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Abstract 
 
The propagation of gravity waves along the common surface of two superposed 

liquids is studied. Using a selection of Cartesian axes, we analyze the effect of a small 
perturbation of steady flow. 

 

1.0     Introduction 
Gravity waves (gravitational waves) are discrete forces radiated by gravity and are essentially waves such as on the surface of 
water where gravity provides the restoring force [1]. It is the main restoring force in a system, with gravitational energy 
making up more than 95% of the energy in long-period waves in the ocean, the rest being compressional energy in the 
slightly compressible water and compressional and shear energy in the underlying rock. 
 
This model considers the propagation of gravity waves along the common surface of two superposed liquids where we select 
coordinate axes with the origin in the plane equilibrium surface of the liquids, the y-axis vertical and the xz-plane horizontal. 
We choose liquids of densities ρ1 and ρ2 occupying the regions y∈(0, h1) and y∈(-h2, 0) respectively with y=h1 and y=-h2 
being the rigid boundaries for the undisturbed flow. We further suppose that the liquids are flowing uniformly with speeds u1 
and u2 in the direction of the x-axis. 
 
For our typical fluid, the kinematical state is defined by the density field ρ(r, t) and the velocity field q(r, t), where r is the 
position vector of a particle, say P, moving with the fluid [2]. So, in this consideration, we assume the liquids to be 
incompressible fluids. In conservation of mass, the condition is that, the rate of increase of the mass of the fluid in any region, 
say D, bounded by a closed surface, say S, must equal the rate at which fluid is flowing inwards through S, i.e. 

.
D S

d
d V d

d t
ρ ρ= −∫ ∫ q S      (1) 

where dS has the direction of the outward normal. Assuming that (1) holds for every region and applying the divergence 
theorem, we obtain the continuity equation: 

 . 0d i v
t

ρ ρ ρ∂ + ∇ + =
∂

q q      (2) 

From the definition of the kinematical state of the fluid, as P moves from the position r at time t to the position r+δr at time 
t+δt, the velocity increases by q(r+δr, t+δt) – q(r, t) to yield the acceleration of P as 

 . .
d r

t d t t

∂ ∂= + ∇ = + ∇
∂ ∂
q q
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Since the equation of motion holds for every region, we can re-write the Euler equation of motion as 

 
1

. 0p w
t ρ

∂ + ∇ + ∇ + ∇ =
∂
q

q q       (4a) 

This is ordinarily based on the following assumptions about the system of forces acting on the fluid: 
i. Dissipation of energy as a result of viscosity, heat transfer, etc. may be neglected so that there are no shear stresses 

and so the internal stress can be derived from a single scalar field, the pressure p(r ,t); 
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ii.  We derive the external forces from the potential energy per unit mass which is a scalar field [3]. Denote this field by 

W(r ) and the equation of motion of the fluid in the region D is therefore  

∫ ∫∫ −∇−=
D SD

pdWdVdV Sf ρρ      (4b) 

 The right side of (4b) can be transformed to ∫ ∇
D

pdV . 

 
3.0. Governing equations of liquid motions under gravity and their specifications 
Normally, in considering the propagation of waves in a liquid, it is assumed that the liquid is an incompressible fluid [4]. 
Following this assumption and with a few approximations for small motions of the fluids, we can re-write (2) as 

 0=+
∂
∂

qdiv
t

ρρ
       (5) 

and (4a) as 

0
1 =∇+∇+

∂
∂

wp
t ρ
q

       (6) 

In (5) and (6), the velocity is small compared with the instantaneous local speed of propagation of changes in any property of 

the fluid e.g., ρρ ∇∂∂<< /tq  except near points where 0=∂∂ tρ  and 0≠∇ρ  even though such regions can be 

assumed to be very small to produce appreciable effects on the solution of the differential equations. 
Linearizing (4) with 

 tqqq <<∇.
         (7a) 

and taking a constant value of ρ in (2) and (4a), (5) now becomes 
0=qdiv           (7b) 

and (6) becomes 

0)( =+∇+
∂
∂

w
p

t ρ
q

. 
Our liquids are in continuous, non-turbulent motion and therefore the boundary surface always consist of the same particles 
of liquid. Let  

0),( =tF r          (7c) 
be such a surface. Then, following the motion of the liquid particles, 

 0. =∇+
∂

∂
F

t

F
v        (8) 

Now, at the free surface of the liquid, the surface tension effects produce a discontinuity in the pressure across the surface, 
i.e. 

 

)(
21

21
1 RR

RR
Tpp o

+
−=

        (9a) 
where  p1= value of the pressure inside the surface; 
 po = value of the pressure outside the surface; 
 T = constant surface tension 
 R1, R2 = principal radii of curvature of the surface. 
We now select Cartesian axes with the origin in the plane equilibrium surface of the liquid, the y-axis vertical and the xz-

plane horizontal and denote the elevation of the liquid above the point ),0,( zx  by ),,( tzxη  to produce the equation of the 
free surface as 

 0),,( =− ytzxη         (9b) 
In the same way, the equation of the lower boundary over which the liquid moves is given by 

 0),,( =+ ytzxh         (9c) 
where ),,( tzxh  is the depth of the liquid in the equilibrium state. 
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At the free surface, η=y , so (8) gives 

 ty ηφηφ =−∇∇ .
        (10) 

while at the lower boundary where y = -h we have 

 ty hh −=+∇∇ φφ.
        (11) 

 
 
 
 
 
 
 
 
 
 
Fig. 1: Two superposed liquids on a common boundary 
 
4.0 Boundary Conditions and their Linearization 
The equation at the free surface is 

 0),,( =− ytzxη         (12a) 
and at the lower boundary over which the liquid moves is 

 0),,( =+ ytzxh         (12b) 
For small motions of the boundaries, if 
1. The boundaries suffer only small departures from the horizontal [5, 6], i.e. |∇η|<<1 and |∇h|<<1 , then we may 

neglect the terms ∇φ.∇η and ∇φ.∇h in (10) and (11). And in (9a), the factor 1/R1 + 1/R2 may then be replaced by 
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η and as ),,,(),,0,(),,,( tzxtzxtzx yyyy ηηφφηφ +≅ , the kinematical condition (10) reduces 

to ty ηφ =
 on y = 0, i.e. the elevation η is small enough to neglect changes in the vertical component of the 

velocity v between the free surface and the equilibrium plane. In the same way, (11) reduces to ty h−=φ  on y = 

-h0 if 
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(h0 is the mean depth of the fluid) 

 
5.0. Discussion and analysis of the Governing equations 
In considering small perturbations of this steady flow, we let the velocity potential be  
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and we let the interfaces have form  
 ),( txy η=          (12d) 

as in Fig. 2 
In the unperturbed state, 
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Fig. 2: Two superposed liquids at the interface 
Since the perturbations of φ and η are small enough to satisfy the assumptions on the boundary conditions and their 
linearization above, then, we shall require functions φ(x,y,t) and η(x,t) [7], satisfying  
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At the interface ,0=− yη  so applying (8) gives 
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        (12g) 
on y = 0. 
Also, when the velocity is approximately u in the x-direction, eqn. (4a) takes the form 

 

0
1 =∇+∇++ Wpuqq xt ρ        (12h) 

so that  

 
1

         is a constantt xu p W C Cϕ ϕ
ρ

+ + + =      (12i) 

Neglecting surface tension, then we have a continuous pressure across the interface [8, 9], and so on y=0, 

 1 1 2 2
1 1 2 2u g u g

t x t x

ϕ ϕ ϕ ϕρ η ρ η∂ ∂ ∂ ∂   + + = + +   ∂ ∂ ∂ ∂   
    (12j) 

for which we seek harmonic wave solutions 

 

1 1 1 1

2 2 2 2

cosh ( ) exp ( )

cosh ( ) exp ( )

exp ( )

u x A k y h i kx t

u x A k y h i kx t

ia i kx t

ϕ ω
ϕ ω
η ω

= + − −
= + + −

= −
   (12k) 

We immediately obtain the dispersion relation by substituting (12j) into (12k) and eliminating A1, A2, and a : 

 2
2

221
2

1112 coth)(coth)()( khkukhkukg ωρωρρρ −+−=−   (13) 
For short waves, 

 1   and   1 21 >>>> khkh  
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and so, (13) reduces to: 

 2
22

2
1112 )()()( ωρωρρρ −+−=− kukukg      (14) 

With (13) and (14), we can then introduce the reference frame in which the total momentum is zero, which moves with 

velocity 212211 /)( ρρρρ ++ uu  [10]. The stream velocities with respect to this frame are: 
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        (15) 

and so (14) reduces to( ) ( )gkkuu 2
1

2
2

22
1221

22
21 )( ρρρρωρρ −=−++   (16) 

The dispersion curve which results is an ellipse as shown in Fig. 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3: The dispersion curve from two superposed liquid 
 
6.0 Conclusion 
When gravity waves are propagated along the common surface of two superposed liquids, the system will only transmit 

undistorted, unattenuated harmonic waves when k  and  ω  satisfy 
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, ω is pure imaginary and the time dependence of η is exponential, and as such, there can 

be no oscillations.  
k  has the form 
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when 
1221

12

)(2 uu

g

−
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>
ρρ
ρρω  so that the waves may be attenuated or may increase and become unstable which can then 

be treated as a non-linear problem. 
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