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Abstract 
 
The concept of a weak solution of a boundary value problem is investigated. 

The existence and uniqueness of a weak solution is established. Weak solutions 
of some boundary value problems are obtained using direct variational method. 
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1.0     Introduction 
The study of Weak Solutions of Boundary Value Problems is an interesting one, both to engineers, scientists and 
mathematicians. This work is designed to study the solutions of boundary value problems with discontinuous data and do 
not have continuous partial derivative of order 2k in a given domain Ω. 
The classical theory of partial differential equation studies the existence and uniqueness of solutions of boundary value 
problems if the given data are smooth. This classical theory fails if the given data fail to be smooth. For this reason, it is 
necessary to generalize the concept of differentiation. This concept of generalization is called distributional or weak 
derivatives. It leads to the weak solutions of boundary value problems. 
By a boundary value problem we mean the problem of finding a solution of a differential equation in a given domain Ω 

Rn which satisfies prescribed conditions on the boundary δΩ. 
Boundary value problems are of common occurrence in Engineering and Science. To be useful in application, boundary 
value problems should be well posed. A boundary value problem is said to be well posed if the solution: 

i) Exists 
ii)  Is unique, and 
iii)  Depends continuously on the given data.  

The solution of a boundary value problem is said to be stable if any small change in the given data produces a small 
change in the solution [1,2,3].  
Boundary value problems are well posed for elliptic partial differential equations.  
(a)ELLIPTIC EQUATION 
The equation:  
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(b) UNIFORMLY ELLIPTIC EQUATION 
 We consider the partial differential equation [4] 
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in the domain Ω Rnwhere f(x) є L2 (Ω) and the functions aij(x) together with their first order partial derivatives as well 

as the function C(x) are continuous in the closed domain 
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where P is a positive constant and 
.0)( ≥xC          (1.3) 

hold. 
 
The partial differential equation (1.1) is said to be uniformly elliptic if (1.2) is satisfied. 
 For the partial differential equation (1.1), we consider three different types of boundary conditions: 
  on       0 Ω= δu         (1.4a) 

......0 Ω= δonNu         (1.4b) 

( )00  ,    ( ) 0    on   Nu u sσ σ σ δ+ = ≥ ≥ Ω      (1.4c) 
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ni = cos(ni,xi), i = 1,2,…n are direction cosines of the outward normal to the boundary δΩ. 
 The expression (1.4d) is frequently called the derivative in the direction of the co-normal. 
 For instance, in the Poisson’s equation [5] 
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2.0  Materials and Methods 
Both the data and the solutions of boundary value problems in partial differential equations are functions defined on 
certain domain and spaces. In order to formulate precise theorems of existence, uniqueness and continuous dependence 
of the solution of boundary value problems, it is essential to specify the spaces in which these functions lie and to give 
precise meaning of convergence in these spaces. 
L2 – SPACE: A real function u(x) is said to be Lebesgue Square Integrable in the domain Ω if the integral 

2
  u dx

Ω
∫

         (2.1)

 

converges. 
From the above definition, it can be seen that every function that is continuous in the closure of the domain Ω is square 
integrable [6, 7]. 
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Convergence in the Space L2 (Ω) 

 We say that a sequence of functions un(x) in L2(Ω) converges in the space L2(Ω) to a function ( )ΩL u 2∈  if [8] 
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Cauchy Sequence 

A sequence of functions ( )ΩL  2nu ∈  is called Cauchy sequence in L2(Ω) if [8] 
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Every sequence that is convergent in L2(Ω) is a Cauchy sequence. A normed vector space is complete if every Cauchy 
sequence in the space converges to a vector in the space. L2(Ω) space is complete [5] 
 INNER PRODUCT SPACE 
 Let X be a vector space over a scalar K (real or complex). An inner product on X is a scalar valued function 

KXXP →×:  
that associates each pair of vectors x and y in X, a scalar yx,  in K called the inner product of x and y such that for all 

x, y, z є X and  α  є K has the following properties[9,10]. 
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A vector space X with an inner product .,.  defined on it is called an inner product space that is( ).,.X, . An inner 

product space is also called Pre-Hilbert space. 
HILBERT SPACES 

An inner product space X is complete if every Cauchy sequence { }nx in X converges to a vector x in X. A complete 

inner product space is called a Hilbert space 
OPERATORS IN HILBERT SPACE 
Let H1, H2 be Hilbert spaces and 1 2S:H H K× →  a bounded sesquilinear form. S has a representation of the form: 

( , ) ,S x y Ax y=
       (2.3)

 

where 21: HHA →  is a bounded linear operator. A is uniquely determined by S and 
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 Let RHHb →×:  be a bounded bilinear form. Then there exists a bounded linear operator HHA →:  
such that 
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Theorem (Lax - Milgram) [5, 11]: 

Let RHHb →×:  be a bilinear form which is 
i) Continuous 
ii)  Coercive in H. 
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Given any continuous linear function RHf →: , there is a unique vector u є H such that: 

fuand

xfxub

H α
1

)(),(

≤

=
 

SOBOLEV SPACE 
Let Ω be a non-empty open subset of Rn. Then for any non-negative integer m and for any real number p, ∞<≤ p1 , we 

define Sobolev space of order m denoted by 
,
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By using the properties of norm of Lp(Ω), it follows that )(ΩW
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is a normed vector space. If p=2, then 
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Wm,p(Ω) ,1≤p<∞ is a Banach space [11]. 
In the classical theory of partial differential equations (PDEs), we seek the solution u which satisfies some relations 

including its partial derivatives in some domain nR⊂Ω . The existence and uniqueness of the solution u of well known 
problems of PDEs can be proved if the given data are smooth. 
 This classical theory fails if the given data fail to be smooth. To take care of this situation, it is necessary to 
generalize the idea of differentiation. This concept of generalization is called distributional or weak derivative defined as 
follows:  

 Let f, g є L1, loc(Ω) (class of measurable functions which are Lebsegueintegrable) then g = D
α

f is called the 

distributional (weak) derivatives of f of order 
α

 if 
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We observe immediately that the right hand side of equation (2.15) is defined even when f is not differentiable but just 
locally integrable [5,9]. 
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3.0  Weak Solutions of Boundary Value Problems 
3.1   Basic Definition of Weak Solution  

Let )
0

(ΩCv ∞∈ , that is v is a function with compact support. Functions that are infinitely differentiable with compact 

support in Ω are equal to zero on some neighbourhood of the boundary of the domain. 
 We consider the partial differential equation: 

  in      Ω=∆− fu
       (3.1) 

If we multiply (3.1) by )
0

(ΩCv ∞∈  and integrate over the domain Ω with respect to x, we have: 
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(Renardy and Rogers, 1980). 
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 If )(Ω∉ Cf , that is f is not a function that is continuous over the domain Ω then (3.1) does not have a 

classical solution but a weak solution. 

 Let us assume that f є L2(Ω). This only makes sense if each of )(2 Ω∈
∂
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L
x

u

i

. This is only possible if 
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Ω∈Wu . This fact makes it possible to introduce the following definition sufficiently general for our purpose of 

the weak solution of (3.1). 
 
3.1.1  Definition (3.1) 

 Let )(Lf  ,  )( 2

1

2
Ω∈Ω∈Wu . If the condition (3.4) is satisfied for the function u(x), then we say that u(x) 

is the weak solution of (3.1). 
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 By definition, the weak solution is a function )(
1

2
Ω∈Wu which needs not have in Ω derivatives of the 

second order, but has only generalized derivatives of the first order. 

 Nevertheless, if )(  and  )(2 Ω∈Ω∈ CfCu and U(x) is the weak solution of (3.1), that is condition (3.4) is 

satisfied for )
0

(Ωv C
∞∈  then u(x) is a classical solution [6,1, 10]. 

 
3.1.2  General Case 
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be the differential operator of order 2k, then 
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is the partial differential equation of order 2k. Let )
0

(Ωv C
∞∈ , the space of infinitely differentiable functions with 

compact support or test functions. 

 We multiply (3.6) by )
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If )(Ω∉ Cf ,(that is f is not a function that is continuous over the domain Ω), then (3.6) does not have a classical 
solution but a weak solution. 

 Let )(2 Ω∈ Lf . This only makes sense if each of )(2 Ω∈ LuD j
. This is only possible if )(

2
Ω∈W

k
u . 

 Hence in general terms, we define the weak solution of Boundary Value Problems as follows: 
Definition (3.2) 

Let )(Lf  ,  )( 22
Ω∈Ω∈W

ku . If the condition (3.7) is satisfied for the function u(x), then we say that u(x) is the 

weak solution of (3.6). 
 
4.0  Existence And Uniqueness Of Weak Solution Of Boundary Value Problem 
The existence and uniqueness of weak solution of boundary value problem is seen clearly under the assumption that the 
bilinear form ((u, v)) is of the v-elliptic type, and is proved by Lax-Milgram theorem which is a generalization of Riesz 
representation of linear functional. 
 
3.3.1  Theorem 
Let H be a Hilbert space with the inner product (u, v). Let ((v, u)) be a bilinear form of the differential operator of the 

partial differential equation (3.8) defined for HuHv ∈∈   , and such that there exist constants 0  ,  0 >> αk
independent of u and v such that HuHv ∈∈∀   ,  ; 
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then every bounded linear functional can be represented in the form 

( )( )         ,    , HvFv zv ∈=       (4.3) 

where z is an element of the space H uniquely determined by the functional F and 
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The proof of this theorem is based on Riesz representation theorem which makes it possible to express every bounded 
linear functional Fv in H as [1,6] 
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3.3.2  Definition (3.4) - (V-Ellipticity) 
 Let the bilinear form ((v, u)) and the space V be given. The form ((v, u)) is called v-elliptic if there exists a 
constant α > 0 such that for  

Hv ∈∀  we have 

( )( )   vv,
2

vα≥        (4.6) 

The definition of V-ellipticity of the bilinear form ((v, u)) and Lax-Milgram theorem makes it possible to formulate an 
existence and uniqueness theorem on the weak solution of boundary value problems [6]. 
 
3.3.3  Theorem 
Let the boundary value problems be as given 
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5.0  Construction of Weak Solution of Boundary value. Problem with Homogeneous 
 Boundary Conditions 
 By Boundary value problem, with homogeneous boundary conditions we mean the problem (4.7) – (4.10) for 
which 
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 ((u, v)) satisfies the inequalities 
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Then the set of functions v1(x), v2(x) …vn(x) forms a base in the space V with the inner product 
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4.2.1  Theorem 
 Consider the problem (5.1) – (5.2). Let the form ((u, v)) satisfy the assumptions (5.3) – (5.5) and the functions 
V1(x), V2(x) … Vn(x) constitute a base in V. Let the system of equations be formed for all positive integer n 
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Then the sequence of functions 
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converges in the space V to the weak solution U(x) of the problem (5.1) – (5.2). 
Proof 
Since the determinant of equation (5.8) is not equal to zero, (5.8) is uniquely solvable thus Cni ,(i =1, …n) are uniquely 
determined. 
Also we want to show that the unknowns Cni  , … Cnnare equivalent to the condition that the expression 
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wherebniare arbitrary real numbers and u(x) be a weak solution of the problem. Expanding (5.11), we have 
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Since ((v, u)) = ((u, v)) we have  
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The expression (5.12) is a quadratic function in n variables bni. For the expression (5.12) to assume the extreme 
(minimal) then it is necessary that its partial derivatives with respect to bni be equal to zero for bni = Cni. 
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From (5.2) we have 
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Putting (5.14) into (5.13) and dividing by 2 we have 
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This now becomes (5.8). Since (5.8) is uniquely solvable, it follows from the condition that the expression (5.8) be 
minimal among all expressions of the form (5.9), and then Cniare uniquely determined. 
 Consequently, the conditions (5.6) and (5.8) are equivalent. 
From (5.2): 
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 More over, the function (x)...v (x) v(x),v n2i constitutes a base in the space V; hence the function u(x) 
may be approximated in this space to an arbitrary accuracy by a suitable linear combination of these functions. 
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Since the constants Cni are determined by the condition that the expression (5.8) be minimal among all expression of the 
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5.0 Summary and Conclusion 
Boundary value problems governed by partial differential equations arise in many real-life situations. In most cases the 
data are not continuous (smooth). Classical solutions become unattainable. This work has helped to handle the failure of 
the classical theory of partial differential equations by providing solution for boundary value problems whose data are not 
smooth. 
 We have shown how such problems can be solved first by reducing them to variational problems. Appropriate 
function spaces are identified and approximate weak solutions are obtained by direct variational method (Ritz method). 
We hope that a wide range of engineering problems can now be solved. 
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