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Abstract 
 
The boundary layer equations for the mixed forced and free convection 

laminar flow are transformed into dimensionless coordinates. Series solution of 
transformed equations is sought resulting in a hierarchy of ordinary differential 
equations of the universal functions. A scheme comprising of fourth order 
Runge-Kutta, parameter differentiation and shooting methods was devised to 
obtain wall derivatives of the universal functions.Using the wall derivatives, local 
skin friction and Nusselt numbers (Nu) can be estimated for different values of 
Prandtl number (Pr), pressure gradient (Λ) and shape parameter (ω) for flow 
over different shapes. 
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1.0     Introduction 
The local similarity method of Merk [1] and Meksyn [2] was found by Fagbenle [3] to be an accurate and simple method 
of analyzing momentum and heat transfer in forced convection laminar boundary layer flows once the associated 
universal functions have been obtained. Since Chao and Fagbenle [4] set forth the corrected form of the series resulting 
from the local similarity “ wedge parameter” method of Merk [1], the method has been successfully applied to mixed 
convection laminar flow by Cameron et al. [5] and Meissner et al. [6]. Kim et al. [7] also applied the method to the power 
law fluids in forced convection flows while Chang et al, [8] applied it to pure natural convection flow of power law 
fluids. The purpose of this paper is to demonstrate that simple and familiar parameters could be employed in the Merk 
series for the mixed convection laminar flow over two-dimensional or rotationally symmetric shapes 
 
2.0 Basic Equations 
Consideration is given to the steady, incompressible, laminar, constant property mixed convective boundary layer flow 
over two dimensional or axisymmetric bodies[9] 
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with the associated boundary conditions 
u (x,0) = v (x,0)  =  0;  T (x,0) = Tw (constant)     (4) 
u (x,∞) = U (x);  T (x, ∞) = T∞ (constant) 
The (x, y) coordinates are now transformed into (ξ, η) dimensionless coordinates in the manner of Meksyn [2] as follows:  
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where L is the characteristic length of the body. 
Re = U∞ L/ν. A dimensionless stream function f (ξ,η) is introduced as follows: 
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The continuity equation (1) is identically satisfied.  
 By defining a dimensionless temperature θ (ξ,η): 
 T(x, y) – Tw = (T∞ - Tw) θ(ξ,η)     (7) 
Equations (2) and (3) transform into  
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 In equations (8) and (9), the following definitions hold; 
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,   a modified dimensionless coordinate. 

 Pr = ν/κ, the Prandtl number. 
The primes denote differentiation with respect to η. 
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 are Jacobians which were differentiated by  parameter differentiation[10]. 

The velocity components are given by  
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3.0 Solution Procedure 
Define the perturbation parameters 
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In view of the form of Equation (8), we seek series solutions of the form:
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Substituting (11) and (12) into (8) and (9) yields the following hierarchy of differential equations for the first five terms: 

( )[ ] 0'1''' 2
0000 =−Λ++ ffff       (13a) 

( ) ( )1 0 1 0 1 0 1 0''' '' 2 2 ' ' 3 3 3 '' 1f f f f f f fω ω θ+ + − Λ − + − Λ − = −
  (13b) 

( ) ),(/),'(''3''22''''' 002020202 ηΛ∂∂=++Λ−+ fffffffff
 (13c) 

( )
( ) ( )( ) ( ) 111

2
130

30303

''233222''465

''444'''''

θωωω
ω

+−Λ−−−Λ−=−Λ−

+−Λ−++

fffff

fffff   (13d) 

( ) ( )20204040404 ''''2''4''42''''' fffffffffff −=++Λ++
 (13e) 

0'Pr'' 000 =+ θθ f         (14a) 

( ) ( ) 'Pr233'Pr232'Pr'' 0110101 θωθωθθ fff −Λ−−=−Λ−−+   (14b) 

'Pr3),(/),(Pr'Pr2'Pr'' 020020202 θηθθθθ ffff −Λ∂∂=−+   (14c) 

( ) ( )
( ) ( ) '465233

'232Pr['Pr464'Pr''

0311

1130303

θωθω
θωθωθθ

ff

fff

−Λ−−−Λ−−
−Λ−=−Λ−−+   (14d) 

[ ]'5''Pr'Pr4'Pr'' 04022040404 θθθθθθ fffff −−=−+
   (14e) 

Eqns. 13 and 14 (a), (c) and (e) above show a non-dependence on θ and ω.  
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 and for two dimensional flows, ω = 0. The associated boundary conditions for the 

above equations are: 
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Solutions of the set of simultaneous differential equations for the fi’s and θi’s subject to the boundary conditions (15) 
were obtained using a fourth-order RungeKutta integration procedure. The roots were arrived at using shooting methods 
and Jacobiansin Equations (13c) and (14c) were evaluated by using the technique of parameter differentiation. Computer 

programs (details in [11])were used to calculate wall derivatives of the dimensionless universal velocity functions ''if

and  
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the temperature functions'iθ , (i = 0, 1, 2, 3, 4) for values of Λ ranging from -0.15 to 1.0 for different Prandtl numbers 

and as well for ω in the case of rotationally symmetric flows. 
4.0  Results 
The functions fi and θi are regarded as universal functions and useful wall derivatives of these functions can be tabulated 
for various values of Λ and ω.Table 1 shows the tabulation of ��

��	, ��
��	���	� 

��  with respect to Λ since they are 
independent of Prandtl number whilst Tables 2 and 3 presents the tabulation of �!

�����	�"
�� with respect to both Λ and Pr 

respectively. Table 4 presents the tabulation of'iθ , (i = 0, 1, 2, 3, 4) for Λ and Pr = 0.7. 
 
Table 1.Wall derivatives of universal velocity functions 

Λ           

 

''0f  

 

''2f  ''4f  
-0.15 0.2164 -0.3480 0.0803 

-0.10 0.3193 -0.2226 0.0529 

-0.05 0.4003 -0.1666 0.0394 

0.00 0.4696 -0.1333 0.0310 

0.10 0.5870 -0.0946 0.0211 

0.20 0.6867 -0.0723 0.0154 

0.30 0.7748 -0.0579 0.0118 

0.40 0.8544 -0.0479 0.0093 

0.50 0.9277 -0.0394 0.0070 

0.60 0.9958 -0.0348 0.0062 

0.70 1.0598 -0.0304 0.0052 

0.80 1.1203 -0.0268 0.0044 

0.90 1.1777 -0.0239 0.0038 

1.00 1.2326 -0.0215 0.0033 
 
 
 

 
Table 2. Wall derivatives of universal velocity functions 

''1f (Λ,0) 

  Prandtl No 

Λ 0.7 1.0 7.0 10 
- -0-   
-0.15 1.2543 1.1762 0.7579 0.6886 

-0.10 1.0298 0.9965 0.6269 0.5706 
--
0.05 0.9269 0.8700 0.5657 0.5153 

0.00 0.8639 0.8108 0.5277 0.4808 

0.10 0.7869 0.7383 0.4803 0.4379 

0.20 0.7399 0.6938 0.4507 0.4109 

0.30 0.7074 0.6629 0.4296 0.3917 

0.40 0.6835 0.6400 0.4136 0.3770 

0.50 0.6651 0.6222 0.4009 0.3654 

0.60 0.6505 0.6080 0.3904 0.3557 

0.70 0.6388 0.5964 0.3816 0.3476 

0.80 0.6294 0.5869 0.3741 0.3406 

0.90 0.6217 0.5792 0.3676 0.3345 

1.00 0.6158 0.5730 0.3624 0.3293 
 
Table 3.Wall derivatives of universal velocity functions 

''3f (Λ, 0) 

Λ 0.7 1.0 7.0 10 

-0.15 -2.3038 -2.0105 -0.8040 -0.6589 

-0.10 -0.8860 -0.7783 -0.3270 -0.2710 

-0.05 -0.5254 -0.4630 -0.1995 -0.1662 

0.00 -0.3698 -0.3263 -0.1423 -0.1189 

0.10 -0.2327 -0.2051 -0.0899 -0.0753 

0.20 -0.1720 -0.1510 -0.6550 -0.0549 

0.30 -0.1384 -0.1207 -0.5120 -0.0429 

0.40 -0.1171 -0.1013 -0.4180 -0.0349 

0.50 -0.1022 -0.0874 -0.3480 -0.0289 

0.60 -0.0905 -0.0765 -0.2910 -0.0241 

0.70 -0.0795 -0.0662 -0.0240 -0.0198 

0.80 -0.0667 -0.0542 -0.0186 -0.0153 

0.90 -0.0455 -0.0366 -0.0117 -0.0096 

1.00 0.0000 0.0000 0.0000 0.0000 
 

 
 

Table 4.Wall derivatives of universal temperature 
functions Pr = 0.7 
 

Λ  '0θ
 '1θ  '2θ   

'3θ
 '4θ  

-0.15 0.3644 0.3852 -0.0143 -1.4822 0.0105 

-0.10 0.3870 0.2592 -0.0171 -0.5189 0.0058 

-0.05 0.4022 0.2055 0.0029 -0.2876 0.0034 

0.00 0.4139 0.1742 0.0051 -0.1918 0.0020 

0.10 0.4314 0.1376 0.0069 -0.1110 0.0005 

0.20 0.4444 0.1156 0.0074 -0.0767 -0.0002 

0.30 0.4547 0.1002 0.0075 -0.0581 -0.0006 

0.40 0.4632 0.0881 0.0073 -0.0463 -0.0008 

0.50 0.4705 0.0775 0.0074 -0.0375 -0.0010 

0.60 0.4768 0.0675 0.0068 -0.0297 -0.0009 

0.70 0.4824 0.0569 0.0066 -0.0208 -0.0009 

0.80 0.4873 0.0445 0.0063 -0.0065 -0.0009 

0.90 0.4918 0.0276 0.0060 0.0343 -0.0009 

1.00 0.4959 0.0000 0.0058 0.0000 -0.0009 
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More results, including those for rotationally symmetric shapes which depend on ω are contained in [11]. These results 
can be used to determine the local skin friction and Nusselt numbers (Nu) for different values of Prandtl number, 
pressure gradient and shape parameter for the study geometries of flat plate, wedge shape, horizontal cylinderand 
sphereas can be foundin [4,9,11 and12].  
 
5.0  Conclusion 
The corrected Merk series of Chao and Fagbenle [4] has been applied to the mixed convection flow problem for the 
general two-dimensional or rotationally symmetric boundary layer flow.  The resulting universal functions have been 
obtained for the first five terms of the series in the case of two-dimensional and rotationally symmetric flows. The 
method has been applied with good results to the mixed convection flow over flat plate, wedge shape, horizontal cylinder 
and sphere. The first three terms being found to be sufficient in most cases. 
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