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Abstract

The boundary layer equations for the mixed forcedidafree convection
laminar flow are transformed into dimensionless aainates. Series solution of
transformed equations is sought resulting in a haechy of ordinary differential
equations of the universal functions. A scheme caisimg of fourth order
Runge-Kutta, parameter differentiation and shootingethods was devised to
obtain wall derivatives of the universal functiondsing the wall derivatives, local
skin friction and Nusselt numbers (Nu) can be estted for different values of
Prandtl number (Pr), pressure gradientt] and shape parametera) for flow
over different shapes.
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1.0 Introduction

The local similarity method of Merk [1] and Meks|2] was found by Fagbenle [3] to be an accuratesamgle method
of analyzing momentum and heat transfer in forcedvection laminar boundary layer flows once theoeisged

universal functions have been obtained. Since GimabFagbenle [4] set forth the corrected form ef $hries resulting
from the local similarity “ wedge parameter” methofiMerk [1], the method has been successfully iadplo mixed

convection laminar flow by Cameron et al. [5] andidéner et al. [6]. Kim et al. [7] also applied thethod to the power
law fluids in forced convection flows while Changad, [8] applied it to pure natural convectionvilmf power law

fluids. The purpose of this paper is to demonsttlaé simple and familiar parameters could be eggaan the Merk

series for the mixed convection laminar flow owgotdimensional or rotationally symmetric shapes

2.0 Basic Equations
Consideration is given to the steady, incompressiliminar, constant property mixed convective loaup layer flow
over two dimensional or axisymmetric bodies[9]

a(ru) ,0(v) _

Continuity: == +=°= =0 1)
udu | vou _ Udu _ vd*u
Momentum:Z=+ 2= = =+ gyB(T = Too) + 7 (2)

udT . vdT _ kd’T
Energy: o2 T o = F (3)

with the associated boundary conditions

u(x,0)=v(x,0) = 0; T (x,0) =J(constant) 4)

u (x2)=U (x); T (x, ) =T, (constant)

The (X, y) coordinates are now transformed it} dimensionless coordinates in the manner of Mek&}as follows:

U r? dx
<z_jum 2L
(5)
p-[Re[*U Ty
26| U_LL
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where L is the characteristic length of the body.
Re = U, L/v. A dimensionless stream functiorifr() is introduced as follows:

%
25
w(xy)= U L(Re] £(e.n) ©)

The continuity equation (1) is identically satisfie
By defining a dimensionless temperatarg,n):
T(X, y) = Tw = (T - Tw) 6(EN) 7
Equations (2) and (3) transform into
e ffr e A1) =280 (f, £)10(6.)-[ctGr IREY (1-6)  (®)
6" +Prtg'=2&Pr(a(, t)10(¢, n)] (9)
with the associated boundary conditions
f(£0)=f'(&,0=06(¢,0= ¢
(10)

f'(§,w) o L 8 (6,0) - 1
In equations (8) and (9), the following definit®hold;

= ff c(;ti the wedge angle or the pressure gradient paramete

L3
Gr=B(Ty - Tw)?, the Grashof number

25y

= ——, a modified dimensionless coordinate.

3
) 1% ?
u,) \2
Pr =v/x, the Prandtl number.
The primes denote differentiation with respeatto

ot 1), 000 f

)) are Jacobians which were differentiated by patantbfferentiation[10].

a(e.n) ol&n
The velocity components are given by
u_Ea_l//:Uf’
r oy
Loy __ L % of 28 dr ) ..
Ve ru(znge) {f+2{ g+(/\+ T 1]/71‘}

3.0  Solution Procedure
Define the perturbation parameters

dA
& Z and & =26 —
d¢
In  view of the form of Equation (8), we seek seriesolutions of the form:

()= )+ ) s ent, () wettinn) a6 S i)+

(11)

2t (N )+ e, (A )+
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0(6.n) =60 n)+ £ (0n) + 20,0 n) veies ) 4 S, (nun)

12)

+ £20,(N, n)+eg0,(N0)+ oo
Substituting (11) and (12) into (8) and (9) yietls following hierarchy of differential equatiors the first five terms:

f0|||+ fofo + /\ ll_(fol)zl = 0 (13a)
(13b)
fm fofy"+ (2-A-20) £ f, '+ (3- R - 3) f T,=6,- .
(13c)
fzm‘" fofzn - (2/\+2) fo' le + 31:o” fz =6(f0', fo)/a(/\’”)
fo fof + (4-4A-4w) ) f, + (13d)
(5-6A-40) f," 1, = (2-2A -20)(f,)’ - (3—3A - 2w)f, f,"+6,
13
£, fof, "+ (A+4) £, + 4", = 2(f, £, = f," f,) e
6, + Prf,f,'=0 (14a)
6," +Prig' - (2-3A-2w) Prf,'6, = —(3-3A - 2w)Prf,6,' (14b)
6," + Prf,8, — 2Prf,'8, = Pra(8,, f,)/d(A,n) - 3Pr f,8,' (14¢)
6," + Prf g, - (4-6A-4w) Prf,'8, = Pr[(2-3A - 2a)f,'6, (14d)
- (3-3A - 2w)f,8, - (5- 6/ - 4w).6,’
(14e)

g," +Pri g, — 4Prf,'6, = P{f,'6, - f,6,-5f,6,]
Eqgns. 13 and 14 (a), (c) and (e) above show a epesitience ofiando.

2 dr
In these equationsy = (— d_f and for two dimensional flows) = 0. The associated boundary conditions for the
r

above equations are:

f (A,0)=f"(A,00=0,6(A0 =0i=0

(15)
for (A\veo) 1.6, (Ae0) - 1

f (A,w) -0 6 (A,w) -0, i>0

Solutions of the set of simultaneous differentiqli&ions for the;s and6;’s subject to the boundary conditions (15)
were obtained using a fourth-order RungeKutta irstgn procedure. The roots were arrived at ushpsng methods
and Jacobiansin Equations (13c) and (14c) werauated by using the technique of parameter diffeméah. Computer

programs (details in [11])were used to calculatdl derivatives of the dimensionless universal vélofunctions fi

and
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the temperature functio@', (i=0,1, 2,3, 4) for values &f ranging from -0.15 to 1.0 for different Prandtinmoers

and as well fow in the case of rotationally symmetric flows.

4.0 Results

The functions;fand6; are regarded as universal functions and usefuldegivatives of these functions can be tabulated
for various values ofA and w.Table 1 shows the tabulation fif’,f," and f;’ with respect toA since they are
independent of Prandtl number whilst Tables 2 apde3ents the tabulation ff and f5' with respect to boti and Pr

respectively. Table 4 presents the tabulatioﬁi 61 (i=0,1,2,3,4)for and Pr=0.7.

Table 1L Wall derivatives of universal velocity functions Table 2 Wall derivatives of universal velocity functions
f " " " fl (A’O)
A 0 f, f, Prandtl No
-0.15 0.2164  -0.3480  0.0803 A 07 10 70 10
-0.10 0.3193 -0.2226 0.0529 - -0-
-0.05 0.4003 -0.1666 0.0394 -0.15 1.2543 1.1762 0.7579 0.6886
0.00 0.4696 -0.1333 0.0310 -0.10 1.0298 0.9965 0.6269 0.5706

0.10 0.5870 -0.0946 0.0211
0.20 0.6867 -0.0723 0.0154
0.30 0.7748 -0.0579 0.0118
0.40 0.8544 -0.0479 0.0093
0.50 0.9277 -0.0394 0.0070
0.60 0.9958 -0.0348 0.0062
0.70 1.0598 -0.0304 0.0052
0.80 1.1203 -0.0268 0.0044
0.90 11777 -0.0239 0.0038
1.00 1.2326 -0.0215 0.0033

0.05 0.9269 0.8700 0.5657 0.5153
0.00 0.8639 0.8108 0.5277 0.4808
0.10 0.7869 0.7383 0.4803 0.4379
0.20 0.7399 0.6938 0.4507 0.4109
0.30 0.7074 0.6629 0.4296 0.3917
0.40 0.6835 0.6400 0.4136 0.3770
0.50 0.6651 0.6222 0.4009 0.3654
0.60 0.6505 0.6080 0.3904 0.3557
0.70 0.6388 0.5964 0.3816 0.3476
0.80 0.6294 0.5869 0.3741 0.3406
0.90 0.6217 0.5792 0.3676 0.3345

1.00 0.6158 0.5730 0.3624 0.3293
Table 4Wall derivatives of universal temperature

Table 3Wall derivatives of universal velocity functions functions Pr=0.7
f3ll
(A, 0) ! . . ' .
S S
A 0.7 1.0 7.0 10

-0.15 0.3644 0.3852 -0.0143 -1.4822 0.0105
-0.10 0.3870 0.2592 -0.0171 -0.5189 0.0058
-0.05 0.4022 0.2055 0.0029 -0.2876  0.0034
0.00 0.4139 0.1742 0.0051 -0.1918 0.0020
0.10 0.4314 0.1376 0.0069 -0.1110  0.0005
0.20 0.4444 0.1156 0.0074 -0.0767  -0.0002
0.30 0.4547 0.1002 0.0075 -0.0581  -0.0006
0.40 0.4632 0.0881 0.0073 -0.0463  -0.0008
0.50 0.4705 0.0775 0.0074 -0.0375 -0.0010
0.60 0.4768 0.0675 0.0068 -0.0297  -0.0009
0.70 0.4824 0.0569 0.0066 -0.0208  -0.0009
0.80 0.4873 0.0445 0.0063 -0.0065 -0.0009
0.90 0.4918 0.0276 0.0060 0.0343 -0.0009
1.00 0.4959 0.0000 0.0058 0.0000 -0.0009

-0.15 -2.3038 -2.0105 -0.8040 -0.6589
-0.10 -0.8860 -0.7783 -0.3270 -0.2710
-0.05 -0.5254 -0.4630 -0.1995 -0.1662
0.00 -0.3698 -0.3263 -0.1423 -0.1189
0.10 -0.2327 -0.2051 -0.0899 -0.0753
0.20 -0.1720 -0.1510 -0.6550 -0.0549
0.30 -0.1384 -0.1207 -0.5120 -0.0429
0.40 -0.1171 -0.1013 -0.4180 -0.0349
0.50 -0.1022 -0.0874 -0.3480 -0.0289
0.60 -0.0905 -0.0765 -0.2910 -0.0241
0.70 -0.0795 -0.0662 -0.0240 -0.0198
0.80 -0.0667 -0.0542 -0.0186 -0.0153
0.90 -0.0455 -0.0366 -0.0117 -0.0096
1.00 0.0000 0.0000 0.0000 0.0000
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More results, including those for rotationally syeinic shapes which depend enare contained in [11]. These results
can be used to determine the local skin frictiod &usselt numbers (Nu) for different values of Rithmumber,
pressure gradient and shape parameter for the gadgetries of flat plate, wedge shape, horizootihderand
sphereas can be foundin [4,9,11 and12].

5.0 Conclusion

The corrected Merk series of Chao and Fagbenléng4] been applied to the mixed convection flow mobfor the

general two-dimensional or rotationally symmetrmubdary layer flow. The resulting universal funas have been
obtained for the first five terms of the seriestlie case of two-dimensional and rotationally symimeftows. The

method has been applied with good results to thkednconvection flow over flat plate, wedge shapeizontal cylinder

and sphere. The first three terms being found teufécient in most cases.
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