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Abstract 
 

In this article, analytical solutions of Laplace’s equation in Parabolic Cylinder and 
Prolate spheroidal coordinate system were constructed. These two coordinate system can 
be used to described an interesting physical systems that are shaped like a parabolic 
Cylinder and the solution of these coordinate systems were not seen available in any 
literature. 
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1.0     Introduction 
The choice of a particular coordinate system is motivated by the geometrical form of the body under study and can result in a 
considerably simplified analysis of the problem [1]. 
The solution of Laplace’s equation in Cartesian and Polar coordinate systems were seen available in the literature while that 
of Parabolic Cylinder and Prolate Spheroidal coordinate system were not seen available in any literature. 
  In other words, to express boundary condition in a reasonably simple way, one must have coordinate surface that fit the 
physical boundaries of the problem [2, 3]. For instance, in calculating the effect of introducing a dielectric sphere into an 
electric field, one uses spherical Polar coordinates. Thus, the range of field problems that can be handled by a physicist will 
depend upon the number of coordinate systems with which the person is familiar [3]. 
  A spheroid is obtained by rotating an ellipse about one of its principal axis. If the ellipse is rotated about its major axis, a 
prolate spheroid is formed, while an oblate spheroid is formed if the ellipse is rotated about its minor axis. Spheroidal 
coordinates eliminate the cumbersome mathematical expressions obtained with rectangular coordinates and allow the simple 
determination of areas and volumes. They offer an obvious generalization of physical processes described in spherical 
coordinates and in addition yield interesting limiting cases of the infinitely thin, finite “wire” and the infinitely thin circular 
disk [4]. 
  Thus, in this study we solve Laplace’s equation in these two coordinate systems. 
 
2.0 An Analytical Solution of Laplace’s equation in Parabolic Cylinder coordinate 
If r, φ, z are cylindrical polar coordinates, the coordinater ξ and η may be defined by 

 
1

(2 )cos
2

= rξ ϕ ,    
1

(2 )sin
2

= rη ϕ  

Also, ξ  and η  are related to the Cartesian Coordinates by the following relations 

 2 21
( )

2
= −x ξ η ,  =y ξη  

Theξ = constant, and η= constant are orthogonal parabolic cylinders and , , zξ η are called parabolicic cylindrical 

coordinates. It is found that the direction cosines and the element of distance in parabolic cylinder coordinates are given 
respectively [5] 
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2 2
1 2h h= = ξ + η ,   3h 1=  

and 

( )( )2 2 2 2 2 2ds d d dz= ξ + η ξ + η +  

 Thus, the differential operator 2V∇  is given as [5] 
2 2 2

2
2 2 2 2 2

1 V V V
V

z

 ∂ ∂ ∂∇ = + + ξ + η ∂ξ ∂η ∂ 
(2.1) 

If Φ  is the electromagnetic scalar potential, then Laplace’s equation  2 0∇ Φ =  can be written in parabolic cylinder 
coordinate as 

2 2 2

2 2 2 2 2

1 V V V
0

z

 ∂ ∂ ∂= + + ξ + η ∂ξ ∂η ∂ 
                                                                                            (2.2) 

Let us now seek a solution separable of equation (2.2) of the form 
( , , z) U( )P( )Q(z)Φ ξ η = ξ η (2.3) 

 
Thus (2.2) becomes 

2 2 2

2 2 2 2 2

1 1 U 1 P 1 Q
0

U P Q z

 ∂ ∂ ∂= + + ξ + η ∂ξ ∂η ∂ 
(2.4) 

Or 
2 2 2

2 2 2 2 2

1 1 U 1 P 1 Q

U P Q z

 ∂ ∂ ∂+ = − ξ + η ∂ξ ∂η ∂ 
(2.5) 

Since the left hand side is a function of only ξ and η , and the right hand side is a function of only z, therefore equality  

holds,  
L.H.S = R.H.S = constant, 

Let us choose the constant to be 2m  , then 
2

2
2

d Q
m Q 0

dz
+ = (2.6) 

and 
2 2

2
2 2 2 2

1 1 d U 1 d P
m

U d P d

 
+ = ξ + η ξ η 

(2.7) 

For a special case in which m= 0, equation (2.7) yields 
2 2

2
2 2

1 d U 1 d P

U d P d
= ω = −

ξ η
(2.8) 

Where 2ω is a constant 
Equation (2.6) has solutions of the form 

i z

i z

e
Q(z)

e

ω

− ω


= 


(2.9) 

It was worthnoting that, for Q to be single-valued, ω  must be an integer i.eω∈�  
From (2.8), 

2
2

2

d U
U 0

d
− ω =

ξ
(2.10) 

With solution set given as  
i

i

e
U( )

e

− ωξ

ωξ


ξ = 


(2.11) 
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Also from (2.8) 

2
2

2

d P
P 0

d
+ ω =

η
(2.12) 

with solution as  
i

i

e
P( )

e

ωη

− ωη


η = 


(2.13) 

Thus equations   (2.9), (2.11) and (2.13) can be substituted into (2.3) to yield solutions to Laplace’s equation (2.2). 
1. An Analytical Solution of Laplace’s equation in Prolate Spheroidal coordinates 

Prolate Spheroidal Coordinates ( )u,v,ϕ  are related to the Cartesian Coordinates by [5] 

x lcosh u cos v= , y lsinh u sin vcos= ϕ , z lsinh u sin vsin= ϕ  

Whereu 0≥ ,  0 v 2≤ ≤ π , 0 2≤ ϕ ≤ π  

Also the direction cosines are 
2 2

1 2h h l cosh u cos v= = − ,  3h lsinh usin v=  (3.1) 

Also the Laplacian operator is defined as [5] 
2

2
2 2 2 2 2 2 2

1 V V 1 V
V sinh usin v sinh usin v

l sinh usin v(cosh cos v) u u v v l sinh usin v

 ∂ ∂ ∂ ∂ ∂   ∇ = + +    − ∂ ∂ ∂ ∂ ∂ϕ    
                                                                                                                             

(3.2) 
The alternative coordinates are defined as 

cosh uξ = , cos vη =  

And thus (3.2) becomes 
2

2 2 2
2 2 2 2 2 2 2

1 V V 1 V
V ( 1) (1 )

l ( ) l ( 1)(1 )

    ∂ ∂ ∂ ∂ ∂∇ = ξ − + − η +    ξ − η ∂ξ ∂ξ ∂η ∂η ξ − − η ∂ϕ    
(3.3) 

If Φ  is the electromagnetic scalar potential then we can write Laplace’s equation in Prolate Spheroidal Coordinates  as: 
2

2 2
2 2 2 2 2 2 2

1 1
0 ( 1) (1 )

l ( ) l ( 1)(1 )

    ∂ ∂Φ ∂ ∂Φ ∂ Φ= ξ − + − η +    ξ − η ∂ξ ∂ξ ∂η ∂η ξ − − η ∂ϕ    
 (3.4)  

Now let us seek a separable solution of Laplace’s equation (3.4) of the form 
W( , )Q( )Φ = ξ η ϕ  (3.5) 

Then equation (3.4) becomes 
 

2 2 2
2 2

2 2 2

1 Q ( 1)(1 ) 1 W 1 W
( 1) (1 )

Q ( ) W W

    ∂ ξ − − η ∂ ∂ ∂ ∂− = ξ − + − η    ∂ϕ ξ − η ∂ξ ∂ξ ∂η ∂η    
 (3.6) 

Thus, we can write 
2

2
2

1 Q
m

Q

∂ =
∂ϕ

(3.7) 

and 
2 2

2 2 2
2 2

( 1)(1 ) 1 W 1 W
( 1) (1 ) m

( ) W W

    ξ − − η ∂ ∂ ∂ ∂ξ − + − η =    ξ − η ∂ξ ∂ξ ∂η ∂η    
(3.8) 

Where  2m  is a constant of separation.  Now let W( , )ξ η  be of the form: 

W( , ) U( )P( )ξ η = ξ η  (3.9) 

Then equation (3.8) becomes 
2 2 2 2 2

2 2
2 2 2 2

( 1)(1 ) 1 U 1 P m ( )
( 1) (1 ) 0

( ) U P ( 1)(1 )

    ξ − − η ∂ ∂ ∂ ∂ ξ − ηξ − + − η − =    ξ − η ∂ξ ∂ξ ∂η ∂η ξ − − η    
(3.10) 
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The solution of (3.7) is of the form  

im

im

e
Q( )

e

ϕ

− ϕ


ϕ = 


 (3.11) 

Now consider a special case of (3.10) in which m = 0, then 

2 2d dU
( 1) U

d d

 ξ − = α ξ ξ 
 (3.12) 

and 

2 2d dP
(1 ) P

d d

 − η = −α η η 
                                                                                                                    (3.13) 

Where 2α  is a separation constant, 
Equation (3.12) can be written as 

2 2d dU
( 1) U 0

d d

 ξ − − α = ξ ξ 
 (3.14) 

Let 2 l(l 1)α = + , where l is arbitrary, then (3.14) becomes 

2d dU
( 1) l(l 1)U 0

d d

 ξ − − + = ξ ξ 
 (3.15) 

With solution as 
l

2 2

(l 1)
2 2

( 1)
U( )

( 1)
+−


ξ −ξ = 

 ξ −

(3.16) 

Also equation (3.13) can be written as 

2d dP
(1 ) l(l 1)P 0

d d

 − η + + = η η 
                                                                                                           (3.17) 

Equation (3.18) is simply the ordinary Legendre’s equations of order l. Hence the solutions are the Legendre polynomials 

{ }l l 0
P

∞

=
 (3.18) 

Conclusion 
With the solution of Laplace’s equation in Prolate spheroidal and Parabolic cylinder Coordinates, interesting problems in 

electrodynamics can be solved in these systems. For instance, spheroidal antennas can be used to model a variety of different 
antenna shapes, from wire antennas through cylindrical antennas, to disk antennas. Thus, for antennas that are long and then, 
prolate spheroidal coordinates fit the geometry more closely [6], [7]. 
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