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Abstract

Chaos is a term common in nonlinear dynamics. Incfamost researches
are done to investigate or exploit the concept dfaos in dynamical systems.
Various tools for investigating the behaviours ofymlamical systems, without
solving analytically, have been developed over tfears. One of the common
techniques is the computation of the Dimensions.

Capacity Dimensions, Information Dimensions, Lyapom Dimensions, etc.
are different types of dimensions and they are natreecording to how they are
computed.

Kaplan and Yorke (1979) conjectured that the Lyamuwndimension and
Information dimension are equal. This paper veriflethis conjecture for the
Lorenz and the Duffing attractors.
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1.0 Introduction

An attractor is a set towards which a trajectonydgeas the system evolves in time. When theresslae attracting
solution, motions that start close enough to thmetbr remain close to it as time goes to infinithe trajectory can be
periodic or chaotic but there is no restrictiontbe trajectories other than the fact that they iarobpse to the attractor.
An attractor can be a point (in which case it ifecha point attractor), a set of points, linesifaces, volumes or a
complicated set of fractal structure (strange ettrs). When the geometry of an attractor is nailgalefined by the
classical analytical methods, then such an attrégiwonsidered atrange attractor

A system is chaotic if a small change in the ihitianditions would cause a great change in theebaof the system.
This sensitive dependence on the initial condiisoreferred to abutterfly effect

Several techniques have been developed to investiga behaviours of dynamical systems. These rdstimezlude the
Melnikov approach, Normal form theory [1], by exipeent ([2] and [3]), investigation of numerical égration by
varying parameters [4], modern topological anal{Sjsdimension, Lyapunov exponents etc.

Some of the different types of dimensions includep&ity Dimension, Information Dimension, and Lyapwu
Dimension (also referred to as Kaplan-Yorke Dimenki Although there is no relationship in the cédtion of
Lyapunov dimension and Information Dimension, Kapdand Yorke [6] conjectured that the results agaéq

This paper therefore investigates the conjectureévio common attractors in nonlinear dynamics; Ibarend Duffing
attractors.

2.0  Variational Equation and Characteristic Multiplier

If the starting points of two trajectories diffey Bn infinitesimal quantity, then the rate at whibky attract or repel can
be measured by théariational equation

The Variational equation for the initial value plaim (1VP)

x=1f(x1), x(t)=x% @)
with solution ¢(t,ty, X, ) is

0 0
Edb(t,to,xo):&f(x,t)dJ(t,tO,xo), Pt FL @
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Where
0
qD(tO,to,xo) = a¢(t,t0,xo).

The solution to this Variational equation is fouoygl appending the Variational equation to the oagieguation so that
we have a system of the form [8]

“ f(x,1)
{ }: 0 3
(.1, %,) &f(x1t)¢(t1to’xo)

with the initial condition

xt) | _[% “
q)(to’to’Xo) In '

The eigenvalues of the Variational equation isecththeCharacteristic multipliefalso called=loquet multipliers.
For an autonomous system, the Variational equati@m equilibrium pointXwill be

0 N_ 0 . - o\ —
aq)(t,x) ™ fX)P(L,X), PG, Xx)= 1|, (5)

and with a solution matrix
_ 9 (5t
d(t, X) = e~ (6)
0 .,
and supposing the eigenvaluesbef f(X) tobeA, A,, ..., A then A and M are related by the formula
X

m = ¢’ (7)
wherel > Ois the period of the corresponding non-autonomgsaea.

1. Lyapunov Exponents [7]
Lyapunov exponents determine whether a systemaistichor not by quantifying the sensitivity to aadge in the initial

conditions. We define the Lyapunov exponents ahéral condition %o of a flow as
A=limiin|m(9| i=1,..n (provided the limitwsts),

®)

where M ’s are the eigenvalues of the solutié(t, X, ) to the Variational equation.

2. Dimensions

In classical geometry, dimension is defined asnii@mum number of coordinates needed to specifpiatpuniquely
(and they are usually integers). Meanwhile, foryaainical system, the dimension is defined as thabsu of state
variable needed to describe the dynamical system.

Dimension of a non-chaotic attractor is always raeder but that of a strange attractor are norgérge A non-integer
dimension is calleétactal dimensiof8].

2.1 Information Dimension [8]
Let an attracto be covered with volume elements (lines, squaserss, cubes, etc.), each of sftlend suppose it

requires a minimum 01N (e number of volume elements to covér then we define thimformation dimensioms
H(e)

Diy = L!TJ in(e)” ©)
where
N(e)
H(@E=> PInP (10)
i=1
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andPi = relative frequency with which a trajectory enténe i-th volume element antf (€) is the entropy. In this
case, the number of times a trajectory visits aib@iso considered in the box counting procedure.

2.2 Lyapunov Dimension
This dimension was introduced by Kaplan and Yore [t uses the Lyapunov exponents to calculatedihgension.

Suppose the Lyapunov exponents @eA,, ..., A, and are ordered so thd; 2 A, =---= A . Now, letj be the

A+, 20

largest integer for which the suirt , we define the Lyapunov dimensidn

A FA A
D =j+ (11)
A
« For an equilibrium point,we have tbﬁ}t< Oforalli, and hencg=0 andD_=0.
A
« For a limit cycled, =0, A, <0, = A, <Othen D, :l+m =
2
) ) ) A
« For chaotic attractor inB3 A, >0, A, =0, A, <Osothaj=2and D, =2+ m
3

The Kaplan-Yorke conjecture [6] states tBat = D, but this conjecture is yet to be proved.

3.0 The Models

The two models considered in this paper are therhoand the Duffing equations.

The Lorenz system is a system of three ordinargmdifitial equations used by Lorenz Edward in 1968implify the
mathematical model of atmospheric convection [8f Torenz equation is

Xx=0(y- X,
Yy=IX—y= Xz (12)
z=xy-fz

The Lorenz equations arise in simplified models lawers, dynamos, thermosyphons, brushless DC mattectric
circuits, and chemical reactions [10, 11].
The forced Duffing oscillators [13] is given as

X+ax+ Bx+ X = ycoswt, (13)
Where @ = Ois the damping constan}8X+5X3 is the nonlinear elasticity angCOSCut is the periodic forcing.
ChoosingX; = aX, the system (13) can be reduced to a systeme¢ thrdinary differential equations;

X = X%,
X, =—a%,—fBx—-0X+ycosx, (14)
% = @

4.0 Summary

The Lyapunov exponents of the Lorenz attractorscateulated to be 0.90, 0.00, -14.54. Using thenfda (11), the

Lyapunov dimension is calculated to be 2.06. THermation dimension for the Lorenz attractor isoafeund to be

equal to 2.06.

The Lyapunov exponents computed for the Duffingaator are 0.10, -0.15, 0.00 and the Lyapunov d#imen(using

formula (11)) is 2.66 and the Information dimensfoand to be 2.66.

The Kaplan-Yorke conjecture is therefore correctiie Lorenz and the Duffing attractors up to tvegichal places.

It is important to reiterate that this is not enloig confirm that the conjecture is true in allessA more rigorous proof
is needed to prove the Kaplan-Yorke conjectureafiocases.
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