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Abstract 
 
In this paper we use the centre to determine the minimum and maximum 

nilpotency classand the corresponding irreducible representations for finite non 
abelian groups. A linear relationship between the centre,nilpotency class and the 
irreducible representation of non abelian groups was derived. 

  

 
1.0     Introduction 
The definitions and theorems required for the understanding of the topic are covered here. This forms the background for 
the results in this paper. 
1.1  Definition  
The centre Z(G) of a group is the set of elements z in Z(G)  that commute with every element q in G. That is: 

Z(G) = {z∈G : zq = qz}, for all q∈G. 
We note that Z(G) is a commutative normal subgroup of G. The quotient of G by Z(G) is isomorphic to the inner 
automorphism of G.  
The group G has trivial centre if Z(G) = {e} where e is the identity element of G and the centre is said to be minimum. It 
is maximum when G is abelian and we have Z(G) = G..We call the elements x∈Z(G) central elements and the elements y
∈G- Z(G) non central elements.  However our work is based on non abelian groups. That is, where: 

{e} <Z(G) < G. 
1.2 Definitions  
(i) If a, q ∈G, we say that a is conjugate to q if there exists an element g ∈G such that gq = ag. The conjugacy class of a 
denoted by C(a) is the set of all elements of G that are conjugates to a. That is: 

C(a) = {g-1ag : g ∈G}.  
We observe that the conjugacy classes of a group are disjoint and the union of all the conjugacy classes forms the group. 
(ii) The centralizer CG(q) of an element q in G is the set of all elements g∈G that commute with q. Equivalently  we 
write: 

 CG(q) = {g∈G:gq = qg, for any q∈G}   
 The index of CG(q)  in G is the size of the conjugacy class C(q) of q in G. That is: 

|C(q)| = |G: CG(q)|. 
 In particular |C(q)| divides |G|. If q∈Z(G) then CG(q) = G. 
From [1], we have: 
1.3 Theorem 
If G is finite and H is a subgroup of G then |H| divides |G|.  More over the number of distinct left cosets of H in G is 
denoted by |G:H|and 
|G:H|= |G|/|H|. 
The next theorem is from [2] 
1.4 Theorem   

|G| = ∑|G: CG(qi)|          (i), 
    where the sum runs over the elements from each conjugacy class of G.  
From 1.2(ii), equation (i) becomes  

|G|= |Z(G)| + ∑|G: CG(qi)|         (ii )  
The sum in (ii ) runs over qi from each conjugacy class such that qi is not an element of Z(G). From  1.2 and equation (ii ) 
above we have:  

|G|=|Z(G)| + ∑|C(qi)|         (iii )  
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1.5Definition 
The subgroup G/ or [G,G] of a group G generated by the elements of the form sts-1t-1 , for all s, t ∈G is called the derived 
group or commutator subgroup of G. We write [s,t] = sts-1t-1 and call this the  commutator of  s and t. Thus:  
                                    G/ = { [s,t] : s, t ∈G }. 
The commutator [s,t] is an element of G that measures the failure of the elements s and t  to commute. The derived 
subgroup G/ is normal in G and the quotient G/G/ is called the abelianization of G which we denote by Gab where ab 
stands for abelianization. It is the largest abelian quotient of G. 
In a group the centre and the commutator subgroups play dual roles. Any subgroup of G that is contained in Z(G) is 
normal and abelian in G. Since the centre is abelian. While any subgroup of G that contains [G,G] is normal in G since 
G/[G,G] is abelian . 
For a non abelian group a measure of how close the group is to being abelian could be based on how close the centre is to 
G or how close the commutator subgroup is to the identity.  The bigger G/ is the less abelian G is.  
1.6Definition  
 A normal series for a group G is a chain of subgroups  

0 1 ... {1}kG G G G= ⊃ ⊃ ⊃ = -------- (i)  

 in which 1i iG G+ < or  

1 2{1} ... kG G G G= ⊂ ⊂ ⊂ = --------- (ii) 

In which 1 1iG G+<  

The quotient groups 1/i iG G+ and 1 /i iG G+ for the normal series (i) and (ii) respectively are called factors of the 

normal series. The series in (i) is said to be a descending series and the one in (ii) ascending. A normal series is abelian if 
all the factors are abelian and of prime order. If G admits a normal series whose factors are abelian, so does any subgroup 

or quotient group of G. Where G and  its image G
−

 admit the same then so is their product. The next theorem 
characterises the above series based on the characterisation of the commutator subgroups. 
From [3], we get that: 
1.7Theorem  

The series in 1.6(ii) is abelian if and only if [ 1[ , ]i i iG G G+⊂  and the one in 1.1(i) is abelian if and only if 

1 1[ , ]i i iG G G+ + ⊂  for all i. Furthermore, (i) and (ii) are called central series (cs) if and only if 

1 1[ , ] [ , ]i i i iG G G and G G G+ +⊂ ⊂ respectively. For ascending central series it is required that[ ]iG G<  is necessary 

for / iG G  to be a group. Also 1 / ( / )i iG G Z G G+ ⊂ implies that 1 /i iG G+  is abelian. The converse is false as 

abelian subgroups need not lie in Z(G). 
1.8 Remark  
A normal series is really a ‘filtration’ of G rather than ‘decomposition’ of G. This is so as it is a way of filling up G rather 
than breaking G apart. However, any group that is a direct product of finitely many groups admits a normal series whose 

factors are (isomorphic to) the subgroups appearing in the direct products. For finite abelian groups,  if 1 1iG G+< are 

successive terms in a composition series, the quotient 1 /i iG G+  is abelian simple group. Any central series is an abelian 

series as 1 / ( / )i iG G Z G G+ ⊂  implies 1 /i iG G+  is abelian. A normal series can be refined by inserting subgroups 

between the subgroups already in the series to a point of no repetition. That is to the point when the factors are simple or 
trivial. Such a series is said to be unrefinable.   
1.9Definition 
An unrefinable normal series that includes no repetition is called a composition series.Any two composition series of a 
finite group G have the same length and the composition factors obtained from the series are the same (up to order of 
occurrence and isomorphism). That is a group determines its composition series or factors (up to isomorphism). 
1.10 Definition  

The series (0) ' '' ... {1}G G G G= ⊃ ⊃ ⊃ ⊃ is called the derived series of G. If it is abelian then G/={1} with the 

property that (0) (1) /, [ , ]G G G G G G= = = , 
2 '' [ ', ']G G G G= =  and ( 1) ( ) ( )( ') ' [ , ]i i iG G G G+ = = . If ( ) ( 1)i iG G +=  then ( ) ( )i jG G=  for all i>j. 
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From  [3] we have: 
1.11 Theorem  

If  0 1 ... {1}kG G G G= ⊃ ⊃ ⊃ =  is an abelian series for G then, ( )i
iG G⊂  for all i. In particular if G has an 

abelian normal series then the derived series is a normal series. 
Proof:  

We have ( )
0

oG G G= = , since / iG G  is abelian (by hypothesis) '
iG G⊂ . Assume that ( )i

iG G⊂ , since

1/i iG G+ is abelian, we have that '
1i iG G+⊂ so ( 1) '

1( ) 'i i
i iG G G G+

+= ⊂ ⊂  

Suppose G has a normal series with abelian factor we index the series as in 1.6(i) since normal series have only finitely 

many subgroups in it. Then for all i,( )i
iG G⊂  so ( )iiG  is trivial for large i since iG  is trivial for large i. Therefore the 

derived series of G reaches the identity and is a normal series. 
1.12Remark  
 In 1.11 we have that derived series controls the decay of any abelian series from below. It also shows that when G 

admits an abelian normal series its derived series is its shortest descending series and {1}kG = implies ( ) {1}kG = . So no 

abelian series can reach the identity before the derived series does.If the series in 1.6 is an abelian series for G then G(i) ⊂
Gi for all i. In particular if G has an abelian normal series then the derived series is a normal series. 
Next is a classical definition 
1.13 Definition  
The ascending series of subgroups: 

0 2{1} ( ) ( ) ... ( )kZ G Z G Z G= ⊂ ⊂ ⊂  with 1( )Z G G<  for all i such that 1( ) ( )i iZ G Z G+⊂  forall i is called 

upper central series (ucs) of G. If G is abelian then 1( )Z G G=  and the union of the UCS is called hypercentre. 

If  in 1.6, (ii) is a centralseries for G then ( )i iG Z G⊂  for all i. In  particular if G has a normal central series (ncs) then 

the ucs is a normal series and we have that ( )i iG Z G⊂  implies ( )kZ G G= . 

1.14 Definition  

 The series of the form 0 ... {1}iG G G= ⊃ ⊃ is called lower central series (lcs) of G. It has the property that the iG  are 

subgroups where: 

0 1 2 1 1, [ , ] ', [ , ] [ , ]G G G G G G G G G G G= = = = =
.  

That is 1 [ , ] [ , ]i i iG G G G G+ = = , 0iG >  and 1 1 1/ ( / [ , ])iG G Z G G G+ ⊂ .  

By this the iG  commute with any element  in G and so 1 1 1/ ( / )i iG G Z G G+ +⊂ . 

Observed that the iG  form a descending central series of G. Inductively, 1 , iG G G G< <  for all i. As with derived 

subgroups G(i), the Gi might form an ascending central series for G since they may never reach {1}. 
 The theorem that follows is a collection of the properties of the series in 1.6according to [3]. 
1.15 Theorem  

 If 1.6(ii) is central series for G then ( )i iG Z G⊂  for all i particularly if G is an ncs then the ucs is a normal series. 

1.16Definition  
 A group is said to be solvable if it has a chain of subgroups 

0 1{1} ... nG G G G= =< < <  where each 1i iG G+<  

 with abelian quotient Gi+1/Gi. If subgroup H of G isnormalin G then G is solvable if and only if H and G/H are solvable. 
This implies that G is not solvable if there exist subgroups H K G≤<  where G/H is non abelian. From this we have 
that solvable groups are diametrically opposed to non abelian simple groups. Equivalently a group G is solvable if it 
satisfied the following equivalent conditions: 
(a) G has an abelian normal series; 
(b) G(i) is trivial for some i. 
1.17 Remark  
The minimum value r such that G(r)={1} is called the derived length or solvable length of G where G is solvable and ris 
the number of factors in the derived series such that G(r) is trivial. The trivial group is the only group for which r=0. For 
non trivial abelian groups  r=1.  However for non abelian group r=2. The commutator subgroup of such groups is abelian 
so also the centre. 
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Generally  for n>0, G is solvable of length r≤n where there is an abelian subgroup H not necessarily Z(G) such that G/H 
has solvable length ≤n-1. The derived length of subgroup or quotient group is less than that of the group. However the 
derived length of a direct product is the maximum length of the factors. 
For G=Sn, G is solvable if n≤4. If G=D2n G is solvable for n  ≥2. In particular G has solvable length of 2 for n>3. We 
state the next theorem  from [3] for reference. 
1.18 Theorem  
 Solvability is closed under subgroup, homomorphic images, quotient groups and direct products. Moreover if N is 
normal in G then G is solvable if and only if N and G/N are. 
1.19 Definition  
Let p be a prime number. Then G is called ap - group if the order of G is a positive power of p. 
1.20Definition  
A group G is nilpotent if it has a normal series 

1 2{1} ... kG G G G= ⊂ ⊂ ⊂ = where  1 1 1/ ( / )i i iG G Z G G+ +≤ . 

This series is called central series of length n. The minimal such n is called nilpotency class of G. Observe  from above 

that nilpotent groups are solvable since 1/i iG G+  is abelian. Furthermore nilpotent groups have  non trivial centres. 

Consequently p - groups are nilpotent groups. 
From [4] we have the famous Burnside theorem which says that groups of order divisible by atmost two primes are 
solvable in the next theorem. The details of the proof is given by[5]. 
1.21Theorem  
Every group of order paqb where p and q are distinct primes is solvable. 
Proof 
If a=0 or b=0 G is solvable. By induction on |G| we need only proof that if a non abelian group of order  pa qb, for a,b>0 
contains a proper normal subgroups N≠{1}  then N and G/N both have orders of the form paqb. Thus N and G/N are 
solvable by induction hypothesis hence G is solvable. 
The conclusion of Burnside’s is generally false when the order of G has three prime factors. By Sylow theorems a group 
G of order pa qb has subgroups P and Q of orders pa  and qb  respectively with the property that if  P∩  Q is trivial, then 
G=PQ .  
This leads us to the next theorem from [3] which is a generalization of Burnside’s paqb theorem using nilpotent subgroups 
in place of prime power subgroups. 
1.22Theorem  
If G is a finite group and G=MN where M and N are nilpotent then G is solvable. More generally a finite group G is 
solvable if and only if there are nilpotent subgroups N1, N2, ...,  Nr such that G= N1 N2 ...  Nr with Ni Nj=Nj Ni 
Next is Feit Thompson’s theorem (1963) from [6]. Thisis the deepest result about solvability of finite groups and 
illustrates the special role of the prime 2 in group theory. 
1.23Theorem  
Groups of finite odd order are solvable. 
1.24 Definition  
For prime p if the size of a group G is pkm with p not dividing m, then subgroups of index pk are called p sylow 
complements or sylow complements. This  is justified by the fact that if T is a p sylow subgroup and H is a p sylow 
complement then T∩  H is trivial and the set TH coincides with the whole group. 
Thetheorem that follows shows the relationship between solvability and Sylow theorems proved by [3]. 
1.25Theorem  

(i) A finite group is solvable if and only if every Sylow subgroup of G has a complement. 
(ii)  A finite group is nilpotent if and only if every Sylow subgroup of G has a normal complement. 

1.26Theorem  
If a finite group satisfies the converse of the Lagrange’s theorem  then it is solvable. 
Proof  
Such a group contains p-Sylow complements for every prime p dividing the order of G so the group is soluble from 
1.25(i) 
1.27Remark   
If all the factors of the normal series of a group are abelian then G is abelian. A group satisfying the converse of 
Lagrange’s theorem is called Lagrangian. Every nilpotent group is Lagrangian and the Lagrangian groups lie strictly 

between nilpotent and soluable finite groups. S4 is lagrangian but not nilpotent,4
A

 is soluble but not lagrangian . In 1.25 
if we insist that the complement to the Sylow subgroup in i to be normal than just to exist then it will provide a 
characteristic of finite nilpotent groups. 
1.28 Definition  
The chain of subgroups 0 1{1} ( ) ( ) ... ...Z G Z G= ⊂ ⊂ ⊂ with 0 ( ) {1}Z G = is called the acs or ucs of G. Given  

Zi(G), then Zi+1(G) is the normal subgroup of G corresponding to the centre of Z(G)/Zi(G). So that  
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Zi+1(G)/Zi(G)=Z(G/Zi(G)). If Zi(G)= Zi+1(G) then Zi(G) = Zj(G) for all j>i. In this case Z(G)/Zi(G) is trivial. 
From [7] and [8] nilpotent groups are characterized as follows. 
 
1.29Definition 
Let G be a group then: 
(1) G is nilpotent if it is a direct product of its Sylow subgroups, 
(2) If G is nilpotent then any proper subgroup of G is properly contained in its normalisers, 
(3) If G is a p - group then it is nilpotent. 
Consequently G is nilpotent if Zi(G)=G or Li={1} for some i>1. That is the lcs reached 1 in a finite number of steps or 
the ucs reaches G in a finite number of steps. The minimal i for which this occur is called the nilpotency class of G. That 
is the number of factors in the ucs and lcs. The trivial group is the only group of nilpotency class i=0 while for abelian 
group i=1. For non abelian group i=2. Such groups satisfy [ , ] ( )G G Z G⊂ , that is G/Z(G) is non trivial and abelian. If 
a group has nilpotency class i=n then G/Z(G) has nilpotency  i=n-1,for n>0.  
We note here that solvable and nilpotent groups are groups in which the ucs (equivalently the lcs) or derived  series are 
actually normal series. That is these subgroups reach the end.Non trivial nilpotent groups must have non trival centres. So 
Zi(G)≠Zi+1(G) as there exists some i such that Zi(G)=G. A group G of order  pk has nilpotency class of k-1 since every |G| 
=p2 is abelian. 
The theorems in 1.30 and 1.31 proved by[8], show that solvability and nilpotency behave well under standard 
constructions. 
1.30Theorem  
Nilpotency is closed with respect to subgroups, quotient groups and direct products. 
Proof 

Applying the view of lcs, if H G⊂ and N G< then by induction ( ) ( )i iL H L G⊂  and 

( / ) ( ( )) /i iL G N NL G N⊂  for all i. For groups 
~

G and G,
~ ~

( ) ( ) ( )i i iL G G L G L G× = × for all i. Therefore if 

the lcs of 
~

G and G reach the identity,so does the lcs for any subgroup of G, quotient group of G and 
~

G G× . 

1.31 Corollary 
If ,H K G<  such that G/H and G/K are nilpotent, then so is /G H K∩  

Proof  
The direct product G/H × G/K is nilpotent from 1.30. The diagonal map G →  G/H × G/K  has kernel H∩ K, so G/ H
∩ K is isomorphic to a subgroup of nilpotent group and thus is nilpotent. 
What follows is a corollary from [3]. 
1.32 Corollary  
For a nilpotent group G, with K a normal subgroup of G, then K and G/K are nilpotent.  
The converse is not true in general for consider G=S3, Z(S3)=1, so its acs has Zi(G)=1 for all i. Hence it is not nilpotent 
but A3 is normal in S3 and S3/A3=C2 are both nilpotent. The group S3 is the smallest non nilpotent group.It is however, 
solvable. 
1.33Remark 
 The study of finite nilpotent groups essentially reduces to the study of p -groups which are a rich source of nilpotent 
groups especially groups of prime power order. The group D2n is nilpotent if and only  if 2n is a power of a prime. 
The solvability of N and G/N implies solvability of G gives a conceptual role for the class of all solvable groups. 
Nilpotency of N and G/N does not implies nilpotency of G in general. However the next theorem from  [3] provides a 
condition under which it holds. That is where nilpotency of N and G/N implies nilpotency of G. 
1.34Theorem  

Let G be a group,N a normal subgroup of G such that for some i ( )iN Z G⊂ where Zi(G) is a member of the ucs for G. 

If G/N is nilpotent then G is nilpotent. 
Proof  
 Since G/Zi(G) is a quotient group of G/N, then from 1.30 G/Zi(G) is nilpotent. And since  
Zi(G) ⊂ Zi+1 (G) ⊂ ...⊂ G. Writing  mod Zi(G) we have: 
Zi(G)/ Zi(G) ⊂  Zi+1(G)/ Zi(G) ⊂  Zi+2(G)/ Zi(G)  ⊂  ... ⊂ G/ Zi(G).  
This is the ucs for G/ Zi(G). If G/ Zi(G) is nilpotent we must have Zj(G)/ Zi(G)= G/ Zi(G) for some j ≥i, so Zj=G for some 
j. Thus G is nilpotent.N is nilpotent since N⊂  Zi(G) where Zi(G) is nilpotent.  
We note that 1.34 is close to the quotient lifting property that is if N and G/N/ are nilpotent then G is nilpotent.  
What follows is a generalization of the property of finite p - groups to all nilpotent groups according to [1] and [3]. 
1.35Theorem 
If G is a nontrivial nilpotent group then: 

(1) For everynontrivial normal subgroup N in G, N∩ Z(G)≠{1} and [G,N]≠N 
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(2) For every proper subgroup H, H≠NG(H). 
        (3)   If G is a nilpotent  group and H≤G, with finite order n, then gn∈H for all g in G. 
Nilpotent groups include abelian groups. The next result  from [3]shows this and is true for all nilpotent groups. 
1.36 Theorem  
If G is a nilpotent group then: 

(1) The elements of finite order in G form a subgroup of G. 
(2) If H,K ≤ G and |G:H| is finite then|K:H ∩ K| is finite and it divides |G:H|. 

[8] gives the next theorem. 
1.37Theorem  
If G is a nontrivial soluble group then any nontrivial normal subgroup of G contains a nontrivial abelian normal subgroup 
of G. In particular, if G is a nontrivial soluble group of nonprime size then G contains proper normal subgroup. 
1.38Theorem  
For a nontrivial finite group G: 

(i) G is soluble if and only if any nontrivial quotient of G has a nontrivial abelian normal subgroup. 
(ii)  G is nilpotent if and only if any nontrivial quotient if G has a nontrivial centre. 

Proof  
(i) Since quotients of soluble groups are solubleand quotients of nilpotent groups are nilpotent, from 1.18 the ‘only if’ 
directions follow from nontrivial soluble groups having nontrivial abelian normal subgroups and nontrivial nilpotent 
groups having nontrivial centres, (and the finiteness of G is irrelevant). 
Conversely suppose every quotient of G has a nontrivial abelian normal subgroup. Then G itself has a nontrivial abelian 
normal subgroup say G1. If G/ G1is abelian then G is soluble by the quotient lifting property. If G/ G1 is nonabelian then 
G/ G1 is atleast nontrivial and then has a nontrivial abelian normal subgroup which has the form G2/ G1, so G2  ≠ G1  and 
G2<G. Now we have thenormal series {1} <  G1<  G2<G where the first and second factors are abelian. If G/ G2is 
abelian thenG is soluble. If G/ G2  is nonabelian then it has a nontrivial abelian normal subgroup G3/ G2  and we can 
refine the normal series by inserting G3. Continuing this procedure eventually leads to Gi = G for i≥0 and Gi is an abelian 
normal series of G, so G is soluble. 
(ii) Now suppose every nontrivial quotient  of G has a nontrivial centre. Then G has a nontrivial centre Z1(G).  If Z1(G) = 
G then G is abelian according to 1.35and thus nilpotent. If Z1(G) ≠ G then G/Z1(G)  is nontrivial quotient of G so it has a 
nontrivial centre which is exactly Z2(G)/ Z1(G). As long as Z1(G) ≠ G  the quotient G/Zi(G) has a nontrivial centre so 
Zi+1(G) ≠Zi(G). Since G is finite we eventually must have Zi(G) = G for i>0, so G is nilpotent. 
Next is a concrete characterization  of finite nilpotent groups from [3]. 
1.39Theorem  
A finite group is nilpotent if and only if all if its Sylow subgroups are normal or equivalently the group is isomorphic to 
the direct product of its Sylow subgroups.  
The next theorem from [3] is Carter’s 1961 theorem about conjugate subgroupsin soluble groups. 
1.40Theorem  
Any finite soluble group contains a nilpotent subgroup H such that NG(H)=H, and any two such subgroups are  
conjugates. 
The solvability and nilpotency of a group are related in: 
1.41  Theorem  
Any nilpotent group is solvable (the converse is not true in general) 
Proof  
From 1.6, a normal series that is central is abelian. So nilpotency implies solubility. 
Alternatively in terms of the special subgroup series we introduce G(i) ⊂  Li for all i (1.11). If G is nilpotent then for large 
i the subgroup  Li is trivial so G(i)  is trivial. 
The reason any p - group is nilpotent group is that non trivial finite p - groups have nontrivial centre so the ucs has to 
keep growing until it reaches the whole group. That is suppose that |G|=pn>1. Then Z1(G) is nontrivial. If some Zi(G) is 
nontrivial and not equal to G, then G/ Zi(G)  is a nontrivial finite p - group so its centre is nontrivial. Therefore Zi+1(G) is 
strictly larger than Zi(G). This cannot continue indefinitely so some  Zi(G) equals G. 
Next is a table from [9] showing the nilpotency of some p- groups being important source of nilpotent groups. 
 
Table 1: Nilpotency class for |G|= pn , with p=2, 5≤n ≤ 7; for p= 3, 5 ≤n≤6 

Group order Class Zi(G) Gab 

25 3 C2 C2X C4 

26 4 C2 C2X C4 

27 5 C2 C2X C4 
35 3 C3 C3XC9 

36 4 C3 C3XC9 
 
For any non abelian group, the maximum size of the centre is proved by [2] as:  
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1.42 Theorem  
 If G is a finite non abelian group, then the maximum possible order of the centre of G is ¼|G|.That is,         |Z(G)| ≤ 
1/4|G|. 
From [10] we have: 
1.43 Corollary  
 If |G| is a power of a prime p then G has a non trivial centre.  
Proof  
Let G be the union between its centre and the conjugacy classes say Ji of size greater than 1. 
Thus from equation (iii ) of 1.4 
                     |G| = |Z(G)| + ∑|C(Ji)| 
 Each conjugacy class Ji has size of a power w say of prime p such that w ≥ 1. In this case     w = 0 for classes whose 
elements are central elements. Since each conjugacy class  Ji has size a power of p then |Ji| is divisible by p. Furthermore 
as p divides |G| it follows that p also divides |Z(G)|. Accordingly Z(G) is non- trivial. 
 What follows is the definition of an important concept..  
1.44 Definition  
A representation of a group G over a field F is a homomorphism π from G to GL(n, F), the group of n by n invertible  
matrices with entries in F for some integer n . Here n is the degree of π, and we write:  π: G→GL (n, F).    Consequently 
we say that π is a representation of G if    (aq)π = (a) π(q)π,  for all a, q∈G. 
A representation without proper sub representations is said to be an irreducible representation. 
We outline the following from [11] for reference.  
1.45 Theorem  

(i) Every group of orderp2 where p is a prime is abelian; 
(ii)  Let ni be the degrees of the irreducible representation of G, then |G|=∑ ni

2 . 
1.46 Proposition   
(i) The number of the irreducible representations of any group G is equal to the number of conjugacy classes of G; 
(ii) Every irreducible representation of an abelian group G over the set of complex numbers is one dimensional. 
Proof  
(i) The class functions are determined by their values on the conjugacy classes of G. These are complex vectors spaces. 
They have dimension equal to the number of conjugacy classes. 
But irreducible characters form a basis for the same vector space. Thus the number of conjugacy classes and the number 
of irreducible characters are the same. 
(ii) Since G is an abelian group it has |G| conjugacy classes. From (i) above, it shows that the number of irreducible 
representations ofG is |G| and from 1.45 (ii), we have that: 
                      |G| = n1

2 + n2
2 + ... + n|G|

2. 
 It clearly shows that this can be satisfied only when ni= 1 for all i. 
From [12] we calculate the bounds for the number of irreducible representations of prime degree as follows. 
1.47Theorem  
  Let G be a finite non abelian group of order pw such that |Z(G)| =pt with  t<w, r a prime number, t and w positive 
integers. Then G: 

(i) does not have an irreducible representation of degree p greater than 1 whenever t = 0; 
(ii)  has its minimum number of irreducible representations of degree r greater than 1 whenever w = 3.   

Proof  
(i) If t = 0 the centre is trivial. From 1.43 it follows that G cannot have a trivial centre when w> 1. Accordingly G has |G| 
conjugacy classes and |G| irreducible representations each of which according to 1.46 cannot be greater than 1 whenever t 
= 0.  
(ii)  Since G is non abelian, there exists an element g∈G such that the degree of p> 1 (from 1.46). Let s be the number of 
irreducible representations of degree r with s = t<w. Then from 1.42, 
                                 |Z(G)| ≤  1/4 |G|.  
That ispt

≤  1/4 pw. This implies that: 
                                    4  ≤  pw-t  or  22  ≤   pw-t. 
 To find the minimum irreducible representation we let p take its minimum value which is 2 (minimum prime). Then we 
have that  t = w - 2. It follows that: 
s = t = w - 2. 
 However w ≠ 0, 1, 2 since t> 0 and s> 0. Accordingly, the minimum value of w is 3 which gives the corresponding 
minimum values of s  and t as   t = 1, s = 1 and p> 1.  
What follows is atheorem from [12] which measures the bound for the maximum number of irreducible representations. 
1.48 Theorem  
Let G be a finite non abelian group of order  pw whose centre is of size pt. Where p is a prime number. Then the 
maximum number s of irreducible representation of degree r such that p> 1 is:  
(i)   s = w – 1 where s = t<w and 
(ii )   w ≥ 4 when t> 1 
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Proof: 
(i)  Now by the definition of G, t ≠ w, else we will be in the abelian environment. But from hypothesis t<w, this implies 
that the maximum value that t can attain is w - 1, since t and w are positive integers. Accordingly 
                                                      s = w - 1. 
(ii )   In 1.47(ii ) we have that the least number s of irreducible representation of degree  p> 1 is 1 when the value of w is 3 
and t = 1. But for t to be greater than 1, given that w must be greater than t, then w  ≥  4.  
 
2.0 Our Results 
2.1 Theorem  
If G is a finite non abelian group  of order pw  and centre of order pt, where t<w and p is  prime, then: 
 The number s of irreducible representation of degree p is less than the nilpotency class d of G if the value of w is a 
minimum; 
Proof  
From the hypothesis, |G|=pw and |Z(G)|=pt. When w=0 then d=0,from 1.28. Now from 1.47we have that if w≤2, G is 
abelian . Therefore G has nilpotency class d=1. In this case s=0. 
However, G is non abelian when w≥3. In this case  d≥2. In particular  d=2 when w=3. From the theorem in 1.47(ii), we 
have s=w-2 for min (w) =3. Accordingly for min(w),  s = w-2 and d = w-1. That is d>s. 
2.2 Theorem  
 For a finite non abelian group with property that |G|=pw and |Z(G)|=pt such that t<w, given that t and w are integers and p 
is prime, then the following hold.  

(a) If w is greater than its minimum value then the number of irreducible representation of degree p is greater than 
the nilpotency class of G; 

(b) The number of irreducible representations of degree p and the nilpotency class of G are related by the linear 
equation s – d=1. Equivalently d, s and w are connected by w=1/2(d+s+3) 

Proof  
(a) For w≥3, where min(w)=3, d≥2, from table 1. Specifically, s=w-2 and d=w-1. But for w≥4 , s=w-1 from 
1.48.However table 1 shows that d=w-2. Consequently, s>d whenever w≥4. 
(b) From  the theorem in 2.1 and (a) above we have 

S=w-1         (i)  
 and        d=w-2         (ii) 
equation (i) gives 

w=s+1         (iii)  
and (ii) gives w=d+2        (iv). 
From equations (iii) and (iv): 

S+1=d+2. This leads us to s – d=1. 
Adding equations (iii) and (iv) directly we have : 2w=d+s+3. Hence w=1/2(d+s+3), as required 
3.0 Conclusion 
This paper achieved the minimum nilpotency class and the corresponding irreducible representation and maximum 
nilpotency class and its corresponding  irreducible representations for any non abelian group by using the centre. With 
w<3, the number of irreducible representations is less than the nilpotency class. The order of the group is then at most p3 
for a prime p.  This situation is reversed if w ≥ 4.For this to occur the order of the group is at least p4.  These results agree 
with those obtained by Jelten and Momoh  [12], where 3≤w≤7 and 4≤w≤6 and p= 2 andp ≥ 3.       
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