r2[(a4 +a;,+a,) +(a, +a3)3} K2f,, +

+h3 2a12a3+2a12a5+4aﬁ3(a2+a3)+‘h?-5(a4+as+aa+ %'(a 2+ar (2.14)
8 | 1aa,(a,+a)(a, b arag +(ara) (asraga)—(asa) -(apaga)|

Substituting (2.11) up to (2.14) into (2.3) andisgtA=a, +a, and B=a, +a, + a4 (2.15)
3

we obtain values for the paramet&sS. Hencey , -y, =h +éh2 (3a, + 3A+ B)f, +2—6 (3 + 3N+ B’ K f,
+3i2h3(—al2 +4aa,+1220,8 A+ 0B~ A ~B7 ) +4—18h4 (@3+ P+BOKH,,

+1—‘1,‘28h“[—4a13 +11a’a, + 27a’a,+ 2Aa B+ 54a A+ 22 AB+ 14 A% +

13AB(A+B)+2(A*+B® )k f, f,, +6—14h“[a13 +8aaa,+4aaA+aaB+ A A

-4a,a.B - 4aa,A- 4a,AB- AB(A+B)+ A +B° ]1“y2 (2.16)

For the purpose of obtaining values for the paransed we obtain the Taylor Series expansion in one big, such that,
' h2 " h3 m h4 iv

Yo ™Yoo =HY06) + Y 06) + -V (6) + 5V (%) +o(h)... (2.17)

Wherey' =k, y" =k f,, y"kif, +k,f, and y¥ =kif, +4If f +kf, (2.18)
so that, (1.20) becomes:
— h h’ 2 h* 3 2
Yo — Y, = hk; +§h k f, +E(kl f, + klfyz) +Z1r(k1fyw4klfy f, + klfyg) (2.19)

Now comparing equation (1.19) with equation (1.28bove, we have the following equations for
K" 0i=2,3,4,5n= 1,2,3,4,

I-n
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k=1, (2.200)

3a, +3A+B =4, (2.2M)

37 + 307 + B2 :g (2.2)

d(-a’ +4aa, +12aa,+ A A+ 2AB- A* - B? )= %3 (2.2ad)

380 +3A°+B%= 2 (2.2Ce)

-4’ +11a’a + 2®M’a,+ 22a.B+ 54a A+ 22 AB+ HA+

13AB(A+ B)+ 2(A° + B%) = 6_34 (2.20f )

& +8aaa; + daaAtdaaB+ AN - AaB- da -

4a,AB - AB(A+ B)A® + B® :% (2.209)
For easy computation, we set

A=a2+aS=% (2.2th)

B=a,+a,+a,=1 (2.20)

2 1
Using the value ofy :g, Azg and B =1, we obtain values for the remaining parametgra,,a,, asand ag by

solving equations (iv), (vi) and (vii) by using MARB program we obtain values which represent thefft@ents of the

parameters''s

2 165 788 _ _ 369 545 90!

== =, a,=¥——, ay,=——, 8, =———  a, = —— 2.20
T3 %7 03 BT g7g M7 26370 176870 o6 Y
Hence we have the new algorithm:
h
Yoa =¥ =5 ( Kk, +k, +ky+kk,) (2:21)
_ 2h
= f(y) = FO k)
-165 788
k,=f(y, +h(——k,+——Kk
5= 1 gkt o ke)
and
369 545 908
k,=f(y +h k, — k,— Kk 2.22

3.0 Implementation of the Method:
In this section, we prove that the method is cogeet and implement it using two singular initialu@aproblems

3.1 Theorem
We assert that our method (2.21) to (2.22) is at@st and converges to a known function if
y' =f(xy),y@)=n,asx<b (3.1)
Proof: In order to establish the convergence of the nibthh@ show that (2.21) is consistent with the ahitialue problem
(1.2); that is

@(x y,0) = f(x,y) (3.2)

Note here that a necessary condition for a metbabhverge is that it has to be consistent. Artlefmethod is stable, it is
sufficient to prove convergence. In a similar manme apply the above rules to show that our method
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Yot =Y = 2 (VR +k ko KK 69

with K, = f(y,). K, =f (y, +ahk), k, =f(y, +h(ak,+ak,)

and  k, =f(y,+h(a,k,+ak, +ak,) (3.4)

is consistent with equation (3.6). Using the exact solutidf(xn) of the initial value problem

y=f(y)=f1 (X, y), y(xo) =Y, .(3.5)by substituting the set of equations in (3.10)0 in3.9) such that
T,(h°) = You = Vi —2{{(1‘ (vo ) f(y,+haf (yn)))% + 1 (y, +haf(y,))+

f(yn +ha2f (yn)+ha3f (yn)+a1h(yn)) + f (yn + haZf (yn)+ ha3f (yn)+ alh(yn)) *f
{yn+ha4f(yn)+ha5f(yn)+a1h(yn)+haef(yn+h(a2f(yn)+a3f(yn)+a1h(yn)))}5(3_6)

Dividing all through by h andtaking the limit of o sides as 0, we have:
N , 1 E 1
T () =22 (1 ()% £ ()2 + (%) * £ () #(F (%)% £ (%) ?
iy (1) =t (Y275 =2 () 3,) 41 (1) (3,)] @)

y=f(=1(xy). y(%)=¥

Hence the method is consistent and convergent.

(3.8)

3.2  Comparison of results:

We now apply the new formula to solve two differanitial value problems and compare the result witb other different
methods for accuracy and error examination.The ogsticonsidered are as follows

MODIFIED KUTTA'S ALGORITHM (MKA):

Yo=Y, = h(ﬂ/kk +K,+k 1k K ) (3.9)

_ 2
k= F(y,), ke =T 0 ghha)

_ _165, , 788
Ky = (Y, +h(- 522k, + 220K ,), (.108)
369 545 908
K =T N Gg3k ™ 1763 9660 (3.10b)
1RKM
ONE-THIRD RUNGE-KUTTA METHOD @ ):
h
Yo = Yo = 5 (Vi + ks + k) (3.11)
=10 = f(xe D D= 0D+ e )

k—f(xn+hyn+2£( 3k, + K, +2;k)j (3.12)
3. CLASSICAL RUNGE-KUTTA METHOD (CRKM):
Yaa =Y =g(k1+2k2+ 2k, +k,) (3.13)

h h
k:l: f(yn)’kzz f[xn+51yn+5kljr
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= f (xn +g,yn +%k2),k4 = f(x, +h,y, +hk,), (314
4. ORIGINAL KUTTA'S METHOD:

h
yn+1 - yn :g(kl +3k2 + 3<3 + k4)

k,

Ks

£ (y,) K, = f(

f (yn —%hk1+ hkzj, k, = f (y, +hk,—hk,+ hk_)(3.16b)

1

Yn + ghklj ’

(3.15)

(3.16a)

Using the formulae in equations (3.9) to (3.16b)sek/e two singular ivps given below.
Table I:Numerical Solution Of The Innocent Lookinglvp: y' =1+ y*,y, =1 0<x< 1,

s 71
whose theoretical solution isy(X) = tan(x + Zj and has a single pole aX = Z,

XN

TSOL

MKA

ERROR

CRKM

ERROR

1/3RKM

ERROR

KUTTA

ERR OR

.1E+00

0.1223E+01

0.1223E+0

0.1528E-03

0.1223E+01 0.33BOE

0.1223E+01

0.6639E-0

0.1223E+0

il

0.9052E

.2E+00

0.1508E+01

0.1508E+0

0.5077E-03

0.1508E+01 0.14BDE

0.1508E+01

0.2775E-04

0.1508E+0

il

0.1129E

.3E+00

0.1896E+01

0.1894

E+(

0.1414E-02

0.1896E+01096E-04

0.1896E+0

0.9968E-(

0.1895E+

D1

0.4881H

4E+00

0.2465E+01

0.2461

E+(

0.4103E-(2

0.2465H+0B307E-04

0.2465E+0

0.2464E+

D1

0.481DE

.5E+00

0.3408E+01

0.3394

E+(

0.1422E-01

0.3408E+0HM030E-03

0.3408E+0

b
1
4
0.3829E-03
0.1825E-Q2

0.3407E+

D1

0.36%38H

.6E+00

0.5332E+01

0.5260

0.7200E-01

0.5328H+0B958E-02

0.5318E+0

0.1364E-01

0.5328E+

D1

0.38B3BH

.7E+00

0.1168E+07

0.1079

E+(

0.8905E+P0

0.11556+H02274E+00

0.1138E+0

0.2982E+p0

0.1155E+

D2

0.12009E

.8E+00

-.6848E+02

0.6011E+Q

0.1286E+

03

0.1922E+03606E+03

0.1233E+0

0.2982E+p0

0.2085E+

D3

0.2¥63H

.9E+00

-.8688E+01

0.1215E+Q

0.1215E+

09

0.3120E+08120E+18

0.2582E+1

LASA R4 1A A Lt Rl Rl

0.2582E+[12

0.7001E+

18

0.7608F

1E+01

-.4588E+01

0.1538E+8§

L
L
1
1
1
E+Q1
2
2
9
A

0.1538E+

B4

0.3278+P613278+261

0.7454+123

0.7454+123

0.6355+2¢

6

0.6355+4

Table 2:Solution OF ¥ = ¥»

y(0)=1 0<x<1

X
whose theoretical solution i€

XN

TSOL

CRKM

ERROR

MKA

ERROR

1/3RKM

ERROR

KUTTA

ERR OR

.1E+00

0.1105E+01

0.1105E+0

0.8474E-07

0.1105E+

D1

0.2963E

0.1105E+01]

0.190

8E-06| 0.1105E+

D1

0.8474E-

.2E+00

0.1221E+01

0.1221E+0

0.1873E-06

0.1221E+

D1

0.68W6E

0.1221E+01]

0.421

8E-06 0.1221E+

01

0.1873E-

.3E+00

0.1350E+01

0.1350E+Q

0.3105E-0

0.1350E+

00.1079E-05

0.1350E+0

0.6993E-0

0.1349E401

0.318E

4E+00

0.1492E+01

0.1492E+Q

0.4576E-0

0.1492E+

00.1589E-05

0.1492E+0

0.1030E-0

0.1491E401

0.456E

.5E+00

0.1649E+01

0.1649E+Q

0.6321E-0

0.1649E+

00.2196E-05

0.1649E+0

0.1423E-0

0.1648E401

0.63BLE

.6E+00

0.1822E+01

0.1822E+Q

0.8383E-0

0.1822E+

00.2912E-05

0.1822E+0

0.1822E401

0.83#E

.7E+00

0.2014E+01

0.2014E+Q

0.1081E-0

0.2014E+

00.3755E-05

0.2434E-0

0.2013E401

0.1@8DE

.8BE+00

0.2226E+01

0.2226E+Q

0.1365E-0

0.2226E+4

00.4742E-05

0.2226E+0

0.3074E-0

0.2225E401

0.1365E

.9E+00

0.2460E+01

0.2460E+Q

0.1697E-0

0.2460E+

00.5896E-05

0.2460E+0

0.3822E-0

0.2459E401

0.16B/E

1E+01

0.2718E+01

0.2718E+(

L

L

1
1
1
1
1
1
1
1

0.2084E-0

OT[OT[OT[OT|Oy[OY| O3 [ O)

0.2718E+

00.7241E-05

L
L
L
L
0.2014E+01
L
L
L

0.2718E+0

]
b
b
0.1888E-0%
b
b
b
b

0.4694E-0

0.2718E401

0.2aHE

o~

Table | and Table 2 shows the performance of thve method as compared with the numerical solutiotber existing

RKF. The results indicate that the new algorithmfggenances well in the solution ivps in ordinaryfeliential equations

4.0

Stability analysis of method

Our duty here is to investigate and establish tabkilgy of the method by following [13], wherevitas revealed that “in all
computational methods, the use of a scheme for ncahaolution of initial value problem (1.1) wilenerate errors at some
stages of the computation due to inaccuracy inhenetihe formula and the arithmetic operations addpluring computer
implementation. The magnitude of the error deteemithe degree of accuracy and stability of the awthThus, it is
important that the numerical solution approximates exact solution and that the numerical solutemds to the exact
solution as the step size tends to zero.

Butcher[7], observed that if the step length usethd small, excessive computation time and rouheéroor will result. We
should also consider the opposite case, and astherhthere is any upper bound on step length. Qltere is such a bound
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and it is reached when the method becomes numgrigaktable, that is the numerical solution prodijceo longer
corresponds qualitatively with the exact soluticctérding to Lambert [1], the traditional criteridar ensuring that a
numerical method is stable is called “Absolute Hitgty and this analysis will therefore, be cadi®ut to establish the
absolute stability of our method by subjectingithie linear test equation;

y =2y, A0C; Re(A)< 0 (4.1)

Where/] is complex.

Butcher [7] emphasized that all Runge-Kutta methiadkiding the implicit ones, when applied to tlesttequation, reduce
to an equation of the form;

yn+1 = R (/] h) (42)
where R(/\ h) is called the stability polynomial function. Baagithis in mind we writg = Ah, so that it produces a linear

system for the computation & [J 1 =1,2,3and 4 which will be solved for, and then inserted iote method to produce

% = R(u) (4.3)
[10], says, the key issue for understanding thg kerm dynamics of Runge-Kutta methods near saxed points, concerns
the region where Ruj < 1; that is, the Stability region of the numericaéthod. The polynomial, for which R(< 1 is
known as the Stability polynomial of the methodd a@his method is absolutely stable for a givenAh, if all the roots of
the polynomial function lie within the unit circl&@he region containing all these points in the clexplane is said to be a
region of absolute stability, if the method is $tafor all

H=ANOR() (4.4)

It is also possible according to Lambert [1], tApplying a method to the test equation (1.1) (wl'péris a scalar) yields

Yo =y, * /JZ a;Y,

=1 (4.5a)
Yoer = Yot 4D, DY,
i=1
Now defining
Y,eOR by Y=V, Y,,...T aod  e=[L1...1 (4.5b)

we may then write (4.5a) in the form
Y=ye+uAY, and y., =y +i0Y.

Where A is the matrix of coefficients.
Solving the first of these for Y and substitutimgthe second gives

Yoo = Yo | 1+ 20" (1 = A e,
Wherel the s x s unit matrix, the stability function igtkfore given by
R(p) =1+ ub" (1 - uA)*e (4.8)

However, in another approach, Dekker and Verwergj9s an alternative form R(,u) , Where they observed that the

(4.6)

@.7)

solution for Y,,,; by Cramer’s rule isy, ,, 2% (4.9) where; Ny det[l - UA+ ,uebT] ;
p=def]| - #A] (4.10)

Hence Yy . = R(,u) Y, 2% (4.11)
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where

Yo _ R(4) = det] | - A+ peb’ | (4.12)
Y, det[I - uA]

We observed here that, irrespective of the valiengo the parameters in matrix A after satisfythg order requirements,

for a given P = 1, 2, 3, 4, all p-stage Runge-Kutiethods of order p have the same interval of aisdtability. These
intervals are given in Table 3, wherg d®note any p-stage Runge-Kutta method of order p.

Table 3 (Interval Of Absolute Stability For Order P, For p< 4) U= Ah

Method | s Interval of absolute stability
Ri 1+p (-2,0)
R 1+ pt (-2,0)
R 12413 -2.51,0
3 L ptp +—p ( )
R 12+t 341,41 (-278,0
N 1+H"‘2‘H +6u +24H ( )

All Runge-Kutta methods of order four have the #itgbpolynomialR, shown in the table above.Below are the curves
showing the different regions of absolute stabiiiythe various orders as indicated in TableZ dhrves are put together to
visualize their shape as the orders grow.

— p| Order=4

———p{ Order=3

—— [owez ]

—>

Order=1

IMAGINARY AXIS
o
T

I I —
-3 -2. - -1.5 -1 -0. 0.5
X-AXIS (REAL)

Figure 1:(Jordan Curves Showing the Region of Absolute $tploif Order P, Forl< P < 4)
In figure 1 above, the regions of absolute stabilit explicit p-stage, Porder Runge—Kutta methods < pS 4 are

plotted in complexh/] space. The absolute stability regions are shawthick black lines, and the ordinate and abscissa

are Im (WA ) and RefiA ) respectively. Notice that the size of the regimseases with the order of the method.

A close examination of the various approaches tfrgethe stability polynomial function of a genkome-step scheme as
revealed in[8], will be more appropriate for ourthwd. It was observed that the other approaches wert feasible; the
reason could be attributed to the transformatiat@dure adopted during the derivation of our method

We now show that the stability analysis of our metican be established by proving the following tken

Theorem II: We assert that the new Kutta algorithraquations (2.21) and (2.22) is absolutely stabl
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Proof: To prove stability of the method, we setplaeameters & .. as follows:

:Z :—ﬁﬁ a :7_88 a :ﬁga :—_545 a :——90l (4 13)
AT BT 03 BT g7g M7 3% 1763 ° 96¢€ '
Such that ,
h
Yorr — Ya ZZ( Kk, +k,+Kk;+ k4<4) ..... (4.14)

k. =y =1y, k,=1y(1+adh), (4.159)
ky = Ay(1+aAh+aA’h?) and k,=Ay(1+adh-agd’h’-ad*h®)  (4.150)

Therefore substituting (4.13) into (4.14), (4.18a) (4.15b), we get

. 2
k =y =4y, k, =/1y(1+ gAhj, (4.16a)
k= Ay(1+ Ah+ 661/1 h) and kA:Ay(lhih— 353 o2 _ 159/l3h3j (4.16b)
1106 1487 2833
1
h (/12}/2(1+§/1hj] +/1y[1+ /lhj+ /ly(2+/lh+ﬂ/]2h ] (4.17)
Yoer = Yn =Z )
+[/]2y (“ 45,1288 5, 1537 o D
37 1857 3324

By settingflh =H and simplifying, we have:

1288 , 1537, ) J (a1m)

1
Yo “Ya _ H 2 2 661 4
2t 12 [ g o S 2

1
2 3 661 1288 , 1537, 2
Letg =|1+Z , B=| 2+ u+ j (1+ + j , (4.18b)
( 3”) o ( H 1106 3/1 1857” 3324
Usingbinomial expansion method, we expand thesadiarrational power oé.
1

So that =1+ = — i+ . 4.19

ohdta=lraH- 18” 4” ¥ (449

And(@) = 1+2,u @y S+ (4.20)
5571 27” '

Adding up(a) . B and(qo) in equation (4.18b), we have the following:

3 2 2 3
Yoa VYo _ +g_ﬁ+£ N 2+ﬂ+661,u o 1046992 45
Y, 3 18 54 1106 3 5571 2

Yot — :”3 S
Y, 24

(4.21)

(1+/,1+ ,u +—
(4.22)
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Therefore,
R(,U):(iﬁf +—1ﬂ3+—1u2+u+1j (4.23)
24 6 2 '

Equation (4.23) is the stability polynomial of auethod. It is the same with the gener&lodder Runge-Kutta polynomial,
which is an indication that the method is absojusthble.

To obtain the roots of the stability polynomial, s@ve (4.23) by equating the RHS to zero.

And applying (MATLAB), we have the following roots:

Fa- -0.2706+2.50i, Ha - -0.2706-2.5048i Hs - -1.7294+0.8890i'u4 =-1.7294-0.8890i
By the same MATHLAB code, weplot the region of Sligpfor the new method, as shown in figure2 below

3

-0.2706+2.5048i

A 4

-1.7294+0.8890i

-1.7294-0.8890i

-0.2706-2.5048i

-3 -2.5 -2 -1.5 -1 -0.5 0.8

Figure 2: The Region of Absolute Stability of the Modified #ais Algorithm

4.2 Conclusion
In deriving the new modified Kutta's algorithm, ve@plied the Taylor series expansion in combinatigth the rational
binomial theorem to expand thg ky following the principle of Runge—Kutta. By aretul use of geometric progression, we

constructed the method out of the existing Kuttahme and obtained values for the parame?b'ﬁs After establishing the
method, we proved that our algorithm convergesautitienticate the validity of our claimby implemagtit numerically on
two initial value problems in first order ordinadjfferential equations. Comparing the results froarf methods we see
thatour method improved in its level of performanas the step length increases. We have therefdrewesl
throughnumerical investigation that our method salve singular initial value problems in o.d.es,da@snonstrated in the
tables above and stable as exemplified bythe #tabilrve obtained in figure 2 above. Hence, teewmethod is consistent,
convergent, absolutely stable and of high accurébg. method will therefore be suitable for the soluof singular real life
problems that can possibly be reduced to firstiood@inary differential equation involving initiaalue conditions.

Observe that solving an initial value problem idioary differential equations an error is introdti@ each integration step
of the formula. The magnitude of this so calledaldecuncation error is a measure of the accuradgh®fntegration formula.
Furthermore, the magnitude of the total error ddpesn the magnitude of the local truncation ereod their propagation.
The local error at each step may be small; thoughlls the total error may become large due to acdation and
amplification of these local errors. Furthermorsgive in the table of results above that error grawth steplength and that
the difference between the theoretical solution thiedcalculated either reduces or grow with thepletegth as can be seen in
the methods compared. This growth phenomenon lsdcalimerical instability.

Finally, it is clear that this research will gdang way in reducing the rigor in the solutionioitial value problems in
ordinary differential equations, and it is worthiehto encourage further research work in this arfestudy. The exciting
discovery made by us has shown that no area cnmedsés ever exhausted depending on where theesitef a prospective
researcher lies.

Since this formula maintains a high degree of Emuin handling initial value problems in ordinaiifferential equations,
we therefore, recommend it to all numerical analgstd industrial programmers.
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